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Linearisation of the Navier-Stokes equations about the mean of a turbulent flow forms the
foundation of popular models for energy amplification and coherent structures, including
resolvent analysis. While the Navier-Stokes equations can be equivalently written using
many different sets of dependent variables, we show that the properties of the linear
operator obtained via linearisation about the mean depend on the variables in which
the equations are written prior to linearisation, and can be modified under nonlinear
transformation of variables. For example, we show that using primitive and conservative
variables leads to differences in the singular values and modes of the resolvent operator
for turbulent jets, and that the differences become more severe as variable-density
effects increase. This lack of uniqueness of mean-flow-based linear analysis provides new
opportunities for optimizing models by specific choice of variables while also highlighting
the importance of carefully accounting for the nonlinear terms that act as a forcing on
the resolvent operator.

Key words:

1. Introduction

Mean-flow-based linear analyses have been used since the 1970s to understand and
model the dynamics of coherent structures in turbulent shear flow. The original idea
behind this is that turbulence generates a mean flow that can be seen as an equivalent
laminar flow on which disturbances evolve (Crighton & Gaster 1976). The mean flow
includes some, but not all, of the effects of the non-linear flow dynamics. Approaches of
this kind have evolved considerably in recent years as global stability (Lesshafft et al.
2006; Akervik et al. 2008; Sipp et al. 2010; Mantič-Lugo et al. 2014) and input-output,
or resolvent analyses (McKeon & Sharma 2010; Hwang & Cossu 2010; Towne et al.
2018; Schmidt et al. 2018; Cavalieri et al. 2019), have become feasible thanks to progress
in computational methods. Such analysis has been applied to a broad variety of fluid-
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mechanics problems (compressible, incompressible, wall-bounded and free shear flows).
For the example of a turbulent jet considered later in this paper, recent reviews have
been provided by Jordan & Colonius (2013) and Cavalieri et al. (2019).

Many of these studies use the mean-flow-based linear operator to analyse the flow
dynamics in an input-output, or resolvent, framework (McKeon & Sharma 2010; Towne
et al. 2018). In this case, the forcing terms are considered to drive the response through
the resolvent operator. It is shown that the resolvent operator fully represents the flow
dynamics if forcing is white (Towne et al. 2016; Lesshafft et al. 2019). For coloured
forcing, which is generally the case for turbulent flows, flow dynamics depend also on the
spectral content of the forcing (Zare et al. 2017). Beneddine et al. (2016) discussed some
situations in which flow dynamics may be partially governed by the linear operator.

In other studies, eddy viscosity models have been included in the linear operator. This
can enhance the extent to which the resolvent modes match the observed turbulence
structure (Cossu et al. 2009; Hwang & Cossu 2010; Morra et al. 2019; Pickering et al.
2019). However, physical interpretation of the remaining, unmodelled forcing terms then
becomes unclear, as the use of an eddy viscosity amounts to a partial modelling of the
effects of nonlinear forcing from Reynolds stress fluctuations.

We consider mean-flow-based linear analyses from the point of view of their uniqueness.
It is obvious that modifying the linear operator, either through eddy-viscosity-based
modelling, or by directly changing the linearisation point, will change the characteristics
of the linearised system. A less obvious ambiguity is investigated in the present paper:
we aim to show that, by choosing two different, nonlinearly related, variable sets that
define a given flow, one may obtain two linearised systems with different characteristics,
even when the transformation between the variables is bijective. Part of this ambiguity
comes from linearisation around the mean, which is a not a fixed point of the system for
turbulent flows. Another part of the ambiguity is due to the non-equivalence of the means
obtained for these two variable sets. A common example is the nonlinear transformation
between primitive and conservative variables. We explore the effect of this choice on
resolvent analysis.

We first provide (§2) the mathematical framework that relates two linear operators
obtained via nonlinear transformation of the dependent variables. We illustrate (§3)
the analysis by considering a number of Large-Eddy Simulation (LES) datasets for
turbulent jets ranging from isothermal subsonic to heated supersonic using conservative
and primitive variable sets. Based on our analysis and observations, we argue (§4) that
the properties of the resolvent operator cannot be regarded as universal, but instead
depend on the choice of variables used to define the mean, and that the overall model
becomes independent of this choice only if the nonlinear forcing terms are appropriately
modelled.

2. Nonlinear transformation of Navier-Stokes equations

This study originated from an issue faced by the authors while trying to use the forcing
data from an LES database constructed using a primitive-like variable set (Towne 2016;
Brès et al. 2017; Brès et al. 2018), with a resolvent analysis tool written in conservative
variables (Bugeat et al. 2019). The problem can be illustrated by considering the effect
of a nonlinear transformation of variables on the Navier-Stokes equations (though the
analysis in fact applies to any nonlinear dynamical system).
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2.1. Derivation

Navier-Stokes equations (NSE) are written,

∂tq = N (q), (2.1)

where q ∈ Rm is the vector of state variables with m = 5 for three dimensional flows
and N : Rm → Rm is the nonlinear Navier-Stokes operator. Performing a Taylor-series
expansion of q about a linearisation point, q in state space, which is typically the mean
of q, (2.1) can be written,

∂tq
′ −A(q′) = f , (2.2)

where (·)′ denotes fluctuations, A , DN (q) is the Fréchet derivative of N at q (which
becomes the Jacobian A , ∂qN|q for the discretised NSE) and f denotes all the remaining
nonlinear terms, i.e., f = N (q)−A(q′). Here, an analogy with the theory of linear time-
invariant (LTI) systems can be made by considering A, as the system matrix, and q′

as the response of this system to a forcing, f . Resolvent analysis adopts this analogy
to determine a forcing function f that maximizes the linear gain associated with the
resolvent operator, R , (iωI−A)−1.

To investigate the impact of the choice of variables, we define a nonlinear bijective
transformation, H : Rm → Rm, as,

qT , H(q) (2.3)

that maps the state variable from the original to a new set of variables, e.g., from primitive
to conservative variables. The governing equation (2.1) can be represented in terms of
the transformed variable qT by defining another operator, NT that satisfies,

∂tqT = NT (qT ), (2.4)

which can also be linearized around its mean, qT , yielding

∂tq
′
T −AT (q′T ) = fT . (2.5)

In what follows, we express the DNT (qT ) in terms of DN (q). Differentiating (2.3) with
respect to time and inserting (2.1) and (2.4) in the result gives,

NT (qT ) = DH(q)N (q), (2.6)

where the multiplication with a Fréchet derivative defines an inner product. To calculate
the Jacobian, we need to take the derivative of the LHS of (2.6) with respect to qT ,
which is equivalent to taking the derivative of the RHS with respect to H(q). Given that

DF (H(q)) = D(F ◦ H)(q) (DH(q))
−1

for a smooth F , the Jacobian can be written as,

DNT (qT ) = DH(q)DN (q) (DH(q))
−1

+D2H(q) (DH(q))
−1N (q). (2.7)

The LHS of (2.7) should be calculated at qT in order to obtain AT . The state vectors q
and qT are not equivalent in the sense that they do not satisfy (2.3), i.e., qT 6= H(q).
The equivalent expansion point for the RHS of (2.7), which is not equal to q, is then
defined as,

q̃ , H−1(qT ). (2.8)

Calculation of qT requires the dynamic state data. In case only the mean flow statistics
are available, a first-order prediction of q̃ can be achieved as described in the appendix.

Having defined q̃, (2.7) can then be re-written as,

AT = DH(q̃)Ã (DH(q̃))
−1

+D2H(q̃) (DH(q̃))
−1N (q̃), (2.9)
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where Ã , DN (q̃). Note that the second term on the RHS of (2.7) is zero if H is linear
(D2H(q) = 0 for any q) or if linearisation is performed about a ‘fixed’ point of the
system, which, by definition, satisfies N (q) = 0. In that case, the first term in (2.9)
indicates a similarity transformation between AT and Ã, which now reduces to A (due
to having qT = H(q) satisfied, by definition in case of linear H, and through (2.6) in
case of expansion around the fixed point), and the two linear operators share the same
eigenvalues. In mean-flow-based linear analysis, however, the second term on the RHS
(2.9) is non-zero, which implies a difference in the eigenvalues of Ã and AT even if the
corresponding linearisation points are equivalent.

We now derive an expression relating A and AT . It is more convenient to compare these
two operators since one would use A, not Ã when performing mean-flow linear analysis.
Although (2.9) provides a means to compute AT , which can then be compared to A, an
exact general expression relating the two operators cannot be derived for nonlinear H.
However an approximate relation is given by replacing (A 5) into (2.9) as,

AT ≈ DH(q̃)A (DH(q̃))
−1

+DH(q̃)
(
ADε(q) +D2N (q)ε(q)

)
(DH(q̃))

−1
+D2H(q̃) (DH(q̃))

−1N (q̃). (2.10)

The second term on the RHS of (2.10) accounts for account the change in the linearisation
point, i.e., non-equivalence of the mean flows, q and qT due to taking the mean after
nonlinear transformation, while the third term appears once again since the mean flow
is not a fixed point of the Navier-Stokes system for turbulent flows. It is obvious that
these extra terms do not cancel each other for arbitrary H. As a result, expanded about
the mean-flow, the system characteristics are modified when subjected to a nonlinear
transformation. An immediate implication is that the stability characteristics of the linear
operator are not unique and the linearised systems (2.2) and (2.5) are equivalent only if
the right-hand sides are maintained and the equal sign is respected.

2.2. Implications for resolvent analysis

Resolvent analysis involves taking the Fourier transform of (2.2), or similarly (2.5),
and re-organizing the result as,

q̂ = Rf̂ , (2.11)

where q̂ and f̂ are Fourier transforms of q and f , respectively. Ignoring the nonlinear
relation between f̂ and q̂, (2.11) can be seen as a forcing-response relation. The optimal
forcing that would maximize the energy in the response can be be found by maximising
the Rayleigh quotient, σ , 〈q̂, q̂〉/〈f̂ , f̂〉, where the inner product is defined as

〈a,b〉 =

∫
V

a∗MbdV, (2.12)

with M defining a suitable energy norm. The Rayleigh quotient for the transformed
system, σT , can be similarly defined using q̂T and f̂T . To compare σ and σT , the energy
norms in the original and the transformed systems should be equivalent, which amounts
to ∫

V

q′
∗
Mq′dV =

∫
V

q′
∗
TMTq′T dV. (2.13)

To leading order in fluctuation amplitude, q′T and q′ are related by the expression,

q′T = ∂qH|qq′. (2.14)
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Table 1. The list of axisymmetric jets investigated.

Mj Tj/T∞ NPR NTR Re

Jet-1 0.4 1.0 1.117 1.032 0.45× 106

Jet-2 0.9 1.0 1.691 1.162 1.01× 106

Jet-3 1.5 1.0 3.671 1.450 1.69× 106

Jet-4 1.5 1.79 3.671 2.596 0.95× 106

Replacing q′T terms in (2.13) using (2.14) yields a leading-order norm equivalence,

M = ∂qH|∗qMT∂qH|q. (2.15)

Note that the norm correction is required even when the variable transformation is
linear, in which case the resolvent operators are connected through a similarity transform.
Equation (2.15) can alternatively be obtained by enforcing that the Rayleigh quotients
of the original and linearly transformed systems be equal.

3. Application to test cases

The above analysis is tested using four different LES databases of ideally expanded
round jets: three isothermal jets at Mj = 0.4, 0.9 and 1.5 and a hot jet at Mj = 1.5
are investigated to observe the effect of switching from conservative to primitive variable
sets on resolvent analysis. The operating conditions are given in terms of jet exit Mach
number, Mj , nozzle pressure ratio, NPR , P0,j/P∞, nozzle temperature ratio, NTR ,
T0,j/T∞, and Reynolds number, Re , ρjUjD/µj , where D is the nozzle diameter, µj is
the dynamic viscosity at the jet exit, and the subscript 0 is used to denote stagnation
quantities. Further details about the LES databases can be found in Brès et al. (2017);
Brès et al. (2018).

For each flow case, we performed resolvent analysis and spectral proper orthogonal
decomposition (SPOD) of the axisymmetric mode using two different variable sets:
[ν ux ur p]T and [ρ ρux ρur ρE]T , which we refer to as primitive and conservative,
respectively. Here, ν = 1/ρ, ρ, ux, ur, p and ρE denote the specific volume, density, axial
and radial velocities, pressure and total energy, respectively. In order to perform a singular
value decomposition (SVD) of the resolvent, the Jacobian matrix of the compressible
NSE, i.e., the linear operator A defined in §2.1, is computed using conservative variables
by linearising the discretised equation as described by Mettot et al. (2014). At this point,
it is possible to switch to primitive variables by first finding the linearisation point that
is equivalent to the mean in primitive variables using equation (2.8), and then applying
equation (2.9) to get AT . The SVD of the resolvent is then calculated based on Krylov
methods as detailed in Bugeat et al. (2019). The open libraries PETSc (Balay et al.
1997) and SLEPc (Hernandez et al. 2005) are used to solve the linear systems by direct
LU decomposition and eigenvalue calculation by the Krylov-Schur algorithm (Hernández
et al. 2007). Computations are carried out using an orthogonal mesh of 748×229 points for
the subsonic cases, and 636×229 points for the supersonic cases, which were determined
after a convergence study, in the numerical domain x/D ∈ [0; 30] and r/D ∈ [0; 12],
where x/D = 0 is the location of the nozzle exit and r/D = 0 is the centre line. Sponge
zones are located at x/D > 20 and r/D > 5. The Chu norm (Chu 1965) is used for both
response and forcing over x/D ∈ [0; 20] and r/D ∈ [0; 5].

To calculate the SPOD modes, we followed the method introduced by Towne et al.
(2018). Once again, the Chu norm is used. We calculated the Fast Fourier Transform
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Figure 1. Comparison of the leading SPOD and optimal resolvent modes at St = 0.6 for
different jets (Jet-1 to Jet-4 : top to bottom). Pressure fields are shown. For the analyses using
conservative variables (right), pressure is obtained through linearised transformation.

(FFT) of q with 128 FFT points, and overlap ratio of 0.75, yielding 310 FFT blocks for
the isothermal cases, and 154 blocks for the hot jet case.

The optimum response modes at St = 0.6 obtained using primitive and conservative
variables, respectively, are plotted in comparison to the optimum SPOD modes in
primitive variables in Figure 1 for all jet cases. The figure shows the pressure field, which
is directly computed for the primitive-variable cases, while it is reconstructed using (2.14)
for the conservative-variable cases. The reconstructed SPOD modes are identical to the
directly computed ones (see Table 4), so are not shown here. The mode shapes are very
similar between the directly computed and the reconstructed response modes. However,
the global weight distribution among the variables slightly differs in Jet-4 (higher for
pressure in the reconstructed mode).

The transformation from primitive to conservative variables, which are denoted by the
subscripts p and c, respectively, is defined as qc = H(qp), with

H(q) =

[
1

q1
,

q2

q1
,

q3

q1
,

q4

(γ − 1)
+

1

2

1

q1

(
q2
2 + q2

3

)]T
, (3.1)

where γ = 1.4 is the heat capacity ratio. This function becomes linear for density and
momentum terms when the flow is incompressible. The jet cases are listed in the order of
increasing variable-density effects. Therefore we expect larger deviation in the singular
values of the original and transformed resolvent operators as we move from Jet-1 to Jet-4.
To quantify the effect of density fluctuations on the mean flow, we define the percentage
measure ∆q ,

∣∣H−1(qc)− qp

∣∣ /qp× 100. We integrate this quantity over the jet domain
where turbulent kinetic energy (TKE) is greater than 1% of its maximum value and
normalize the result with the integration domain. To quantify the change in the singular
values, we define, ∆σ1 , (σ1,c− σ1,p)/σ1,p× 100, and ∆G , (Gc−Gp)/Gp× 100, where
G = σ1/σ2 is the gain separation between the optimal and the first suboptimal singular
values. The modification of the mean and the resulting changes in the singular values are
tabulated in Table 2. It can be seen from the table that the difference between the true
mean, qp and the transformed mean, H−1(qc) does not exceed 0.6% except in the radial
velocity field where 7.6% overall difference is seen in Jet-4. The radial profiles of the mean
flow calculated directly in primitive variables, qp, and reconstructed from conservative
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Table 2. The change in the mean fields and the singular values calculated at St = 0.6 due to
transformation from primitive to conservative variables.

∆ν [%] ∆ux [%] ∆ur [%] ∆p [%] ∆σ1 [%] ∆G [%]

Jet-1 0.00 0.01 0.31 0.04 0.05 −0.05
Jet-2 0.02 0.02 1.21 0.18 −2.81 −3.25
Jet-3 0.05 0.06 1.43 0.57 −6.02 −7.45
Jet-4 0.24 0.16 7.65 0.61 −40.58 −35.87

Figure 2. Radial mean flow profiles calculated in primitive variables (solid) and reconstructed
from conservative variables (dashed) at x/D = 2 in Jet-4.

Figure 3. Optimal gain spectra computed using primitive variables (left), and their
modification under variable transformation (right).

variables, q̃p are shown for Jet-4 in Figure 2, respectively. Once again, the difference
between qp and q̃p is mostly visible in radial velocity and pressure around the shear layer,
with the largest percentage change in the former. This difference indicates a relatively
strong correlation between density and radial velocity, and similarly between density and
pressure, in this region. Despite the small modification of the mean, the optimal singular
value and gain separation are modified by up to 40% and 35%, respectively, in Jet-4.

For the two supersonic cases, Jet-3 and Jet-4 in which noticeable changes in the
singular values are observed, the analysis is repeated at different frequencies. The optimal
gain spectra obtained using primitive variables and their modification under variable
transformation are plotted in Figure 3. It is seen that maximum change in singular
values is obtained at St = 0.4 and St = 0.6 for Jet-3 and Jet-4, respectively.

We furthermore investigate the alignment of the optimum response mode of the
resolvent operator with the leading SPOD mode of the response, q. The alignment is
quantified as the absolute value of the scalar product, |〈ψS , ψR〉|, where the subscripts
R and S stand for the resolvent optimal response and SPOD modes, respectively. The
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Table 3. Alignment coefficients between the leading SPOD and response modes for different
jet cases at St = 0.6. Results obtained using primitive and conservative variables, respectively,
are compared.

Jet-1 Jet-2 Jet-3 Jet-4

Primitive variables 0.593 0.571 0.578 0.420
Conservative variables 0.587 0.542 0.555 0.521

Table 4. Alignment coefficients between the directly computed and the reconstructed modes
for different jet cases at St = 0.6.

Jet-1 Jet-2 Jet-3 Jet-4

Leading SPOD mode 1.000 1.000 0.999 0.981
Optimal resolvent mode 0.996 0.987 0.983 0.462

results at St = 0.6 are tabulated in Table 3 for all jets. It is seen that the alignment is
slightly better when primitive variables are used, except for Jet-4, where the alignment
is improved by ∼24% when conservative variables are used, although the gain separation
is lowered by 35%. This is counter-intuitive since the alignment of SPOD and resolvent
modes is often associated with high gain separation in the resolvent operator (Beneddine
et al. 2016), considering that the non-linear terms are close to white noise and thus
have similar projection coefficients onto the forcing mode basis. However, the presence of
coherent, low-rank forcing, as recently observed for turbulent channel flow (Morra et al.
2020), may change this picture. The overall weight of a response mode in q̂ is determined

by the corresponding gain together with the projection of the actual forcing, f̂ on to the
corresponding forcing mode of the resolvent operator. Therefore, the observed increase in
the alignment despite of the reduction in gain separation indicates enhanced projection
of forcing onto the optimal forcing mode, which is sufficient to outweigh the reduced gain
separation.

Finally, we investigate the change in SPOD and resolvent modes that occurs under the
variable transformation. We transform the modes obtained using conservative variables
to their primitive-variable counterparts using (2.14). The inner-product definition given
in (2.12) is now used to measure the alignment between the reconstructed and directly
calculated modes. The results at St = 0.6 are tabulated in Table 4. The alignment of
the leading SPOD modes calculated in conservative and primitive variables is above 98%
for all the jets. The similarity of directly computed and reconstructed optimal resolvent
modes are again above 98% for all the cases except for the heated, compressible Jet-4,
where we see a drop to 46%. This change, consistent with the significant change observed
in the singular vales, shows how the choice of variables may lead to quite different results
and subsequent conclusions about the underlying flow physics.

4. Discussion and concluding remarks

We have demonstrated a non-uniqueness issue associated with mean-flow-based linear
analysis. We show that the characteristics of the linear operator that is obtained by
linearising a non-linear dynamical system about its mean depend on the state variables
considered. In the framework of resolvent analysis, this means that two studies of a
given flow, using non-linearly related dependent variables (conservative and primitive,
for instance), may produce different results.

This raises questions regarding the interpretation of such analyses, now widely used to
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study coherent structures in turbulent shear flow. The application of such analysis for jets
is often justified on the basis of their weak non-parallelism, which may result in a large
gain separation between leading and sub-optimal resolvent modes, and an associated
spatial separation between forcing and response modes. By means of resolvent analyses
of turbulent jets with different operating conditions, we demonstrate how primitive-
and conservative-variable-based analyses may differ significantly (up to 40% change in
gain; 35% change in gain separation). This implies that mean-flow-based linear analyses
of amplifier flows, where flow dynamics are strongly dependent on forcing, cannot be
regarded as universal, but are instead dependent on the specific form (and model)
considered for the forcing terms.

A similar issue has arisen in the context of aeroacoustics. Acoustic analogies of different
forms have been proposed over the years (Lighthill (1952); Lilley (1974); Howe (1975);
Doak (1995); Goldstein (2003); etc.) based on different linear operators considered to
describe sound propagation. For each wave operator there exists a corresponding ‘source’
term; and it is this that confounds attempts to uniquely define what is meant by a
‘source’ of sound in turbulent flows (cf. Jordan & Gervais (2008)). We see that the same
situation holds for mean-flow-based stability analysis. Just as there is no unique acoustic
wave propagator, there is no unique resolvent operator. However, as these approaches
are all exact rearrangements of the governing equations, with residual non-linear terms
treated as external ‘force’ or ‘source’, all analyses will lead to the same result if the
residual terms are retained. This highlights the importance of not neglecting, or over-
simplifying, the external forcing term in resolvent analyis.

While this ambiguity may be unsettling, it opens the door to optimisation of resolvent-
based approaches for various applications. How to optimise the linear framework could
vary depending on the problem considered. For instance, for a supersonic jet where a
rank-1 model is sufficient to describe peak jet-noise (Sinha et al. 2014; Cavalieri et al.
2019), finding a nonlinear transformation that maximises gain separation, whilst keeping
the nonlinear forcing maximally aligned with the leading input mode, would constitute
an interesting optimisation problem. For a subsonic jet, on the other hand, multiple
input-output modes are necessary to correctly describe sound generation (Cavalieri
& Agarwal 2014; Towne et al. 2015; Cavalieri et al. 2019). Finding a transformation
that maximises the gains and projections onto the forcing modes for the first n in that
case, where n > 2 is to be determined as well, may help improve the modelling strategies.

This work has received funding from the Clean Sky 2 Joint Undertaking (JU) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 785303. Results reflect only the authors’ view and the JU is not responsible
for any use that may be made of the information it contains.

Appendix A. Estimating q̃ and Ã using flow statistics

Applying a Taylor series expansion to (2.3) around q, we get

qT = H(q) +DH(q)q′ +
1

2
q′

T
D2H(q)q′ +O(q′

3
). (A 1)

Neglecting third-order terms in (A 1) and taking its mean yields

qT ≈ H(q) +
1

2
q′TD2H(q)q′. (A 2)
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Note that the first-order term in Taylor-series expansion is dropped after taking the
mean, since q′ = 0. Applying a linear expansion to (2.8) again around q, we get

qT ≈ H(q) +DH(q)(q̃− q). (A 3)

(A 2) and (A 3) both approximate qT . Then, a first-order approximation of q̃ can be
obtained by rearranging these two equations as,

q̃ ≈ q + (DH(q))
−1
(

1

2
q′TD2H(q)q′

)
. (A 4)

(A 4) requires knowledge of the mean, q, together with the stress-like tensor, q′q′T . Note
that, if H is an element-wise operator, only the mean-squares of the fluctuations, i.e., the

diagonal elements of q′q′T are necessary. Assuming a converged expansion in (A 3) implies

that the second term in (A 4) is small. Defining ε(q) , (DH(q))
−1
(

1
2q′TD2H(q)q′

)
,

applying N on both sides of (A 4), and linearly expanding the RHS about q, we get,
N (q̃) ≈ N (q) + DN (q)ε(q), which can, finally, be differentiated with respect to q to
obtain,

Ã ≈ A+ADε(q) +D2N (q)ε(q). (A 5)
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