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On some coupled PDE-ODE systems in fluid dynamics

Evelyne Miot

Abstract

In this note we will present some existence and uniqueness issues for three coupled PDE-ODE sys-
tems. The common frame is that they arise as the asymptotical dynamics of a regular, incompressible
two-dimensional flow interacting with:

• points at which the vorticity is highly concentrated (point vortices);

• an obstacle shrinking to a steady point;

• rigid bodies contracting to moving massive particles.

We will mainly focus on the last situation, corresponding to the article [11], which is a joint work
with Christophe Lacave.

1. Introduction

1.1. Setting
The purpose of this note is to study the evolution of a two-dimensional incompressible flow inter-
acting with one or several point singularities, in three different settings. The results presented here
correspond to the papers [10] and mostly [11].

Given a two-dimensional, incompressible inviscid fluid, we consider the (divergence-free) velocity
of the fluid: u = u(t, x) : R+ × R2 → R2 and the vorticity ω = curl(u) : R+ × R2 → R.

In the absence of point singularities, the evolution of the velocity is given by the Euler equation
∂tu+ u · ∇u = −∇p, divu = 0, (1.1)

or, when expressed in terms of the vorticity,
∂tω + u · ∇ω = 0, divu = 0. (1.2)

Note that, under decay conditions at infinity, u can be explicitely recovered in terms of ω by the
Biot–Savart law : u = K∗ω, with K(x) = x⊥/(2π|x|2). Global existence and uniqueness of classical
solutions to (1.2) was proved in [8, 21]. Yudovich [22] established global existence and uniqueness
of the weak solution ω ∈ L∞(R+, L

1 ∩L∞(R2)), for all initial vorticity belonging to L1 ∩L∞(R2).
As in the classical case, the weak solution is also a lagrangian solution, namely it is transported by
the unique lagrangian flow of the velocity field. We refer e.g. to the book of Majda & Bertozzi [12]
for a more detailed presentation of the Euler equation.

In this article, we will review three situations in which a regular fluid, with uniformly bounded
and integrable vorticity ω(t, · ), interacts with one or several point singularities located at z1(t), . . . ,
zN (t) at time t ≥ 0. Then (1.2) has to be modified according to the singular field generated by the
singularities. This yields a coupled PDE/ODE system for which we will study the main properties:
existence, uniqueness and lagrangian representation of the solution ω(t, · ). We describe below the
situations under consideration.

E. M. is supported by the French ANR projects SchEq ANR-12-JS-0005-01, GEODISP ANR-12-BS01-0015-01, and INFAMIE ANR-
15-CE40-01.
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1. Point vortices. The point singularities correspond to points at which part of the vorticity
is highly concentrated: it behaves as a sum of Dirac masses

∑
k γkδzk(t), where γk is the

circulation of the velocity around zk(t). In this setting the points are called point vortices.
The corresponding interaction is given by the vortex-wave system:

∂tω + div
[(
u+

∑N
k=1

γk

2π
(x−zk)⊥
|x−zk|2

)
ω
]

= 0,
u = K ∗ ω, K(x) = 1

2π
x⊥

|x|2 ,

żk = u(t, zk) +
∑
j 6=k

γj

2π
(zk−zj)⊥
|zk−zj |2 for k = 1, . . . , N.

(1.3)

This is a coupling of a PDE for the motion of the regular flow, with vorticity ω(t, · ) uni-
formly integrable and bounded as in Yudovich’s theorem, and a system of ODEs for the
point vortices. The vortex-wave system (1.3) was introduced and studied by Marchioro and
Pulvirenti [14, 15] and Starovǒıtov [18]. Marchioro and Pulvirenti proved global existence
of a (lagrangian) solution when γk all have the same sign. The sign condition prevents from
collisions in finite time. In [14], they also indicated that uniqueness holds when the vorticity
is initially constant near the point vortices (namely the condition appearing in Theorem 1.3
below). This was proved in [10], as stated in Theorem 1.3 below. We also quote [19] for a
uniqueness statement with an additional regularity condition.
Note that the vortex-wave system reduces to the point vortex system (or Kirschoff law)
when there is no regular fluid,

żk =
∑
j 6=k

γj
2π

(zk − zj)⊥

|zk − zj |2
for k = 1, . . . , N.

2. Fixed point vortex. There is one single point (N = 1), which is stationnary. This corresponds
to the asymptotics of a regular fluid evolving in the exterior of a small, compact obstacle
shrinking into a fixed point z1(t) ≡ z1, in a self-similar way, with constant circulation around
the obstacle. Assuming that z1 is set at the origin, the asymptotical dynamics is given by{

∂tω + div
[(
u+ γ

2π
x⊥

|x|2

)
ω
]

= 0
u = K ∗ ω,

(1.4)

where γ is reminiscent of the circulation of the velocity field around the obstacle. Sys-
tem (1.4) was derived by Iftimie, Lopes Filho and Nussenzveig Lopes [9]. On the other
hand, it had been previously studied by Marchioro [13], who established existence and
uniqueness of the classical solution with compact support not intersecting the origin. See
also [10] (or Theorem 1.3 below) for an alternative proof of uniqueness.

3. Massive point vortices. The points correspond to the asymptotical positions of small, rigid
bodies immerged in the regular fluid, when the size of the bodies vanishes with fixed mass
mk > 0 and circulation γk ∈ R. The resulting system reads:

∂tω + div
[(
u+

∑N
k=1

γk

2π
(x−zk)⊥
|x−zk|2

)
ω
]

= 0,
u = K ∗ ω,

mkz̈k = γk

(
żk − u(t, zk)−

∑
j 6=k

γj

2π
(zk−zj)⊥
|zk−zj |2

)⊥
for k = 1, . . . , N.

(1.5)

We observe that (1.5) reduces to the vortex-wave system (1.3) when setting mk = 0. And,
for N = 1, Glass, Lacave and Sueur [7] proved that the asymptotical dynamics of a small
body with vanishing mass evolving in a 2D incompressible fluid is indeed governed by the
vortex-wave system.
The second order differential equation satisfied by the point vortices in (1.5) means that the
bodies are accelerated by a force, which is analogous to the well-known Kutta–Joukowski-
type lift force that arises for a single body in an irrotational unbounded flow. The properties
of System (1.5) were investigated in [6, 7]. In the case of one single point N = 1, the corre-
sponding system was rigorously derived by Glass, Lacave and Sueur [6] in a distinguished

V–2



limit when the size of the body vanishes whereas the mass is assumed to be constant. Thus,
a byproduct of [6] is the existence of a global weak solution of (1.5) when N = 1.
In the case N ≥ 1, the derivation of (1.5) is an open issue. One of the results in the present
note, given in Theorem 1.1 below, provides existence and (in some cases) uniqueness of
the solution for any N ≥ 1, that is global if all the circulations have the same sign. In
particular, this could be a first step to rigorously justify the mean-field limit of (1.5) when
setting γk = 1/N = mk and letting N → +∞. Formally, this mean-field limit is a system
of coupled PDE for the couple (ω, f), where

f = f(t, x, v)
is the weak-∗ limit of the empirical measure

fN (t) = 1
N

N∑
k=1

δ(zk(t),żk(t))

as N → +∞. The system reads
∂tω + div [(u+K ∗ ρ)ω] = 0,
u = K ∗ ω, K(x) = 1

2π
x⊥

|x|2 ,

∂tf + v · ∇xf + (v⊥ − u⊥) · ∇vf = 0,
(1.6)

with
ρ = ρ(t, x) =

∫
f(t, x, v) dv.

System (1.6) is investigated by Moussa and Sueur [17] as a model for the evolution of 2D
sprays. In this case, f denotes the density of a dispersed phase of particles moving into a
perfect fluid with velocity u. The mean-field limit of (1.5) to (1.6) is proved in [17] in the
regularized case, that is when K is replaced by a Lipschhitz and bounded field. The “real”
case K(x) = x⊥/(2π|x|2) is open.

1.2. Main results
We state here the main results holding for the aforementioned situations. In all the following we
consider an initial vorticity

ω0 ∈ L∞(R2), such that supp(ω0) ⊂ B(0, R0).
We consider distinct points z0

1 , . . . , z
0
N in R2 as well as points h1, . . . , h

0
N in R2. The points z0

k

correspond to the initial positions of the point vortices for (1.3) or for (1.5), while the h0
k are the

initial velocities for (1.5). For the fixed point vortex system these initial data will of course not be
needed.

Theorem 1.1. We assume that all the γk have the same sign. Then for (1.3), (1.4), and (1.5):

• There exists a global weak solution with ω ∈ L∞(R+, L
1 ∩ L∞(R2)) and zk ∈ C1(R+)

for (1.3), zk ∈ C2(R+) for (1.5).

• No collision occurs between the point vortices.

• ‖ω(t, · )‖Lp = ‖ω0‖Lp for all 1 ≤ p ≤ +∞ and for all t ≥ 0.

• The solution is a lagrangian solution: we have ω(t, · ) = X(t, · )#ω0, where for almost every
x 6= z0

k, {
Ẋ(t, x) = u(t,X(t, x)) +

∑N
k=1 γkK(X(t, x)− zk(t)),

X(0, x) = x.
(1.7)

In particular, we have X(t, x) 6= zk(t) for all t ∈ R+.

Remark 1.2. If all the γk do not have the same sign, the previous results apply on some time
interval [0, T ] with T > 0.
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As mentioned above, Theorem 1.1 was proved in [14] for (1.3), in [10, 13] for (1.4), and in [11]
for (1.5).

Concerning uniqueness, our result is the following:

Theorem 1.3. Assume that there exist α1, . . . , αN ∈ R and some δ0 > 0 such that

ω0 ≡ αk on B(z0
k, δ0), k = 1, . . . , N.

Then for any T > 0, there exists at most one weak solution (ω, {zk}) to (1.3), (1.4) or (1.5) on
[0, T ] with this initial condition.

As already mentioned, Theorem 1.3 was sketched in [14] and proved in [10] for the vortex-wave
system (1.3). It was proved in [10, 13] for the system (1.4) when α1 = 0 (the vorticity vanishes
near the point vortex). Finally it is established in [11] for the massive vortex-wave system (1.5).

The strategy for proving Theorem 1.3, which was indicated by Marchioro and Pulvirenti for the
vortex-wave system, relies on the property that for all t ∈ [0, T ], the vorticity remains constant in
the neighborhood of the massive point vortices:

Theorem 1.4. Let ω0 and {z0,k} satisfy the assumptions of Theorem 1.3. Let (ω, {zk}) be any
weak solution of (1.3), (1.4) or (1.5) on [0, T ]. There exists a positive δ depending only on T , δ0,
‖ω0‖L∞ , R0 and ‖hk‖W 2,∞([0,T ]), such that

ω(t, · ) = αk on B(hk(t), δ), ∀ t ∈ [0, T ].

As we shall see in the proofs, Theorems 1.3 and 1.4 actually apply to any system of the form
∂tω + div

[(
u+

∑N
k=1

γk

2π
(x−zk)⊥
|x−zk|2

)
ω
]

= 0,
u = K ∗ ω,
zk is a given trajectory belonging to W 2,∞([0, T ],R2) for k = 1, . . . , N.

Indeed, the derivative of the local energy defined in (2.10), used to control the distances between
the trajectories, only involves estimates on the second-order derivatives of the point trajectories,
but does not involve their explicit dynamics.

From now on, to simplify the presentation, we will focus on the system (1.5) with massive point
vortices.

The plan of this paper is as follows. In the next section we sketch the proof of Theorem 1.1
for (1.5). In particular we recall the Definition 2.2 of the regular Lagrangian flowX, which is defined
almost-everywhere. Then we introduce in (2.10) the notion of local energy associated to the flow
trajectories X(t, x). By controlling this energy we estimate from below the distance between the
flow trajectories and the point vortices globally in time.

Then in Section 3 we sketch the proof of Theorem 1.3 for (1.5). The first step consists in using
the previous control on the local energies to establish Theorem 1.4. The uniqueness follows then
from Theorem 1.4, by mimicking the proof of the paper [10] for the vortex-wave system.

Notations. From now on C will refer to a constant depending only on the initial data: R0, mk,
γk, and ‖ω0‖L∞ , but not on δ0.

For T > 0, the notation C‖z‖,T will stand for a constant depending only on the initial data: R0,
mk, γk, ‖ω0‖L∞ , and on T and on ‖zk‖W 2,∞([0,T ]), but not on δ0.

For T > 0, the notation CT will refer to a constant depending only on T and on the initial data
(R0, mk, γk, and ‖ω0‖L∞), but not on δ0.
C, C‖z‖,T and CT will possibly change value from one line to another.

2. Proof of Theorem 1.1 for (1.5)

In all this section we fix T > 0 and we perform the estimates on [0, T ] under the assumptions of
Theorem 1.1.
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2.1. Global existence of a weak solution
We show the first two items of Theorem 1.1. The method is classical: construction of an approximate
weak solution via an iterative scheme, uniform bounds, and passing to the limit. All subsequent
proofs are sketched.

Step 1: iterative scheme and uniform bounds

We consider the following scheme: for n ∈ N∗ and given
ωn−1 ∈ L∞([0, T ], L1 ∩ L∞(R2)),

we set
un−1 = K ∗ ωn−1.

Our purpose is to solve the linear PDE{
∂tωn +

(
un−1 +

∑N
k=1

γk

2π
(x−zk,n−1)⊥
|x−zj,n−1|2

)
· ∇ωn = 0

ωn(0, · ) = ω0,
(2.1)

and the linear system of ODEs: for k = 1, . . . , N ,mkz̈k,n = γk

(
żk,n − un−1(t, zk,n)−

∑
j 6=k

γj

2π
(zj,n−zk,n)⊥
|zj,n−zk,n|2

)⊥
(zk,n(0), żk,n(0)) = (z0

k, h
0
k).

(2.2)

For n = 0 we take ω0 and (z0
k, h

0
k) as data.

The following proposition indeed yields a solution for each n:

Proposition 2.1. For all n ∈ N, there exists a unique weak solution
ωn ∈ L∞([0, T ], L1 ∩ L∞(R2))

to (2.1) and a unique solution
zk,n ∈ C2([0, T ]), k = 1, . . . , N

to (2.2) on [0, T ]. Moreover
‖ωn‖L1∩L∞ ≤MT , min

j 6=k
min
t∈[0,T ]

|zj,n(t)− zk,n(t)| ≥ dT ,

where MT and dT > 0 depend only on T and on the initial data.

Proof of Proposition 2.1. We refer to [11] for the detailed proof. In particular, the uniform lower
bound on the distances is a consequence of the control of the quantity (related to the hamiltonian
of the system, see Proposition 4.2)

Hn(t) =
∑
j 6=k

γjγk
2π ln |zj,n(t)− zk,n(t)| −

N∑
k=1

mk|żk,n(t)|2,

which is proved to be uniformly bounded on [0, T ]. This, together with the sign condition on the
circulations, yields the lower bound. �

Step 2: passing to the limit

The existence of ω and zk, k = 1, . . . , N such that (up to a subsequence) {ωn}n∈N converges to ω in
L∞ weak - ∗ and such that each {(zk,n, żk,n)}n∈N converges uniformly to (zk, żk), follows from the
bounds of Proposition 2.1, Banach–Alaoglu’s theorem and Ascoli’s theorem. In particular, setting
u = K ∗ω, we infer that {un = K ∗ωn}n∈N converges to u = K ∗ω locally uniformly on [0, T ]×R2.
So, we can pass to the limit in the iterative scheme and finally show that (ω, {zk}) is a weak
solution of (1.5). Note in particular that

max
k

max
[0,T ]
|zk| ≤ CT , min

j 6=k
min
[0,T ]
|zj − zk| = dT > 0 (2.3)

and
sup
k

sup
[0,T ]
|żk| ≤ CT . (2.4)
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2.2. Any weak solution is a lagrangian solution

We now prove the last item of Theorem 1.1. In all this paragraph, (ω, {zk}) denotes any weak
solution of (1.5) on [0, T ]. Since ω belongs to L∞([0, T ], L1 ∩ L∞(R2)) it is well-known that u is
almost-Lipschitz, see e.g. [15, Appendix 2.3]:

sup
t∈[0,T ]

|u(t, x)− u(t, y)| ≤ C|x− y|(1 + |ln |x− y||), ∀ (x, y) ∈ R2 × R2. (2.5)

We also have the Calderón–Zygmund inequality [20, Chapter II, Theorem 3]: there exists C > 0
such that for all p ≥ 2,

sup
t∈[0,T ]

‖∇u(t, · )‖Lp ≤ C p.

In particular, it follows that

u ∈ L∞([0, T ], L∞(R2)) ∩ L∞([0, T ],W 1,1
loc (R2)), div(u) = 0. (2.6)

Finally, u is continuous on [0, T ]× R2, see [10, Proposition 4.1].

A general abstract result for linear transport equations

We start by recalling the definition of regular Lagrangian flow, formulated in the papers [1, 2, 3, 4]:

Definition 2.2. Let T > 0 and let b ∈ L1
loc([0, T ] × R2). We say that X : [0, T ] × R2 × R2 is a

regular Lagrangian flow relative to b if

• For L2-a.e. x ∈ R2, the map t 7→ X(t, x) is an absolutely continuous solution to the ODE
d
dtX(t, x) = b(t,X(t, x)) with X(0, x) = x;

• For all R > 0 there exists LR > 0 such that1

X(t, · )#(LdxBR) ≤ LRLd, ∀ t ∈ [0, T ].

Such a definition is intended to generalize the classical notion of flow associated to smooth
vector fields. Existence and uniqueness of the generalized Lagrangian flow2 were established by
DiPerna and Lions [5] when the velocity field has Sobolev-type spacial regularity. This was later
extended by Ambrosio [1] to BV vector fields.

In the present setting, we deal with (divergence free) vector fields

b(t, x) = u(t, x) +
N∑
k=1

γkK(x− zk(t)), (2.7)

that are composed of a “regular” part u (satisfing (2.6)) and of a part with some localized sin-
gularities created by the point vortices. So this kind of behavior is not covered by the previous
results proved in [5, 1].

Therefore, to deal with such vector fields, we shall use again the strategy applied in [4, 10]
for the vortex-wave system (1.3). More precisely, we shall invoke the following abstract result
by Ambrosio [1, Theorems 3.3 and 3.5]: let a vector field b in L1

loc([0, T ] × R2), if existence and
uniqueness for the continuity equation

∂tω + div(bω) = 0, ω(0, · ) = ω0 ∈ L1 ∩ L∞(R2)

hold in L∞([0, T ], L1 ∩ L∞(R2)), then the regular Lagrangian flow X for b exists and is unique.
Moreover, the unique solution is given by ω(t, · ) = X(t, · )#ω0.

1This means that Ld(X(t, · )−1(A) ∩B(0, R)) ≤ LRLd(A), for all Borel set A of R2.
2The definition of flow in [5] slightly differs from the more recent one given in Definition 2.2 but both are

essentially equivalent.
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Now, it was proved in [16, Chapter 1, Lemme 1.5] 3 and in [10, Lemma 3.2] for the case of one
point, that the transport equation associated to the divergence free velocity field b defined in (2.7)
admits a unique solution, which is renormalized.4

Finally, combining this with Ambrosio’s result yields the existence and uniqueness of the regular
Lagrangian flow X associated to b. Furthermore, the solution is transported by this flow.

On the other hand, as noted in [16, Chapter 1, Remark 1.3] or in [10, Remark 3.3] for the case
of one point, the renormalization property ensures that

‖ω(t, · )‖Lp = ‖ω0‖Lp , 1 ≤ p ≤ +∞. (2.8)

This shows the third item of Theorem 1.1.
At this stage, in order to show the last item of Theorem 1.1, we still need to show that X

satisfies for almost every x 6= z0
k:

X(t, x) 6= zk(t), ∀ t ∈ [0, T ]. (2.9)

In particular, we observe that, in view of the continuity of u, this will show that X( · , x) is Lipschitz
continuous. The next paragraph is devoted to the proof of (2.9).

2.3. Local energy
We introduce the following notion of pointwise energy. For a.e. x such that X(t, x) 6= zj(t) for any
j = 1, . . . , N on the maximal interval [0, T (x)), we set:

Fk(t) =
N∑
j=1

γj
2π ln |X(t, x)− zj(t)|+ ϕ(t,X(t, x)) + 〈X(t, x), ż⊥k (t)〉 − 1, (2.10)

where we define the stream function5

ϕ(t, x) = 1
2π

∫
R2

ln |x− y|ω(t, y) dy, (2.11)

so that
u(t, x) = ∇⊥ϕ(t, x).

Our next purpose is to obtain a lower bound on Fk(t), which will in turn provide a lower bound
for |Xk(t, x)− zk(t)|.

Remark 2.3. The analogous quantity to estimate from below the minimal distance between the
flow trajectories and the point singularities is defined for the vortex-wave system (1.3) in [14] as

F (t) =
N∑
j=1
|X(t, x)− zj(t)|−2,

and for the fixed point vortex (1.4) in [13] as

F (t) = γ

2π ln |X(t, x)|+ ϕ(t,X(t, x))− 1.

Proposition 2.4. We have for t ∈ [0, T ∗(x)) and for all k = 1, . . . , N ,

|F ′k(t)| ≤ CT
(
|x|+

∑
j 6=k
|X(t, x)− hj(t)|−1).

3Although [16, Lemme 1.5] is stated for the vortex-wave system, we remark that this Lemma holds for any linear
transport equation with vector field b given by (2.7), where u satisfies the regularity properties (2.6) and where the
point trajectories are Lipschitz continuous on [0, T ] and do not intersect. Since their precise dynamics is not used
to show the renormalization property, the result of [16] does hold in the present case.

4This means that for any continuous function β growing not too fast at infinity, the function β(ω) is also a
solution.

5Actually in [11] the local energy is defined in terms of a sequence ϕε of regularizations of ϕ, the estimates are
performed uniformly for each ε, and the final estimate is obtained by letting ε go to zero.
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Proof of Proposition 2.4. To simplify notations we set
X = X(t, x), u = u(t,X(t, x)), ϕ = ϕ(t,X(t, x)), zk = zk(t), etc.

For t ∈ [0, T ∗(x)) we compute (assuming enough regularity on ϕ, see otherwise [11] for the regu-
larization argument)

F ′k =
N∑
j=1

〈
γj
2π

X − zj
|X − zj |2

,
∑
m 6=j

γmK(X − zm) + u− żj

〉
+ ∂tϕ+ 〈Ẋ,∇ϕ〉+ 〈Ẋ, ż⊥k 〉+ 〈X, z̈⊥i 〉

=
N∑
j=1

〈
γj
2π

X − zj
|X − zj |2

,
∑
m 6=j

γmK(X − zm)
〉

+
N∑
j=1

〈
γj
2π

X − zj
|X − zj |2

, u(t,X)− żj
〉

+ ∂tϕ+ 〈Ẋ,∇ϕε〉+
〈
Ẋ, ḣ⊥k 〉+ 〈X, ḧ⊥k

〉
.

We observe that
N∑
j=1

〈
γj
2π

X − zj
|X − zj |2

,
∑
m 6=j

γm
2π

(X − zm)⊥

|X − zm|2

〉
=

N∑
j=1

〈
γj
2π

X − zj
|X − zj |2

,

N∑
m=1

γm
2π

(X − zm)⊥

|X − zm|2

〉
= 0.

Thus we find

F ′k =
〈
γk
2π

X − zk
|X − zk|2

, u− żk
〉

+
∑
j 6=k

〈
γj
2π

X − zj
|X − zj |2

, u− żj
〉

+ ∂tϕ+ 〈Ẋ,∇ϕ〉+
〈
Ẋ, ż⊥k

〉
+ 〈X, z̈⊥k 〉.

Next, since X is a classical solution of the ODE with field b defined in (2.7), we have
γk
2π

X − zk
|X − zk|2

= −Ẋ⊥ + u⊥ −
∑
j 6=k

γj
2π

X − zj
|X − zj |2

, (2.12)

thus
F ′k = −〈Ẋ⊥, u− żk〉+ 〈u⊥, u− żk〉

−
∑
j 6=k

〈
γj
2π

X − zj
|X − zj |2

, u(t,X)− żk
〉

+
∑
j 6=k

〈
γj
2π

X − zj
|X − zj |2

, u− żj
〉

+ ∂tϕ+ 〈Ẋ,∇ϕ〉+ 〈Ẋ, ż⊥k 〉+ 〈X, z̈⊥k 〉

=
[
− 〈Ẋ⊥, u〉+ 〈Ẋ,∇ϕ〉

]
+
[
〈Ẋ⊥, żk〉+ 〈Ẋ, ż⊥k 〉

]
− 〈u⊥, żk〉+

∑
j 6=k

〈
γj
2π

X − zj
|X − zj |2

, żk − żj
〉

+ ∂tϕ+ 〈X, ḧ⊥k 〉.

Finally, plugging the equality ∇⊥ϕ = u, we end up with

F ′k = −〈u⊥, żk〉+
∑
j 6=k

〈
γj
2π

X − zj
|X − zj |2

, żk − żj
〉

+ ∂tϕ+ 〈X, z̈⊥k 〉.

Now, we recall (2.3), (2.4) and (2.6), which also imply that |z̈k| ≤ CT . It follows that one can
prove the following estimate on the flow:

sup
t∈[0,T ]

|X(t, x)| ≤ |x|+ CT . (2.13)

Finally, it is also proved in [11], adapting the arguments of [13] for the fixed point vortex system,
that

‖∂tϕ‖L∞ ≤ CT .
Therefore we have proved the estimate for Fk. �

Remark 2.5. If we consider a given set of C2 trajectories {zk} on [0, T ], the previous computations
are still valid without using the dynamics of the point vortices. Then the constant in the estimate
for Fk depends on ‖zk‖W 2,∞ .
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Remark 2.6. Since ω(t, · ) = X(t, · )#ω0, (2.13) implies that ω(t, · ) is supported on some B(0,
R0 + CT ) on [0, T ].

Thanks to Proposition 2.4 we prove the following lower bound:

Corollary 2.7. There exists KT > 3, depending only on T and on the initial conditions, satisfying
the following property. If |X(t0, x) − zk(t0)| < dT /KT for some t0 ∈ [0, T (x)) and some k =
1, . . . , N , then T (x) = T . Moreover,

λT |x− zk(0)| ≤ |X(t, x)− zk(t)| < dT
3 , ∀ t ∈ [0, T ].

Here λT denotes a constant depending only on the initial conditions and on T . We recall that dT
denotes the minimal distance between the point vortices defined in (2.3).

This shows first that collision between the flow trajectory and the point vortices never occurs.
This shows also that if the flow trajectory is at some time quite close to one of the point vortices,
it never gets close to one other point vortex.

Proof of Corollary 2.7. First, Remark 2.6 implies that |ϕ(t, x)| ≤ CT ln(1 + |x|). Thus, by (2.13),
this implies that

|ϕ(t,X(t, x))| ≤ CT , ∀ t ∈ [0, T (x)), for a.e. x ∈ supp(ω0). (2.14)
Next, we let t1 ∈ [0, T (x)) be maximal such that

|X(t, x)− zk(t)| < dT
3 , for t ∈ [t0, t1).

In particular, we have

|X(t, x)− zj(t)| >
2dT

3 for j 6= k.

Therefore, in view of Proposition 2.4, we have |F ′k| ≤ CT on [t0, t1). Integrating this on [t0, t1),
using that ∑

j 6=k
|ln |X(t, x)− zj(t)|| ≤ CT on [t0, t1),

and using (2.14), we find:
|ln |X(t0, x)− zk(t0)| − ln |X(t1, x)− zk(t1)|| ≤ CT . (2.15)

We assume by contradiction that t1 < T (x). Therefore, |X(t1, x)−zk(t1)| = dT /3. Estimate (2.15)
then yields

ln
(
KT

3

)
≤ CT ,

a contradiction if KT is sufficiently large. So t1 = T (x). Integrating again the inequality |F ′k| ≤ CT
on [t0, T (x)), we obtain

ln |X(t0, x)− zk(t0)| ≤ ln |X(t, x)− zk(t)|+ CT on [t0, T (x)),
while we have just proved that

|X(t, x)− zj(t)| >
2dT

3 on [t0, T (x)).

This proves that no collision occurs on [t0, T (x)), so T (x) = T .
By the same arguments, we finally show that (2.15) holds for t0 and t1 replaced by 0 and by

any t ∈ [0, T ]. Thus
ln |x− zk(0)| ≤ ln |X(t, x)− zk(t)|+ CT , ∀ t ∈ [0, T ],

hence the conclusion follows. �

Corollary 2.8. We have T (x) = T for a.e. x ∈ supp(ω0). In particular, the proof of Theorem 1.1
is completed.

Proof of Corollary 2.8. This is a direct consequence of Corollary 2.7. �
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3. Proofs of Theorems 1.4 and 1.3

3.1. Proof of Theorem 1.4
The proof of Theorem 1.4 relies crucially on the lower bound of Corollary 2.7. The details are
provided in [11].

3.2. Proof of Theorem 1.3. Case of one point vortex.
The next paragraph is devoted to the proof of uniqueness. We assume first that N = 1 in order to
simplify the presentation.

Let (ω, z) and (ω̃, z̃) be two solutions of (1.5) with initial datum satisfying the assumption of
Theorem 1.3. So, Theorem 1.4 holds for both solutions: ω(t, · ) and ω̃(t, · ) remain constant in a
neighborhood of z(t) and z̃(t) for all t ≥ 0.

We have u − ũ = K ∗ (ω − ω̃) with
∫

(ω − ω̃) =
∫
ω0 −

∫
ω0 = 0. Morever, ω(t, · ) − ω̃(t, · ) is

complactly supported by Remark 2.6. Thus u(t, · )− ũ(t, · ) ∈ L2(R2), see e.g. [12, Proposition 3.3].
We may consider the quantity

D(t) = ‖u(t, · )− ũ(t, · )‖2
L2 + |z(t)− z̃(t)|2 + |ż(t)− ˙̃z(t)|, t ∈ [0, T ].

Our purpose is to establish a Gronwall inequality for D, which will imply D ≡ 0 on [0, T ] since
D(0) = 0, and therefore uniqueness.

We first use the estimates derived for (1.3) in [10, Subsection 3.4] for the quantity ‖u(t, · ) −
ũ(t, · )‖2

L2 . These estimates rely:

• On the one hand, on the PDE satisfied by u− ũ, see [10, Subsection 3.4].

• On the other hand, on the harmonicity of u(t, · ) − ũ(t, · ) in the neighborhood of z(t) and
z̃(t), which is a direct consequence of Theorem 1.4. This enables to derive estimates for the
W 1,∞ norm of u(t, · )− ũ(t, · ) in the neighborhood of z(t) and z̃(t) in terms of the L2 norm
thanks to the mean-value theorem:

Lemma 3.1. Let y(t) = (z(t) + z̃(t))/2. As long as |z− z̃| < δ, u(t, · )− ũ(t, · ) is harmonic
on B(y(t), δ/2). Thus,

‖u(t, · )− ũ(t, · )‖L∞(B(y(t),δ/4)) ≤ C‖u(t, · )− ũ(t, · )‖L2 ,

‖∇u(t, · )−∇ũ(t, · )‖L∞(B(y(t),δ/4)) ≤ C‖u(t, · )− ũ(t, · )‖L2 ,

for a constant C.

Thanks to these ingredients, the estimate (3.9) in [10] yields for all p ≥ 2 and as long as
D < min(1, δ2),

‖u(t, · )− ũ(t, · )‖2
L2 ≤ C

∫ t

0

(
r(τ) +

√
r(τ)ϕ(

√
r(τ)) + p r(τ)1−1/p

)
dτ,

where
r(t) = ‖u(t, · )− ũ(t, · )‖2

L2 + |z(t)− z̃(t)|2

and
ϕ(τ) = τ | ln τ |.

Since r(t) ≤ D(t) and τϕ(τ) ≤ ϕ(τ2), τ ≤ ϕ(τ) for τ ≤ 1 and ϕ(τ) ≤ pτ1−1/p, we get for all p ≥ 2,
as long as D < min(1, δ2),

‖u(t, · )− ũ(t, · )‖2
L2 ≤ C p

∫ t

0
D(τ)1−1/p dτ. (3.1)

We turn next to the estimate for the point vortices:
d
dt |z − z̃|

2 + d
dt |ż −

˙̃z|2 = 2〈z − z̃, ż − ˙̃z〉 − 2 γ
m
〈ż − ˙̃z, u(t, z)⊥ − ũ(t, z̃)⊥〉

≤ 2D + 2 γ
m

√
D|u(t, z)− u(t, z̃)|+ 2 γ

m

√
D|(u− ũ)(t, z̃)|.
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Following the proof of [10, Proposition 3.10], we use again Lemma 3.1 and the LogLipschitz esti-
mate (2.5) for u to get that for all p ≥ 2,

d
dt |z − z̃|

2 + d
dt |ż −

˙̃z|2 ≤ Cϕ(D) ≤ CD1−1/p, as long as D < min(1, δ2). (3.2)

Finally, gathering (3.1) and (3.2), we find

D(t) ≤ C p
∫ t

0
D(τ)1−1/p dτ, ∀ p ≥ 2.

So by letting p→ +∞, we conclude by usual arguments (see [12, Chapter 8] that D ≡ 0 on [0, T ].

3.3. Case of several point vortices
Finally, Theorem 1.3 follows easily by adapting the proof above to the case of several points. We
refer to [16, Theorem 2.1, Chapter 2] for the details.

4. Some additional properties

We conclude this note by presenting a few well-known conservation properties for (1.3) and (1.5):

Proposition 4.1. Let (ω, {zk}) be a weak solution to (1.3) on [0, T ]. The following quantities are
conserved:

• The energy,

H0 = 1
2π

∫
R2

∫
R2

ln |x− y|ω(t, y)ω(t, x) dxdy + 1
π

N∑
k=1

γk

∫
R2

ln |x− zk(t)|ω(t, x) dx

+
∑
j 6=k

γkγj
2π ln |zk(t)− zj(t)|.

• The momentum,

I0 =
∫
R2
|x|2ω(t, x) dx+

N∑
k=1

γk|zk(t)|2.

For the case with massive point vortices we have the analogous conservation properties:

Proposition 4.2. Let (ω, {zk}) be a weak solution to (1.5) on [0, T ]. The following quantities are
conserved:

• The energy,

H0 = 1
2π

∫
R2

∫
R2

ln |x− y|ω(t, y)ω(t, x) dxdy + 1
π

N∑
k=1

γk

∫
R2

ln |x− zk(t)|ω(t, x) dx

+
∑
j 6=k

γkγj
2π ln |zk(t)− zj(t)| −

N∑
k=1

mk|żk(t)|2.

• The momentum,

I0 =
∫
R2
|x|2ω(t, x) dx+

N∑
k=1

γk|zk(t)|2 − 2
N∑
k=1

mkzk(t)⊥ · żk(t).

In both cases, we infer that when the vorticity and circulations have the same sign, then uniform
in time lower and upper bounds hold:
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Corollary 4.3. Assume that

ω0 ≥ 0, a.e. on R2, γk > 0, k = 1, . . . , N.

Let (ω, {hk}) be any corresponding weak solution to (1.3) or (1.5) on [0, T ]. Then there exists
C > 0 and d > 0, depending only on the initial conditions, but not on T , such that

sup
t∈[0,T ]

(
|żk(t)|2 + |zk(t)|2

)
≤ C

and
min
t∈[0,T ]

min
j 6=k
|zj(t)− zk(t)| ≥ d.

Proof of Corollary 4.3. We refer to [11] for the proof. �
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