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Robustness and performance analysis of

subspace-based DOA estimation for rectilinear

correlated sources in CES data model
Habti Abeida and Jean-Pierre Delmas

Abstract

This paper focuses on a theoretical performance analysis of subspace-based algorithms for the localization of

spatially correlated rectilinear sources embedded in circular complex elliptically symmetric (C-CES) distributed

noise model and also when the observations are non-circular CES (NC-CES) distributed with dependent scatter

matrices on the direction of arrival (DOA) parameters. A perturbation analysis has been performed to derive

closed-form expressions for the asymptotic covariance matrices of DOA estimates for non-circular subspace-

based algorithms in two CES data models. Robustness of subspace-based algorithms is theoretical evaluated

using robust covariance matrix estimators (instead of the sample covariance matrix (SCM)). We prove, for

the first time, interpretable closed-form expressions of the asymptotic variance of the estimated DOA of two

equi-power correlated sources, which allows us to derive a number of properties describing the DOA variance’s

dependence on signals parameters and non-Gaussian distribution of the noise. Different robustness properties

are theoretically analyzed. In particular, we prove in the framework of NC-CES distributed observations, that

Tyler’s M -estimator enhances the performance for heavy-tailed distributions w.r.t. the SCM, with negligible loss

in performance for circular Gaussian distributed observations. Finally, some Monte Carlo illustrations are given

for quantifying this robustness and specifying the domain of validity of our theoretical asymptotic results.

Index Terms

Subspace-based algorithm, non-circular MUSIC algorithm, direction-of-arrival, correlated sources, rectilin-

ear sources, strictly non-circular, complex elliptically symmetric distribution, complex generalized Gaussian

distribution, non-circular M-estimators.
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I. INTRODUCTION

Far and near-field narrowband source localization have received considerable attention over the last two

decades (see e.g., [1], [2]). Most of the existing algorithms concentrate on the second-order statistics of the

observations. Originally these algorithms were designed to process complex circular signals, but then they

became interested in mobile communications systems for which the modulated signals can be complex non-

circular (NC). In this case, these algorithms were based not only on the sample covariance matrix but also on

the complementary (or unconjugated) sample covariance matrix. The most popular among these algorithms are

the subspace-based algorithms which exploit the orthogonality between a sample subspace derived from these

sample covariance matrices and a parameter-dependent subspace. However, it has been proved in [3] that the

gain in performance of the subspace-based algorithms build from these two covariance matrices was significant

only in the particular case of rectilinear (called also strictly non-circular or with a non-circularity rate equal

to 1) signals, such as binary phase shift keying (BPSK) and de-rotated offset quadrature phase shift keying

(OKPSK) modulations.

Many studies of subspace-based algorithms have focused on narrowband NC signal sources in the presence

of spatially white circular complex Gaussian (C-CG) noise. In particular, NC MUSIC [4], and NC Root-MUSIC

[5] algorithms have been proposed for the DOA estimation problem. A NC standard ESPRIT algorithm has

also been proposed in [6] for shift-invariant arrays, where the DOA estimates are directly given instead of

being found with search over the DOA space. Then a NC unitary ESPRIT algorithm that does not require a

centro-symmetric array structure, but only the shift-invariance property with reduced computational complexity

has been introduced in [7]. A performance analysis of different NC MUSIC-like algorithms in terms of variance

and resolution has been presented in [8], [9] under the assumption of stochastic sources. The NC ESPRIT-like

algorithms were also the subject of a performance analysis but under the assumption of deterministic sources. In

particular, a gain calculation provided by the NC standard ESPRIT, compared to the standard ESPRIT has been

developed in [10] for two uncorrelated sources with maximum phase separation. A comparison between NC

standard and unitary ESPRIT algorithms has been investigated in [11], proving that these two algorithms have

the same asymptotic performance when the signal-to-noise ratio (SNR) tends to infinite. A MUSIC-like and

an ESPRIT-like algorithms under the co-existence of both circular and non-circular sources were presented in

[12] and [13], respectively. To process temporally and spatially correlated rectilinear sources, a signal subspace

fitting method has been proposed in [14]. In [15], a sparse representation technique has been introduced to

estimate the DOA of NC signals. Note that the aforementioned papers relate to NC far-field signals, and some

research works have been recently devoted to the localization estimation of near-field [16], [17], and mixed

far-field and near-field [18], [19] uncorrelated NC signals.
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All of the localization estimation algorithms mentioned above are based on the SCM, and have been studied in

C-CG noise environment and mainly for uncorrelated sources. But sometimes, this Gaussian assumption presents

a poor approximation of underlying physics for which noise can be spiky and impulsive i.e., have heavier tails

than the Gaussian distribution. In this context, the C-CES distributions and the subclass of the circular complex

compound Gaussian (C-CCG) distributions (also referred to as spherically invariant random vector (SIRV))

(see e.g., [20]) are widely used in the engineering literature. Similarly, the assumption of uncorrelation of the

rectilinear sources is not realistic in the presence of multipaths. In a non-Gaussian noise environment, these

algorithms may perform poorly, resulting in unreliable DOA estimates. Robust subspace-based DOA estimation

algorithms based on M -estimates of the covariance matrix rather than based on the SCM have been introduced

(see e.g., [21]–[23]) to compensate for these poor performances. But these performances have been assessed

only by Monte-Carlo experiments. It is the same for the algorithm [24] in which the SCM is replaced by a

normalized SCM.

The aim of this paper is twofold. First, it is to show that all the NC subspace-based algorithms built from

the SCM designed for uncorrelated rectilinear sources embedded in spatially white C-CG noise can be also

applied for correlated rectilinear sources in the contexts of SCM estimate with C-CES noise and M -estimate

with NC-CES observations. Second, it is to extend the asymptotic performance analysis of NC [resp., circular]

MUSIC-like DOA estimation algorithms given in [8] for SCM estimate with Gaussian noise [resp., given in

[26] for SCM and M -estimates with circular signals], to the contexts of SCM estimates with NC deterministic

or stochastic sources embedded in C-CES noise and M -estimates with NC-CES observations. More precisely,

closed-form expressions of the covariance of the asymptotic distribution of the estimated DOA for different data

models are given. This allows us, in particular, to give for the first time an interpretable closed-form expression

of the asymptotic variance of the estimated DOA of two equi-power correlated sources to assess the impact of

the correlation of the sources and the non-Gaussian distribution of the noise.

This paper is organized as follows. Section II specifies the general array data model with correlated rectilinear

sources and spatially white noise and describes the two statistical models with C-CES distributed noise and

NC-CES distributed observations. It ends with a brief review of different NC MUSIC-like algorithms. Section

III presents a theoretical asymptotic performance analysis of these algorithms under the two statistical models.

Section IV gives interpretable closed-form expressions of the asymptotic variance of the estimated DOA of

two equi-power correlated sources, which have never been reported in the literature including for circular

sources. Then, some remarks and properties are derived from these expressions. Numerical illustrations of the

performance of these algorithms with Monte-Carlo simulations are given in Section V. Finally, the paper is

concluded in Section VI.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper
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case and bold lower case characters, respectively. Vectors are in column orientation, while T , H and ∗ stand

for transpose, conjugate transpose and conjugate, respectively. E(.), Det(.), Tr(.), (.)# are the expectation,

determinant, trace and Moore-Penrose inverse, respectively. vec(·) is the vectorization operator that turns a

matrix into a vector by stacking the columns of the matrix one below another which is used in conjunction

with the Kronecker product A ⊗ B as the block matrix whose (i, j) block element is ai,jB and with the

vec-permutation matrix K which transforms vec(C) to vec(CT ) for any square matrix C. The matrix J is the

exchange matrix

0 I

I 0

 and � denotes the element by element matrix product.

II. DATA MODEL AND PROBLEM FORMULATION

A. Data model

Consider K zero-mean narrowband signals (xt,k)k=1,...,K impinging on an arbitrary array of N sensors. These

signals are supposed rectilinear (also called strictly second-order non-circular), i.e., described by the following

model:

xt,k = st,ke
iφk with st,k real-valued, (1)

where the phases φk associated with different propagation delays are assumed fixed, but unknown during the

array observation. The array output at time t is modeled as

yt = Aθ∆φst + nt, t = 1, . . . , T, (2)

where Aθ
def
= [a1, ...,aK ] denotes the steering matrix, where each vector ak is parameterized in a simplified

case1 by a single real scalar parameter θk (with ‖ak‖ not depending on θk) and ∆φ
def
= Diag(eiφ1 , ..., eiφK ).

st
def
= (st,1, ..., st,K)T where (st,k)k=1,...,K,t=1,..T are either real-valued deterministic unknown parameters (in

the so-called conditional or deterministic model), with sample covariance matrix Rs,T = 1
T

∑T
t=1 sts

T
t (where

limT→∞Rs,T
def
= Rs exists) or zero-mean real-valued with finite fourth-order moments of arbitrary distribution

and with covariance E(sts
T
t ) = Rs (in the so-called unconditional or stochastic model). Unlike previous works,

we assume here that Rs is unknown non-singular. (yt)t=1,...,T are independent and (nt)t=1,...,T is the additive

noise, which is uncorrelated with (st,k)t=1,..,T,k=1,..,K and assumed zero-mean C-CES or C-CCG distributed

with finite fourth-order moments, spatially uncorrelated with E(ntn
H
t ) = Σ = σ2

nI. Using the stochastic

representation theorem of these distributions (see e.g., [20, th.3 and def.3]), nt is distributed as

√
Qt Σ1/2ut for C-CES distributions,

√
τt Σ1/2wt for C-CCG distributions, (3)

1The extension to several parameters as DOAs (azimuth, elevation), range or polarization is straightforward.
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where Qt and τt are non-negative real random variables, ut and wt are respectively uniformly distributed on

the unit complex N -sphere and zero-mean C-CG distributed with covariance I, Qt [resp., τt] and ut [resp., wt]

are independent and Σ is the scatter matrix of the distribution of nt. It is proved in [26] that the fourth-order

moments of nt are characterized by the parameter η defined by

η =
E(Q2

t )

N(N + 1)
[resp., η = E(τ2

t )] for C-CES [resp., C-CCG] distributions, (4)

for which η = 1 for C-CG distribution of nt. We note that E(Qt) = N , E(τt) = 1 and the Cauchy-Schwarz

inequality implies:

η ≥ N

N + 1
[resp., η ≥ 1] for C-CES [resp., C-CCG] distributions. (5)

To derive subspace-based algorithms exploiting the prior knowledge of rectilinear sources, the model (2) can

be rewritten according to the following equivalent extended model:

ỹt
def
=

yt

y∗t

 = Ãst + ñt, t = 1, . . . , T, (6)

where Ã
def
=

Aθ∆φ

A∗θ∆
∗
φ

 = [ã1, ..., ãK ] with ãk
def
= [aTk e

iφk ,aHk e
−iφk ]T and ñt

def
= (nTt ,n

H
t )T . Consequently the

covariance matrix of the extended signal ỹt is given by:

Rỹ
def
= E(ỹtỹ

H
t ) = ÃRsÃ

H + σ2
nI

def
= S̃ + σ2

nI, (7)

assuming that the 2N ×K (with K < 2N ) matrix Ã is of full column rank, whose subspace generated by its

columns characterizes the DOAs (θ1, ..., θK). This condition applies to many array structures including some

sparse linear arrays (see e.g., [27], [28]). Consequently, all the NC subspace-based algorithms proposed in the

literature in the specific case of uncorrelated rectilinear sources (e.g., NC MUSIC-like algorithms [8] and NC

ESPRIT-like algorithms [6], [7]), also apply to arbitrary noncoherent rectilinear sources. In particular the NC

MUSIC-like algorithms can be considered as the following mapping derived from the extended SCM:

Rỹ,T =
1

T

T∑
t=1

ỹtỹ
H
t 7−→ Πỹ,T

alg7−→ θ̂T = (θ̂1,T , ..., θ̂K,T )T , (8)

where Πỹ,T denotes the orthogonal projection matrix associated with the so-called noise subspace of Rỹ,T

(built from the SVD of Rỹ,T ). The functional dependence θ̂T = alg(Πỹ,T ) constitutes an extension of the

mapping Πỹ = I− Ã(ÃÃH)−1Ã
alg7−→ θ in the neighborhood of Πỹ. Each extension alg specifies a particular

subspace algorithm.
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B. Robust distribution model

To mitigate the loss of performance of subspace-based algorithms for heavy-tailed C-CES distributed noise,

the extended SCM can be replaced by the ML estimate of Rỹ. However, this estimate cannot be obtained

for arbitrary distributed st and arbitrary C-CES distributed nt in (2). To overcome this difficulty, we consider

here an alternative model where the observations yt in (2) are independent zero-mean NC-CES [25] identically

distributed, with extended scatter matrix Γỹ whose p.d.f. is2:

p(yt) = |Γỹ|−1/2g

(
1

2
ỹHt Γ−1

ỹ ỹt

)
, (9)

where the function g(.): R+ 7→ R+ satisfies δN,g
def
=
∫∞

0 tN−1g(t)dt < ∞. The r.v. yt admits the following

stochastic representation [29]:

yt =d

√
Qt[I,0]Γ

1/2
ỹ ũt, (10)

where ũt
def
= (uTt ,u

H
t )T , Qt and ut are independent, ut is uniformly distributed on the unit complex N -sphere

and Qt has the p.d.f.

p(Qt) = δ−1
N,gQ

N−1
t g(Qt). (11)

Furthermore, to remove the so-called scale ambiguity, the density generator g is here constrained such that

δN+1,g/δN,g = N , or equivalently E(Qt) = N given the 2nd-oder moments exist [20] to ensure that the

extended scatter matrix Γỹ is equal to the structured extended covariance matrix Rỹ in (7).

The ML estimate of Rỹ in this model is solution of the implicit equation:

Γỹ,T =
1

T

T∑
t=1

ψ

(
1

2
ỹHt Γ−1

ỹ,T ỹt

)
ỹtỹ

H
t , (12)

where

ψ(t)
def
= − 1

g(t)

dg(t)

dt
(13)

and it is proved in [26] that the solution Γỹ,T of (12) converges in probability to Rỹ and can be derived from

the fix point algorithm, given any positive definite Hermitian matrix Γỹ,0 and mild regularity conditions on

(y1, ...,yT ) similarly as for the RES distribution [30].

When the density generator g(.) is unknown, M -estimators have been proposed to estimate Rỹ which are

also solutions of the implicit equation (12), where ψ(.) in (12) is replaced by a real-valued non-negative weight

function u(.) which is not related to a particular NC-CES distribution. Tyler’s and Huber’s M -estimators are

2This expression given in [29] is consistent with the one given in [25], because the normalizing constant is included in the function
g.
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examples of such estimators (see e.g., [20, sec.V.C]). Existence and uniqueness of the solution Γuỹ,T of (12)

(where ψ(.) is replaced by u(.)) have been proved for RES distributions, provided that u(.) satisfies a set of

general conditions (called Maronna conditions) stated by Maronna in [31]. These conditions have been extended

to C-CES distributions in [22] and [20]. Under these conditions, it has been also proved for RES distributions,

that the solution of (12) can be derived by an iterative fix point algorithm [30] and converges in probability

to a matrix proportional to the scatter matrix. Using an equivalence between RES and NC-CES distributions,

theses properties have been extended to NC-CES distributions [29]. The sequence Γuỹ,T of solutions of (12)

converges in probability to Γuỹ proportional to Rỹ [20, (45)]:

Γuỹ = σuRỹ = σuΓỹ, (14)

where σu depending on u(.) and the NC-CES distribution of yt, [29] is solution of

E[u(Qt/σu)Qt/σu] = N. (15)

Note that Tyler’s M -estimator is also solution of (12) with weight u(t) = N
t , does not satisfy Maronna

conditions [31]. It is a distribution-free estimator within the family of CES distributions. However, it has been

proved for RES distributions in [32] and for C-CES distributions in [33], then extended to NC-CES distributions

in [29], that after normalizing, the solution Γuỹ,T of (12) converges in probability to Γuỹ = Rỹ, i.e., satisfies

(14) with σu = 1.

With this new model, all the subspace-based (MUSIC or ESPRIT) algorithms proposed in the literature in the

specific case of uncorrelated rectilinear or deterministic rectilinear sources, also apply to arbitrary noncoherent

rectilinear sources by replacing in (8) the SCM matrix Rỹ,T by Γuỹ,T .

C. Subspace-based estimation

We specify some examples of such NC MUSIC-like algorithms built from Πỹ,T which is structured [8] as:

Πỹ,T =

 Π1,T Π2,T

Π∗2,T Π∗1,T

 , (16)

where Π1,T and Π2,T are Hermitian and complex symmetric matrices, respectively. The following three NC

MUSIC-like algorithms introduced firstly in [4], [8] and [5] for uncorrelated sources, respectively, can fully

apply without any changes to the models presented above. Specifically, the estimated DOA (θ̂k,T )k=1,...,K given
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by the first two algorithms are obtained as the locations the K smallest minima of localization functions:

θ̂alg1

k,T = arg min
θ

aH(θ)Π1,Ta(θ)− |aT (θ)Π∗2,Ta(θ)|, (17)

θ̂alg2

k,T = arg min
θ

(
aH(θ)Π1,Ta(θ)

)2 − (aT (θ)Π∗2,Ta(θ)
) (

aH(θ)Π2,Ta∗(θ)
)
, (18)

where a(θ) denotes the parametrized steering vector. For the third algorithm introduced in [5], the estimated

DOAs are given by the arguments of the roots of a polynomial:

θ̂alg3

k,T = arg(zk) with zk K roots|z|<1 of (19)(
aT (z−1)Π1,Ta(z)

)2 − (aT (z)Π∗2,Ta(z)
) (

aT (z−1)Π2,Ta(z−1)
)

closest to the unit circle, (20)

with a(z)
def
= (1, z, . . . , zN−1)T , in the particular case of uniform linear arrays of generic steering vectors

a(θ) = (1, eiθ, . . . , ei(N−1)θ)T with θ = π sinω, where ω is the DOA relative to the normal of array broadside.

Note that this NC root MUSIC algorithm also applies to nonuniform linear arrays whose sensors are located

on a uniform grid with missing sensors such that there is no ambiguity, for which a(z)
def
= (1, zc1 , . . . , zcN−1)T

where c1, ..., cN−1 are integers, associated with a(θ) = (1, eic1θ, . . . , eicN−1θ)T . Also note that the NC root

MUSIC algorithm would apply for example to nested and coprime arrays for the case where the number of

rectilinear sources is strictly less than 2N whether the sources are correlated or not.

III. STATISTICAL PERFORMANCE OF NON-CIRCULAR MUSIC-LIKE ALGORITHMS

A. Asymptotic distribution of DOA estimates for C-CES distributed noise

This subsection is devoted to the theoretical studies of the asymptotic performance of NC MUSIC-like DOA

estimation algorithms presented in Subsection II-C for C-CES distributed noise model given in (3). Following

a similar approach to those presented in [8] and [26], the following result is proved in Appendix:

Result 1: In the stochastic and deterministic models presented in Subsection II-A, the sequences
√
T (θ̂T−θ),

where θ̂T are the DOA estimates given by the three NC MUSIC-like algorithms (17), (18) and (19), converge

in distribution to the same zero-mean Gaussian distribution with covariance matrix:

RNG(θ) = H̃� (ÃHŨÃ)︸ ︷︷ ︸
RG(θ)

+(η − 1)[H̃� (ÃHŨ′Ã)], (21)

where RG(θ) is the asymptotic covariance matrix of DOA estimates for C-CG distributed noise and η is a

fourth-order noise parameter defined by (4) which takes the unit value for C-CG distributed noise. Ũ
def
=

σ2
nS̃

# + σ4
n(S̃#)2, Ũ′

def
= σ4

n(S̃#)2 and H̃ is a purely geometric and phase matrix such that:

[H̃]k,l =
2

γ̃kγ̃l

(
α̃

(k,k)
φ,φ α̃

(k,l)
θ,θ α̃

(l,l)
φ,φ − α̃

(k,k)
φ,φ α̃

(k,l)
θ,φ α̃

(l;l)
θ,φ − α̃

(k,k)
θ,φ α̃

(k,l)
φ,θ α̃

(l,l)
φ,φ + α̃

(k,k)
θ,φ α̃

(k,l)
φ,φ α̃

(l,l)
θ,φ

)
, (22)

December 2, 2020 DRAFT



9

with α̃
(k,l)
i,j

def
= 2ã′

H
i,kΠỹã

′
j,l, i, j = θ, φ where ã′θ,k

def
= dãk

dθk
, ã′φ,k

def
= dãk

dφk
and γ̃k

def
= α̃

(k,k)
θ,θ α̃

(k,k)
φ,φ − (α̃

(k,k)
θ,φ )2. It

follows from (21) that the diagonals of RNG(θ) give the asymptotic variances:

[RNG(θ)]k,k =
2α̃

(k,k)
φ,φ

γ̃k
ãHk Ũãk︸ ︷︷ ︸

RG(θ)]k,k

+(η − 1)
2α̃

(k,k)
φ,φ

γ̃k
ãHk Ũ′ãk, k = 1, . . . ,K. (23)

where α̃(k,k)
φ,φ

def
= 2ã′

H
φ,kΠỹã

′
φ,l > 0 and γ̃k = det[D̃H(θk, φk))ΠỹD̃(θk, φk)] > 0 with D̃(θk, φk)

def
= [ã′θ,k, ã

′
φ,k].

According to (21), the subspace-based algorithms are robust to the distribution of the sources, as the

performance depends only on their second-order statistics, whereas the distribution of the noise can impact

the performance because the non-Gaussian additive term in (23) is positive for all C-CCG noise distributions

from (5). This includes in particular the circular complex Student t and generalized Gaussian distributions [20]

for which η − 1 is very large for heavy-tailed distributions. Furthermore this additive term, which is inversely

proportional to the square of the SNR, affects mainly the performance given in the Gaussian scenario at low

SNR values, as it is illustrated in Section V.

For a single rectilinear source, S̃# = 1
σ2
1

ã1ãH1
4‖a1‖2 and Ũ and Ũ

′
straightforwardly follow and (23) reduces to

the interpretable expression:

RNG(θ1) =
1

α1,1

[
1

r1
+

1

2‖a1‖2
1

r2
1

]
︸ ︷︷ ︸

RG(θ1)

+(η − 1)
1

α1,1

1

2‖a1‖2
1

r2
1

, (24)

where RG(θ1) is the asymptotic variance of a single rectilinear source derived in [8] for C-CG distributed

noise, where r1 = σ2
1

σ2
n

(with σ2
1 is the power of the source) is the SNR and α1,1 is the purely geometric factor

2a
′

1
H

Πya
′

1 with a
′

1
def
= da1

dθ1
and Πy is the noise subspace associated with yt.

It is important to quantify the performance gain provided by extended subspace-based algorithms that exploit

noncircularity compared to conventional algorithms. This is why we consider in the following the conventional

MUSIC algorithm based on yt only for which from (2):

Ry
def
= E(yty

H
t ) = Aθ(∆φRs∆

H
φ )AH

θ + σ2
nI

def
= AθRxA

H
θ + σ2

nI
def
= S + σ2

nI. (25)

It is worth noting that this conventional MUSIC algorithm, does not use the particular structure of the positive

definite Hermitian matrix Rx, so its asymptotic performance are those of the MUSIC algorithm applied to

circular complex correlated sources, for which the following result has been proved in [26]:

Result 2: In the stochastic and deterministic models presented in Subsection II-A, the sequence
√
T (θ̂T −θ),

where θ̂T are the DOA estimates given by the conventional MUSIC algorithm applied to correlated rectilinear

or circular complex sources converges in distribution to the zero-mean Gaussian distribution with the same

December 2, 2020 DRAFT



10

covariance matrix:

RNG(θ) = Re[H� (AH
θ UAθ)]︸ ︷︷ ︸

RG(θ)

+(η − 1)Re[H� (AH
θ U′Aθ)], (26)

with RG(θ) is the asymptotic covariance matrix of DOA estimate for C-CG distributed noise, where U
def
=

σ2
nS

# + σ4
n(S#)2, U′

def
= σ4

n(S#)2 and H is a purely geometric matrix such that [H]k,l =
α∗k,l

αk,kαl,l
with

αk,l
def
= 2a

′

k
H

Πya
′

l and a
′

k
def
= dak

dθk
. It follows further from (26) the asymptotic variances:

[RNG(θ)]k,k =
1

αk,k
aHk Uak︸ ︷︷ ︸

RG(θ)]k,k

+(η − 1)
1

αk,k
aHk U′ak, k = 1, . . . ,K. (27)

Furthermore, for a single source, (27) reduces to

RNG(θ1) =
1

α1,1

[
1

r1
+

1

‖a1‖2
1

r2
1

]
︸ ︷︷ ︸

RG(θ1)

+(η − 1)
1

α1,1

1

‖a1‖2
1

r2
1

, (28)

B. Asymptotic distribution of DOA estimates for NC-CES distributed observations

This subsection investigates the asymptotic performance of NC MUSIC-like DOA estimation algorithms

presented in Subsection II-C for NC-CES distributed observations model presented in Subsection II-B. Following

a similar approach to those presented in [8] and [26], the following result is proved in Appendix:

Result 3: For NC-CES distributed observations, the sequences
√
T (θ̂T−θ), where θ̂T are the DOA estimates

given by the three NC MUSIC-like algorithms (17), (18) and (19) built from the M -estimate Γỹ,T , converge

in distribution to the same zero-mean Gaussian distribution with covariance matrix:

RNC−CES(θ) =
ϑ1

σ2
u

[H̃� (ÃHŨÃ)], (29)

where σu is solution of (15) and ϑ1 is given by

ϑ1 =
E[u2(Qt/σu)Q2

t ]

N(N + 1)(1 + [N(N + 1)]−1cu)2
with cu

def
= E[u′(Qt/σu)Q2

t /σ
2
u] (30)

for the M -estimates satisfying Maronna conditions [31], which reduces, respectively, for ML M -estimates and

extended SCM estimate to

ϑ1,ML =
N(N + 1)

E[ψ2(Qt)Q2
t ]

(31)

and

ϑ1,SCM = η, (32)
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and to [33]

ϑ1,Tyler =
N + 1

N
, (33)

for Tyler’s M -estimate associated with u(t) = N
t .

Furthermore, specializing the M -estimates in Result 3 and its dependent parameters ϑ1, the following result

is proved in Appendix:

Result 4: The NC-CES ML M -estimator dependent asymptotic covariance parameter ϑ1,ML (31) is upper

bounded by the ones associated with Tyler’s M -estimator (33) and with the extended SCM estimator (32) as

ϑ1,ML ≤ ϑ1,SCM, (34)

ϑ1,ML ≤ ϑ1,Tyler, (35)

and because σu = 1 for these three M -estimators, (29) gives

RML
NC−CES(θ) ≤ RSCM

NC−CES(θ) and RML
NC−CES(θ) ≤ RTyler

NC−CES(θ). (36)

For example, for the NC complex Student t-distribution of ν degree of freedom (0 < ν < ∞) which has

finite second and fourth-order moments, respectively, for ν > 2 and ν > 4 (see e.g., [20, sec. IVA]), ϑ1,ML =

N+ν/2+1
N+ν/2 and ϑ1,SCM = η = ν−2

ν−4 [26], and thus ϑ1,ML/ϑ1,SCM = 1− 2(N+2)
(N+ν/2)(ν−2) < 1 and ϑ1,ML/ϑ1,Tyler =

1 − ν/2
(N+ν/2)(N+1) < 1. We see that ϑ1,ML/ϑ1,SCM ≈ 1 for ν → ∞ (i.e., the observations tend to be NC

Gaussian distributed) but ϑ1,ML/ϑ1,SCM � 1 when ν approaches 4. This confirms that extended SCM has

poor performance for heavy-tailed distributions. In contrast, for Tyler’s M -estimator of the extended covariance

matrix, ϑ1,ML/ϑ1,Tyler ≈ 1 for N � 1 and arbitrary ν. Thus the NC subspace-based algorithms derived from

Tyler’s M -estimator are robust to heavy-tailed distributions. For example, for N = 5, ϑ1,ML/ϑ1,SCM = 0.058

and ϑ1,ML/ϑ1,Tyler = 0.952 for the NC complex Student t-distribution with ν = 4.1, whereas ϑ1,ML/ϑ1,SCM = 1

and ϑ1,ML/ϑ1,Tyler = 0.833 for the NC Gaussian distribution.

Note that the asymptotic performance of the NC subspace-based DOA estimation algorithms (17), (18)

and (19) built from the ML M -estimator and the extended SCM estimator are NC-CES dependent through the

parameters ϑ1 and η, respectively. This is in contrast to Tyler’s distribution-free M -estimator and to an arbitrary

M -estimator satisfying Maronna’s conditions [31] for which the performances depend both on the weighting

function u(t) and the parameter-dependent NC-CES distribution ϑ1/σ
2
u.

IV. ASYMPTOTIC VARIANCE OF DOA ESTIMATES FOR TWO EQUI-POWERED CORRELATED SOURCES

To derive interpretable expressions from (23), (27) and (29) for several sources, we consider in this section

the particular case of two equi-power correlated sources, for which interpretable closed-form expressions for
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the asymptotic covariance matrices of DOA estimates are given for both C-CES distributed noise model and

NC-CES distributed observations model.

A. C-CES distributed noise model

For the C-CES distributed noise model of Subsection II-A, the following result is proved in Appendix:

Result 5: For two equi-power correlated rectilinear sources of correlation ρ ∈ (−1, 1) of power σ2
s for which

Rs = σ2
s

 1 ρ

ρ 1

 and SNR r = σ2
s

σ2
n

, (23) reduces to the following interpretable expression:

[RNG(θ)]k,k = [RG(θ)]k,k + (η − 1)
2α̃

(k,k)
φ,φ

γ̃k

[(
1 + ρ2 + 2β̃ρ

(1− β̃2)(1− ρ2)2

)
1

2‖ak‖2
1

r2

]
, k = 1, 2, (37)

where

[RG(θ)]k,k =
2α̃

(k,k)
φ,φ

γ̃k

[(
1

1− ρ2

)
1

r
+

(
1 + ρ2 + 2β̃ρ

(1− β̃2)(1− ρ2)2

)
1

2‖ak‖2
1

r2

]
, k = 1, 2, (38)

is the asymptotic covariance matrix of DOA estimate of two equi-power correlated rectilinear sources for C-CG

distributed noise, where β̃ def
= ãH1 ã2

‖ã1‖‖ã2‖ ∈ (−1, 1) is a geometric and phase factor.

To the best of our knowledge, it is interesting to note that for correlated circular complex sources, despite

many experimental studies (see e.g., [34]–[36]) showing the degradation of performance of the conventional

MUSIC algorithm with the correlation of the sources, no interpretable closed-form expressions of the asymptotic

variances has been given up to now. This is due to the difficulty to obtain a simple interpretable closed-form

expression of the Moore Penrose inverse of S
def
= AθRxA

H
θ in (27). But similarly to Result 5 deduced from

Result 1, the following result concerning the conventional MUSIC algorithm is proved in Appendix:

Result 6: For two equi-power correlated sources of power σ2
s and SNR r, rectilinear of correlation ρ ∈ (−1, 1)

for which Rx = σ2
s

 1 ρ′

ρ
′∗ 1

 with ρ′ def
= ρei(φ1−φ2) in (25), or circular of correlation ρ′ ∈ C (with |ρ′| < 1)

for which also Rx = σ2
s

 1 ρ′

ρ
′∗ 1

, (27) reduces to the following interpretable expression:

[RNG(θ)]k,k = [RG(θ)]k,k + (η − 1)
1

αk,k

[(
1 + |ρ′|2 + 2Re(β∗ρ′)

(1− |β|2)(1− |ρ′|2)2

)
1

‖ak‖2
1

r2

]
, k = 1, 2, (39)

where

[RG(θ)]k,k =
1

αk,k

[(
1

1− |ρ′|2

)
1

r
+

(
1 + |ρ′|2 + 2Re(β∗ρ′)

(1− |β|2)(1− |ρ′|2)2

)
1

‖ak‖2
1

r2

]
, k = 1, 2, (40)

is the asymptotic covariance matrix of DOA estimates of two equi-power correlated rectilinear or circular
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complex sources for C-CG distributed noise, where β def
= aH1 a2

‖a1‖‖a2‖ ∈ C is a purely geometric factor3

B. NC-CES distributed observations model

For NC-CES distributed observations model, we have RNC−CES(θ) = ϑ1

σ2
u
RG(θ) from (21) and (29), and

therefore, the following result is deduced from (38).

Result 7: For NC-CES observations with two equi-power correlated rectilinear sources of correlation ρ of

SNR r, (29) reduces to the following interpretable expression:

[RNC−CES(θ)]k,k =
ϑ1

σ2
u

2α̃
(k,k)
φ,φ

γ̃k

[(
1

1− ρ2

)
1

r
+

(
1 + ρ2 + 2β̃ρ

(1− β̃2)(1− ρ2)2

)
1

2‖ak‖2
1

r2

]
, k = 1, 2. (41)

C. General comments

This section presents some properties of the asymptotic variances on DOA estimation in (37)-(41). It explains

how asymptotic variances change as a function of different arrays, signal sources and noise parameters.

Property 1: Naturally, all the performance degrades dramatically for strongly correlated sources (i.e., |ρ| ≈ 1),

because in this case, the signal subspace is close to being one-dimensional for coherent sources. Also, from

(39)-(40), it follows that the performance of the conventional MUSIC algorithm strongly degrades for close

steering vectors a1 and a2 (i.e., |β| ≈ 1 for closely-spaced sources). In contrast, for the NC subspace-based

algorithms (17), (18) and (19), the performance does not necessarily collapse because

β̃ = |β| cos(φ2 − φ1 + ∠β) (42)

in (37)-(38) and (41) which is equal to 1 if both |β| = 1 and φ2−φ1 +∠β = 2kπ, k ∈ Z. Phase differences can

then compensate for the closeness of the source’s DOAs because increasing the degree of freedom generally

improves the source resolution.

Property 2: For orthogonal steering vectors or phases in quadrature, we have β̃ = 0 in (37)-(38) using

(42), and similarly, orthogonal steering vectors yields β = 0 in (39)-(40). Thus it follows that, in both cases,

the asymptotic variances on DOA estimation associated with NC subspace-based algorithms ((17), (18) and

(19)) and conventional MUSIC algorithm monotonously increase with |ρ| from ρ = 0 (uncorrelated sources)

to |ρ| ≈ 1 (strongly correlated sources). But when the extended steering vectors and steering vectors are not

orthogonal, the previous asymptotic variances not necessarily increase monotonously with with |ρ|. A figure

illustrating this situation is given in Section V.

3Note that for centro-symmetric arrays (e.g., uniform linear arrays, uniform circular arrays, cross-based centro-symmetric arrays,
square-based centro-symmetric array [38]), for which the array centroid is chosen as the reference of the phases, β is real-valued and
thus Re(β∗ρ′) in (39) and (40) reduces to βRe(ρ′).
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Regarding the dependence of algorithms performance on array SNR (i.e., ‖ak‖2r), we observe that for

large array SNR, the term 1
1−|ρ|2 is dominant in all dependent asymptotic variances expressions (37)-(41)

and thus the asymptotic variances of DOA estimation monotonously increase with |ρ| for arbitrary β̃ or β.

In contrast, for weak array SNR (‖ak‖2r � 1), the terms
(

1+ρ2+2β̃ρ

(1−β̃2)(1−ρ2)2

)
1

2‖ak‖2r in (37)-(38), (41) and(
1+|ρ|2+2Re(β∗ρ)
(1−|β|2)(1−|ρ|2)2

)
1

‖ak‖2r in (39)-(40) are dominant in (37)-(41) w.r.t. the term 1
1−|ρ|2 and thus the purely

geometric parameter β and statistical ρ are coupled in the expressions of the asymptotic variances which do

not necessarily increase with both β̃ or β and |ρ|.

Property 3: For both orthogonal extended steering vectors [resp., orthogonal steering vectors] and uncor-

related sources, the asymptotic variances of DOA estimation (37)-(38) and (41) [resp., (39)-(40)] are equal

to the asymptotic variance (24) [resp., (28)] given for a single source, up to a multiplicative geometric and

phase-dependent factor [resp., purely geometric factor]. This factor is proved to be strictly larger than 1 for the

conventional MUSIC algorithm because α2 orthogonal sources
1,1 = α1 source

1,1 −2|aH2 a′1|2/‖a1‖2 < α1 source
1,1 . For the

NC MUSIC-like algorithms, many numerical experiments for different arrays of sensors have shown that this

factor is also strictly larger than 1, except for some specific phases for which it is equal to 1.

Property 4: Finally, note that the phase of the correlation factor ρ′, which corresponds to ∆φ = φ1−φ2 for

rectilinear sources, can strongly impact the performance, through the term Re(β∗ρ′) = β||ρ′| cos(∠ρ′ − ∠β)

for the conventional MUSIC algorithm in (39) and (40) and through the terms β̃ and α̃
(k,k)
φ,φ

γ̃k
for the NC MUSIC

algorithm in (37), (38) and (41). We can clearly see that the asymptotic variances given for the conventional

MUSIC algorithm in (39) and (40) are maximal [resp. minimal] for ∠ρ′ = ∠β [resp. ∠ρ′ = ±π + ∠β] with

the associated largest and smallest asymptotic variances are obtained by replacing Re(β∗ρ′) in (39) and (40)

by Re(β∗ρ′) = |β||ρ′| and Re(β∗ρ′) = −|β||ρ′|, respectively. In contrast the impact of the correlation phase

∆φ is more difficult to analyze for the NC MUSIC algorithm due to the complicated expression of the phase

and array geometry-dependent term α̃
(k,k)
φ,φ

γ̃k
in (37), (38) and (41).

Note that this sensitivity on the phase of the correlation seems to have been overlooked by the numerous

performance analysis of subspace-based DOA estimation techniques such as conventional MUSIC algorithm

for which this phase has always been assumed zero or 180◦ (e.g., in [36]). Whereas, it is known [37] that the

correlation phase has a strong effect on the associated Stochastic Cramér-Rao bound under certain conditions

(small aperture arrays, large correlation magnitude and closely-spaced sources).

This phase assumed to be fixed during the array observation is a highly variable and unpredictable parameter

in a multipath environment for which it is very sensitive to the difference between the propagation delays in

the direct and secondary paths. Consequently the asymptotic variances may vary significantly from time to time

and thus the performances are rather given by the mean of these asymptotic variances. For the conventional
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MUSIC algorithm (39) and (40) give:

[RNG(θ)]k,k = [RG(θ)]k,k + (η − 1)
1

αk,k

[(
1 + |ρ′|2

(1− |β|2)(1− |ρ′|2)2

)
1

‖ak‖2
1

r2

]
, k = 1, 2, (43)

where

[RG(θ)]k,k =
1

αk,k

[(
1

1− |ρ′|2

)
1

r
+

(
1 + |ρ′|2

(1− |β|2)(1− |ρ′|2)2

)
1

‖ak‖2
1

r2

]
, k = 1, 2, (44)

which now clearly monotonously increases with |ρ′|. For the NC MUSIC algorithm, no closed-form expressions

is attainable because of the complicated expression of α̃
(k,k)
φ,φ

γ̃k
.

V. NUMERICAL ILLUSTRATIONS

This section illustrates the dependence of the provided asymptotic performance results in Subsection IV on

geometric, phase and magnitude of sources correlation parameters and on the non-Gaussian distribution of

the noise or of the observation by considering two illustration parts. Let us assume that K = 2 narrowband

equal-power rectilinear correlated signal sources with power σ2 impinge on a uniform linear array of N = 6

sensors4 separated by a half-wavelength for which the steering vectors are a(θk) = (1, eiθk , . . . , ei(N−1)θk)T

where θk = π sin(ωk), k = 1, 2, with ωk is the DOAs relative to the normal of array broadside. The phases

φk, k = 1, 2 associated with different propagation delays are assumed fixed, but unknown during the array

observation and the performance depends only on ∆φ
def
= |φ2 − φ1|. The SNR is defined as 10 log10(σ2

s/σ
2
n)

dB. 1000 independent Monte Carlo runs have been performed where the number of snapshots is fixed at

T = 500 to obtain estimations of the mean squared error (MSE) E(θ̂1 − θ1)2.

In the first experiment, the noise nt is either circular complex Student t-distributed with parameter ν > 4

to have finite fourth-order moment for which η = ν−2
ν−4 or C-CG distributed (obtained also for ν → ∞). We

suppose the sources in model (1) consist of two multipaths issued from two independent BPSK modulated

signals et,1 and et,2, for which we have st,1 = et,1 and st,2 = ρet,1 +
√

1− ρ2et,2. The two sources st,1 and

st,2 are thus equal-powered with correlation ρ.

Fig. 1 compares the theoretical asymptotic variances of DOA estimates given by (37)-(38) and (39)-(40)

associated respectively with SCM-based NC MUSIC algorithm (17) and SCM-based conventional MUSIC

algorithm [26], and the corresponding MSEs for the two previously described noise models. It can be seen

from this figure that the C-CES distributed noise model causes a deeper loss of performance of the SCM-based

MUSIC algorithms for weak SNR and DOA separation. It may be observed, on the other hand, that the NC

MUSIC SCM-based algorithms outperform the conventional MUSIC SCM-based algorithm in particular for

low DOA separation as already shown in [8] for C-CG distributed noise. It can be seen also that the asymptotic

4except in Fig. 4 in which N is variable.
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variances for the C-CES noise model coincide with the one for the C-CG noise model for sufficiently large

values of SNR as predicted by Property 2. On the other hand, these figures confirm the agreement between

the asymptotic variance and its corresponding MSE associated with both MUSIC SCM-based algorithms in a

large domain of SNR and DOA separation, with a larger domain for the NC MUSIC SCM-based algorithm.
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(a) SNR= 20dB (b) ∆θ = 0.2rd

Fig. 1. Asymptotic variances var(θ1,T ) given by (37)-(38) and (39)-(40) and its associated MSEs versus SNR (and versus DOA
separation ∆θ = |θ2 − θ1|) for C-CG and circular complex Student t-distributed noise models with ν = 4.1, fixed DOAs and phases
with ∆φ

def
= |φ2 − φ1| = 0.1rd and ρ = |ρ′| = 0.5.

Fig. 2 illustrates the behavior of the ratio between the asymptotic variances (37) and (38) respectively given

for C-CG distributed noise and circular complex Student t-distributed noise as a function of SNR, correlation

factor ρ, phase separation, and DOA separation and Student t-distribution noise parameter ν. From Fig. 2(a)-

(b), it can be seen that the asymptotic variances are approximately equal for sufficiently high SNR, whereas

the performance losses of SCM-based NC MUSIC algorithms become very prominent when SNR and DOA

separation decrease and that ρ increases. Fig. 2(c) exhibits the dependence of asymptotic variances on the phase

separation ∆φ. It can be observed that the performance is very sensitive to ∆φ for strongly correlated sources

(i.e., ρ ≈ 1). Fig. 2(d) shows that performance degradation is severe for small parameter ν (ν → 4), i.e., for

heavy-tailed noise distributions and for strongly correlated sources (i.e., ρ ≈ 1). Obviously, this ratio tends to

1 for ν →∞ (C-CG noise model).

Fig. 3 illustrates property 2 which shows that for ∆θ = 0.002rd and ∆φ = 0.02rd associated with β̃ = 0.9997

and β = 1.0000+0.0049i, the asymptotic variances are not necessarily increasing functions of |ρ|. Finally, Fig.

4 examines the strong dependence of the performance of the conventional MUSIC algorithm on the phase of the

correlation, by plotting the corresponding asymptotic variance given by (40) for C-CG distributed observations

as a function of ∠ρ′ for different values of ∆θ with |ρ′| = 0.95. To better understand the effect of ∠ρ′, we also
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Fig. 2. Ratio between (37) and (38) (denoted by rNC
def
= RNC

G (θ1)/RNC
NG(θ1)) as a function of ρ for different values of SNR, ∆θ,

∆φ and ν.

plot the associated stochastic Cramér-Rao bound (CRB) derived in [35] for C-CG distributed observations. It can

be clearly seen, as predicted by Property 4, that the asymptotic variance of the conventional MUSIC algorithm

which depends on the geometric phase term ∠β = (N − 1)∆θ/2 is maximal [resp., minimal] for ∠ρ′ = ∠β

[resp., ∠ρ′ = ∠β+π] and consequently the curses are shifted to the right when ∆θ increases. Furthermore, we

note that the corresponding largest and smallest asymptotic variances respectively remain closer to the CRB.

Under these conditions, the conventional MUSIC algorithm is asymptotically efficient despite a very strong

correlation, whereas this algorithm has always been considered inefficient for strongly correlated sources and a

low number of sensors (see e.g., [35]). The corresponding asymptotic variance of MUSIC and CRB obviously

increase when ∆θ decreases and note that the correlation phase strongly affects the CRB compared to the
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Fig. 3. Asymptotic variances var(θ1,T ) associated with conventional MUSIC [resp., NC MUSIC] algorithm given by (40) [resp.,
by (38)] for C-CG noise model, and by (39) [resp., (37)] for circular complex Student t-distributed noise model with ν = 4.1 and
SNR= 20dB.

impact on the corresponding asymptotic variance of MUSIC algorithm which is lower.
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Fig. 4. Asymptotic variance var(θ1,T ) associated with the conventional MUSIC algorithm given by (40) for C-CG distributed
observations, compared to the stochastic CRB, for different values of ∆θ with |ρ′| = 0.95, SNR= 20dB and T = 2000.

In this second experiment, we assume that the observations yt follow either a NC complex Student t-

distribution with parameter ν > 4, which has heavier tails than the Gaussian, or a NC complex generalized

Gaussian distribution with exponent ζ > 0 for which ϑ1,ML = N+1
N+ζ and ϑ1,SCM = η = N

N+1
Γ(N/ζ)Γ((N+2)/ζ)

Γ((N+1)/ζ)2

[26] with ζ = 1, ζ < 1 and ζ > 1 referring respectively to the NC-CG distribution, to NC super-Gaussian

and NC sub-Gaussian distributions. These distributions have a structured extended covariance matrix Rỹ given

by (7), for which the robustness of the non-circular subspace-based DOA estimation algorithms using robust

covariance matrix estimators is evaluated.
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Fig. 5. Ratios r0 = ϑ1,SCM/ϑ1,ML, r1 = ϑ1,Tyler/ϑ1,ML and r2 = ϑ1,SCM/ϑ1,Tyler versus NC complex Student t-distribution
parameter ν (first column) and versus NC complex generalized Gaussian distribution parameter ζ (second column) for different values
of N .
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To supplement our discussion below Result 4, Fig. 5 illustrates the robustness of NC MUSIC DOA

estimation algorithms based on the ML M−estimator with respect to the ones based on Tyler’s M−estimator

and SCM estimator, by plotting the ratios r0
def
= [RSCM

NC−CES(θ)]1,1/[R
ML
NC−CES(θ)]1,1 = ϑ1,SCM/ϑ1,ML,

r1
def
= [RTyler

NC−CES(θ)]1,1/[R
ML
NC−CES(θ)]1,1 = ϑ1,Tyler/ϑ1,ML and r2

def
= [RSCM

NC−CES(θ)]1,1/[R
Tyler
NC−CES(θ)]1,1 =

ϑ1,SCM/ϑ1,Tyler for different values of N , versus ν and ζ, respectively. From Fig. 5(a)-(c) and (b)-(d), we

observe that NC MUSIC DOA estimation algorithm based on ML M−estimator outperforms the ones based

on the SCM estimator and Tyler’s M−estimator as predicted by Result 4, but both ratios r1 tend to 1 when

N →∞ and therefore, the NC MUSIC DOA estimation algorithms based on the ML M−estimator provided

similar performance as the ones based on Tyler’s M−estimator as N increases. For small values of N , both

ratios r0 increase when the distribution moves away from the Gaussian distribution, i.e., for ν decreasing and

ζ moving away from 1. As a result, the performance of the NC MUSIC DOA estimation algorithms based on

the SCM degrade when the distributions move away from the Gaussian distribution. By contrast, both ratios

r1 increase when ν and ζ increase, being very large only for large ζ (i.e., for light-tailed distributions). From

Fig. 5(e) and (f), we see that the NC MUSIC DOA estimation algorithms based on Tyler’s M−estimator have

much better performance than the ones based on SCM for heavy-tailed distributions (i.e., for ν close to 4

and small values of ζ), whereas the performance is poorly degraded for the Gaussian distribution (i.e., for

ν = ∞, ζ = 1). But note that the Tyler’s M−estimator significantly degrades the performance for strongly

light-tailed distributions (i.e., for ζ � 1). Fig. 6 compares the NC stochastic CRB derived in [25] and circular

stochastic CRB derived in [39] and [40], to the asymptotic variances of DOA estimates (41) and [26, Eq.(34)]

obtained, respectively, with the NC MUSIC algorithm (17) and conventional MUSIC algorithm based on SCM

estimator (i.e., ϑ1 = ϑ1,SCM = η) and ML M -estimator (i.e., ϑ1 = ϑ1,ML), and the corresponding MSEs.

From this figure, we can observe the good agreement between the theoretical asymptotic variance associated

with the NC MUSIC algorithm and its corresponding MSE for a wide range of SNR values, whereas the

theoretical asymptotic variance associated with conventional MUSIC algorithm and its corresponding MSE are

in good agreement only at high SNR. Here again, it can be noted that the performance of the NC MUSIC

algorithms exploiting the non-circularity property of the observations outperforms those of the conventional

MUSIC algorithm build only from a SCM of (25). It can also be observed that the NC MUSIC algorithms

based on M -estimate are asymptotically efficient compared to the CRB for a wide range of SNR values, which

is not the case for the conventional MUSIC algorithm which is asymptotically efficient at high SNR.

VI. CONCLUSION

This paper has shown that all the NC subspace-based algorithms built from the SCM designed for uncorrelated

rectilinear sources embedded in spatially white C-CG noise can be also applied for correlated rectilinear sources
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Fig. 6. Circular and NC stochastic CRBs, asymptotic variances given by (29) and [26, Eq.(34)] and associated MSEs versus SNR for
NC complex generalized Gaussian distributed observations with exponent ζ = 0.2, fixed DOAs and phases with ∆θ = 0.25(rd) and
∆φ = 0.2(rd), and ρ = |ρ′| = 0.5.

in the contexts of SCM estimate with C-CES noise and M -estimate with NC-CES observations. A perturbation

analysis has been performed to derive closed-form expressions for the asymptotic covariance matrices of DOA

estimates for three NC MUSIC-like algorithms in two CES data models. Interpretable closed-form expressions

of the asymptotic variance of the estimated DOA of two equi-power correlated sources has been derived for

the first time. A number of properties that highlight how the asymptotic variances of NC MUSIC-like DOA

estimation algorithms depend on key parameters such as SNR, DOA, phase and magnitude of the correlation

and C-CES noise parameters were derived. These results were compared with those of the conventional MUSIC

DOA estimation algorithm, and a significant gain was quantified for relatively small DOA separation when using

non-circular signals. Analytical robustness results were illustrated via several numerical examples using robust

covariance matrix estimators instead of the SCM, proving that the use of robust M -estimators enhances the

robustness of the subspace-based DOA estimation algorithms against heavy-tailed NC-CES observations model

deviations, with negligible loss in performance for NC-CG distributed observations. Finally, we note that the

presented methodology also applies to the asymptotic performance analysis of the NC ESPRIT-like algorithms

in the contexts of SCM estimates with NC deterministic or stochastic sources embedded in C-CES noise and

M -estimates with NC-CES observations.

VII. APPENDIX

Proof of Result 1: Using the central limit theorem applied to the independent identically distributed complex

r.v. vec(ỹtỹ
H
t ) = ỹ∗t ⊗ ỹt, the sequence

√
T (vec (Rỹ,T )− vec(Rỹ)) is asymptotically zero-mean Gaussian

distributed with covariance Rrỹ and complementary covariance Crỹ = RrỹK. Thanks to simple algebraic
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manipulations, we obtain

Rrỹ = (Ã∗ ⊗ Ã)Rrs(Ã
T ⊗ ÃH) + (Ã∗RsÃ

T )⊗Rñ + R∗ñ ⊗ (ÃRsÃ
H)

+ K[(ÃRsÃ
T )⊗ (JRñ) + (JR∗ñ)⊗ (Ã∗RsÃ

H)] + Rrñ , (45)

where Rñ = σ2
nI, Rrs is the covariance of st ⊗ st (which is zero in the deterministic model) and Rrñ is

the covariance of ñ∗t ⊗ ñt, which is simplified for both C-CES or C-CCG distributed nt (3) through simple

algebraic manipulations as:

Rrñ = σ4
n{(I⊗ I) + K(J⊗ J) + (η − 1)[(I⊗ I) + K(J⊗ J) + vec(I)vecT (I)]}. (46)

Using the standard theorem of continuity (see e.g., [41, p.122]) on regular functions of asymptotically

Gaussian statistics applied to the mapping Rỹ,T 7−→ Πỹ,T , we obtain similarly to [8, Th.3], that the

sequence
√
T (vec(Πỹ,T )− vec(Πỹ)) converges to a zero-mean Gaussian distribution with covariance Rπỹ

and complementary covariance Cπỹ = RπỹK given by

Rπỹ = (I + K(J⊗ J))[(ŨT ⊗Πỹ) + (ΠT
ỹ ⊗ Ũ)

+ (η − 1)(I + K(J⊗ J))[(Ũ
′T ⊗Πỹ) + (ΠT

ỹ ⊗ Ũ
′
). (47)

Then applying again the standard theorem of continuity to the mapping (8) Πỹ,T
alg7−→ θ̂T , we obtain similarly

to [8, Th.5], that the sequence of the DOA estimates
√
T (θ̂T − θ) asymptotically converges to a zero-mean

Gaussian distribution, whose covariance is deduced and Result 1 is proved thanks to algebraic manipulations

similar to those developped in [8] and [26].

Proof of Result 3: The proof is based on the asymptotic distribution of vec(Πỹ,T ) associated with the M -

estimate Γuỹ,T . In [29, Res.1], it is proved that the sequence
√
T (vec(Πỹ,T )− vec(Πỹ)) is asymptotically

zero-mean Gaussian distributed with covariance Rrỹ and complementary covariance Crỹ = RrỹK given by

Rπỹ =
ϑ1

σ2
u

(I + K(J⊗ J))[(ŨT ⊗Πỹ) + (ΠT
ỹ ⊗ Ũ)], (48)

where ϑ1 is given by (30) and σu is solution of (15). Applying again the standard theorem of continuity to the

mapping (8), Πỹ,T
alg7−→ θ̂T , the first part of Result 3 is proved.

For the ML M -estimates E[ψ(Qt)Qt] = N from (13) and (11) and thus σu = 1 from (15). Consequently,

(30) reduces to

ϑ1 =
N(N + 1)E[ψ2(Qt)Q2

t ]

(N(N + 1) + E[ψ′(Qt)Q2
t ])

2
. (49)
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Using the p.d.f. (9) of the r.v. Qt, we straightforwardly get:

E[ψ2(Qt)Q2
t ]− E[ψ′(Qt)Q2

t ] =

∫ ∞
0

δ−1
N,gq

N+1d
2g(q)

dq2
dq,

where ∫ ∞
0

δ−1
N,gq

N+1d
2g(q)

dq2
dq = [δ−1

N,gq
N+1dg(q)

dq
]∞0 − (N + 1)

∫ ∞
0

δ−1
N,gq

N dg(q)

dq
dq.

The second term can be simplified as follows∫ ∞
0

δ−1
N,gq

N dg(q)

dq
dq = [δ−1

N,gq
Ng(q)]∞0 −N

∫ ∞
0

δ−1
N,gq

N−1g(q)dq = −N,

because limq→∞ q
N+1 dg(q)

dq = limq→∞ q
Ng(q) = 0 using the fact that the fourth-order moment ofQt is assumed

finite and
∫∞

0 δ−1
N,gq

N−1g(q)dq = 1. Hence, E[ψ2(Qt)Q2
t ] = N(N + 1) + E[ψ′(Qt)Q2

t ], and using (49), (31) is

proved.

Because the extended SCM is the M -estimate associated with u(t) = 1 for which cu = 0 and σu = 1, and

thus ϑ1 = η from (4) and (30).

Proof of Result 4: First note that using the p.d.f. (11) of the r.v. Qt, we get

E[ψ(Qt)Q2
t ] = −

∫ ∞
0

δ−1
N,gq

N+1dg(q)

dq
dq

= −[δ−1
N,gq

N+1g(q)]∞0 + (N + 1)

∫ ∞
0

δ−1
N,gq

Ng(q)dq

= (N + 1)E(Qt) = N(N + 1),

because limq→∞ q
N+1g(q) = 0 using the fact that the fourth-order moment of Qt is assumed finite and

E(Qt) = N . The Cauchy-Schwarz inequality yields

N2(N + 1)2 = (E[ψ(Qt)Q2
t ])

2 ≤ E(Q2
t )E[ψ2(Qt)Q2

t ],

and thus

ϑ1,ML =
N(N + 1)

E[ψ2(Qt)Q2
t ]
≤ E(Q2

t )

N(N + 1)
= η.

The proof of (35) follows immediately from the Cauchy-Schwarz inequality which gives E[(ψ(Qt)Qt)2] ≥

(E[ψ(Qt)Qt])2 = N2 using E(ψ(Qt)Qt) = N from (15).

Proof of Result 5: To give the expression of Ũ and Ũ′ in (23) for two equi-powered sources, amounts

to deriving the two non-zero eigenvalues and the associated eigenvectors of the rank two matrix S̃ =

σ2
s(ã1, ã2)

ãH1 + ρãH2

ρãH1 + ãH2

. The non-zero eigenvalues of S̃ are derived from the roots of the quadratic polynomial:
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λ2−Tr(S̃)λ+ det

σ2
s

ãH1 + ρãH2

ρãH1 + ãH2

 (ã1, ã2)

, which give the eigenvalues λ1 = 2‖ak‖2σ2
s(1−β)(1−ρ) and

λ2 = 2‖ak‖2σ2
s(1 + β)(1 + ρ). Associated eigenvectors are v1 = ã1 − ã2 and v2 = ã1 + ã2. This allows us

to deduce the expressions of Ũ =
(
σ2
n

λ1
+ σ4

n

λ2
1

)
v1vH1
‖v1‖2 +

(
σ2
n

λ2
+ σ4

n

λ2
2

)
v2vH2
‖v2‖2 and Ũ′ = σ4

n

λ2
1

v1vH1
‖v1‖2 + σ4

n

λ2
2

v2vH2
‖v2‖2 and then

of ãHk Ũãk and ãHk Ũ′ãk, w.r.t.. the parameters σ2
s , σ2

n, ρ and β. Plugging these expressions into (23) proves

Result 5.

Proof of Result 6: The expression of U and U′ in (27) for two equi-powered sources are also de-

rived from the two non-zero eigenvalues and the associated eigenvectors of the rank two matrix S =

σ2
s(a1,a2)

 aH1 + ρ′aH2

ρ
′∗aH1 + aH2

. The non-zero eigenvalues of S are also the roots of the quadratic polynomial:

λ2−Tr(S)λ+det

σ2
s

 aH1 + ρ′aH2

ρ
′∗aH1 + aH2

 (a1,a2)

 which are λk = ‖ak‖2σ2
s(α±

√
α2 − γ), k = 1, 2, with α def

=

1+Re(ρ′β∗) and γ def
= (1−|ρ′|2)(1−|β|2) and the associated eigenvectors vk = [‖ak‖2σ2

s(1+ρ
′∗β)−λk]a1−

‖ak‖2σ2
s(ρ

′∗+β∗)a2. Plugging these eigenvalues and eigenvectors in U =
(
σ2
n

λ1
+ σ4

n

λ2
1

)
v1vH1
‖v1‖2 +

(
σ2
n

λ2
+ σ4

n

λ2
2

)
v2vH2
‖v2‖2

and U′ = σ4
n

λ2
1

v1vH1
‖v1‖2 + σ4

n

λ2
2

v2vH2
‖v2‖2 and after cumbersome, but straightforward algebraic manipulations, expressions

aHk Uak and aHk U′ak w.r.t. the parameters σ2
s , σ2

n, ρ and β are deduced and Result 7 is proved.
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