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a b s t r a c t 

The parameters describing the elastoplastic behavior of the 316 L austenitic stainless steel are identified through 

inverse analysis based on finite element modeling of the Berkovich nanoindentation test. The true geometry of 

the Berkovich indenter is introduced in axisymmetric and 3D finite element models using experimental nanoin- 

dentation data obtained by adapting the calibration method proposed by Oliver and Pharr [1] . Then, using these 

true indenter shape models, the elastoplastic parameters of the 316 L are estimated with high accuracy compared 

to the parameters obtained from tensile test identification. The indentation curve was correctly described by the 

numerical model for all the analyzed indentation depths, even for indentations inferior to 100 nm, which is a 

challenge until today. The 3D indenter model produces a residual imprint very close to the experimental indenta- 

tion mark. The friction analysis between the indenter and the sample surface reveals small changes in the surface 

deformation, introducing an increase on the hardness, which disappears as the indentation depth decreases. 

These studies demonstrate that the most important aspect in the elastoplastic parameter identification is the 

correct representation of the indenter geometry in the finite element model. 
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. Introduction 

Indentation is a popular method for evaluating elastic-plastic prop-

rties of materials and structures, including elastic modulus, hardness

nd yield strength [2, 3] . Several research studies have used this test to

nalyze work-hardening, residual stress [4] , and fracture toughness [5] ,

tc., these properties are implicitly related with indentation response.

his localized test can also be applied to measure the properties of indi-

idual phases as well as global properties of composite materials, coat-

ngs and multilayers [6, 7] . Since it requires much less effort on sample

reparation than other techniques, it is in particular useful for small

aterial structures and biological materials (including living tissues).

ue to the involved finite local deformation and nonlinear contact con-

itions, numerical modeling of indentation is a valuable tool to under-

tand of the link between indentation data and material properties, and

o correlate the indentation results with material parameters. Then, an

nverse analysis can be carried out to identify these material properties

rom indentation tests. 

The elastoplastic characterization of metals by nanoindentation test

emains one of the biggest challenges in the micro-characterization do-

ain [8, 9, 10] . The methods of elastoplastic characterization by nanoin-

entation test can provide access to the mechanical behavior [11] at

ultiple scales and in conditions where the conventional methods of

echanical characterization (e.g. tensile test) are difficult or impossi-
∗ Corresponding author. 

E-mail address: cmoises.sanchez@gmail.com (C.-M. Sanchez-Camargo). 

ttps://doi.org/10.1016/j.ijmecsci.2019.105370 
le to apply, e.g. multi-layers systems, functionalized surfaces among

thers. The advantage of the use of the nanoindentation technique is

hat it is able to mechanically test volumes of matter in the microscale,

roducing experimental data of high accuracy. 

The nanoindentation test produces two main pieces of information:

he residual imprint and the loading-unloading curve (referred also as

anoindentation curve). The parameters describing the residual imprint

nd the nanoindentation curve are: h m 

is the maximum displacement of

he indenter measured from the free surface, h c is the depth to the con-

act point; h s is the distance from the contact point to the free surface,

(z) is the cross section area of the indenter at the contact point, P m 

is

he peak indentation load, S is the slope of the unloading branch of the

anoindentation curve, and h f is the last point of contact between the

ndenter and the tested surface. 

Actually, several methods of estimation of the elastic modulus and

he hardness of the tested surface are available [12, 13] . These methods

urely elastic are based only on the unloading stage of the nanoinden-

ation test ( Fig. 1 ) [14] . In the case of the elastoplastic characterization,

wo main types of approaches have been developed since the apparition

f the nanoindentation test: the analytical inverse methods [9, 10, 11]

nd the numerical inverse analysis [8, 15] . 

In general terms, the analytical methods are based on the hypoth-

sis of a representative strain associated with the geometry of the in-

enter [16] , i.e. the strain induced in the surface is independent of the

https://doi.org/10.1016/j.ijmecsci.2019.105370
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmecsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2019.105370&domain=pdf
mailto:cmoises.sanchez@gmail.com
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Fig. 1. (a) Schema of the indentation, and (b) typical corre- 

sponding nanoindentation curve. 

Fig. 2. Atomic Force Microscopy (AFM) captures of Berkovich 

indenters: (a) worn indenter with tip radius of 1200 nm and 

(b) new indenter with tip radius of 500 nm . 
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ndentation depth. Using adimensional analysis [17] , and finite element

odeling, a vast amount of works has been published, for instance,

mong the most relevant, those presented in [18, 19, 20, 21, 22,47–50] .

uch methods are based on finite element simulations of a wide range

f elastoplastic parameters to determine the coefficients of the dimen-

ionless functions. These methods were developed using the microin-

entation on a range of 1 < h m 

≤ 20 𝜇m, where, according to the au-

hors, the defects and deviations on the indenter can be neglected. In

he nanoindentation scale, i.e. 0 < h m 

≤ 200 nm [23, 24] , the wear and

he deviations on the indenter tip are not negligible. The effects of these

eviations on indenter shape are confirmed by Dao et al. [19] , where

hey observed in finite element simulations that a variation of 2° on the

alf angle of a conical indenter results in 15 − 20% variations in the

 − h loading curvature. 

Since, in nanoindentation, the effects of the wear and deviations

n the tip must be taken into account on finite element simulations a

ethod to reproduce the physical indenter geometry in the finite ele-

ent model is required. In general two approaches related to this is-

ue can be found in the literature: i) the modeling of the indenter as a

phero-conical revolution shape [25, 26, 27, 28, 29] and ii) the modeling

f the indenter from a cloud of points gathered with an atomic force

icroscope [30, 31] . A remarkable example of the first approach was

roposed by Pelletier et al. [25] . The principle of this method consists

n the description of the Berkovich indenter based on the use of the func-

ion area proposed by Oliver et al. [1] , which relates the cross section

rea of the indenter to the distance measured from its tip. From this

unction area an equivalent function area describing a sphero-conical

ndenter is derived. The limitation of this approach is that the indenter

s sphero-conical; therefore the residual imprint cannot be compared

ith the experimental residual imprint of a Berkovich indenter. 

The most relevant work found for the second approach was proposed

y Krier et al. [30] . The authors captured the Berkovich indenter ge-

metry with an Atomic Force Microscopy (AFM) and then introduce

he true geometry in the finite element model. Their method is able

o reproduce quite well indentations down to h m 

= 40 nm. However

he implementation of the method is a challenge for several reasons, in

articular the correction of the AFM cloud of points. In this work the
 E  
uthors stated that the blunting tip defect affects the load-displacement

urve, especially the loading phase, and also the elastic–plastic stress

nd strain fields beneath the indenter. They highlighted that this effect

n the elastic–plastic strain field is a real and physical effect that can-

ot be avoided and limited by an analytical model [30] . This statement

s verified through AFM captures of the two Berkovich indenters avail-

ble for the present research ( Fig. 2 ), which exhibit deviations on the

elected operative range. But also the artefacts that must be corrected

f the capture is used to reproduce the indenter geometry in the finite

lement model are visible. 

Although the studies cited above address the problematic associated

ith the description of the physical Berkovich indenter, it does not exist,

ccording to our present knowledge, a reliable and effective method

o introduce the true indenter geometry on the finite element model

llowing the correct representation of indentations on strain hardening

olids in the interval 0 < h m 

≤ 500 nm. The objective of this paper is to

rovide such method and evaluate the following aspects: 

1 The ability of the proposed method to correctly describe the shape of

the Berkovich indenter in both axisymmetric and 3D finite element

models. 

2 The accuracy of the elastoplastic parameters identification using the

inverse analysis based on the finite element model including the true

indenter geometry. 

3 Numerical effects of the friction and its role in the nanoindentation

simulation. 

. Experimental study 

The material used in this research is the single-phase austenitic stain-

ess steel AISI 316 L [32] . The microstructure is composed of equiaxed

rains with a multitude of twinning ( Fig. 3 a). The grain size is between

0 and 40 𝜇m. The crystallographic structure of this austenitic phase is

ace-Centered Cubic (FCC). The electron backscatter diffraction (EBSD)

ap shown in Fig. 3 b highlights a non-textured material. 

The mechanical behavior of the 316 L was characterized by uniaxial

ensile test [33] . The Young’s modulus obtained with this tensile test is

 = 197 GPa . The plastic deformation was fitted using a least squares



Fig. 3. (a) Microstructure and (b) texture of 316 L stainless 

steel. 

Fig. 4. True stress-true strain curve of 316 L stainless steel. 
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ethod ( Fig. 4 ), according to the constitutive equation [19] : 

= 𝝈𝒚 

( 

1 + 

𝑬 

𝝈𝒚 

𝜺 𝒑 

) 𝒏 

(1) 

here 𝝈y represents the yield stress and n the hardening exponent. The

alues of yield stress and hardening exponent identified from the ten-

ile test, using an offset of 0.2 % plastic strain, were considered as the

eference values of the elastoplastic parameters and were used as a com-

arison in the following to assess the accuracy of the analysis proposed

n this paper: 𝝈y = 409 MPa and n = 0.231 
.1. Surface optimization for nanoindentation experiments 

A nanoindentation specimen was machined in a cube of 2 cm side

rom the 316 L same round bar stock that was used for tensile test. In

rder to ensure a surface representative of the bulk material, the top

ayer of the machined surface was removed gradually following this it-

rative procedure: firstly, the initial height of the sample was measured.

hen, mechanical grinding using SiC papers was down to 1200 grit and

he final height has been re-determined again. Then, five nanoinden-

ations using P m 

= 50 mN were conducted. Finally, the height of the

ile-up from AFM captures of the residual imprint was estimated. Once

he properties measured (i.e. h m 

and pile-up) became consistent, the sur-

ace was polished using a diamond solution of 1 𝜇m, and finished with

ibratory polishing using colloidal silica during eight hours with only

ample weight [34] . The variations in the measures of h m 

( Fig. 5 (a))

nd the height of the pile-up ( Fig. 5 (b)) during the procedure revealed

hat the machining process induced a gradient of properties, extending

hrough a 250 𝜇m layer from the free surface of the sample. 

The mean value of h m 

was 820 nm on the stabilized surface, and

60 nm on the polished surface ( Fig. 6 (a)). The residual imprint on the

olished surface revealed the influence of the crystallographic char-

cteristics of the indented point in the form of asymmetric pile-ups

 Fig. 6 (b)). 

The prepared surface was inspected by X-ray diffraction using

in 2 𝜓 method to analyze the residual stress state [35] , finding

11 = 12 ∓ 8 MPa and 𝜎22 = − 15 ∓ 11 MPa. The surface can thus

e considered as free from internal stresses. The microstructural-

rystallographic characteristics were determined through EBSD analy-

is. The treatment of the EBSD data [36] revealed a distortionless mi-

rostructure free of pre-hardening, with an intragranular misorientation

anging from 0° to 4° at the center of the grains ( Fig. 7 (a)). The roughness

f the working surface was estimated from AFM captures ( Fig. 7 (b)); it

as globally R a = 4 nm and locally R a = 1.4 nm. The local value of R a 

as used to define the minimum valid value of h on this surface, which
Fig. 5. Surface optimization procedure: (a) evolution of h m 
and (b) evolution of the height of the pile-up as a function of 

the removed layer (affected by machining). 



Fig. 6. Effects of polishing: (a) evolution of h m and (b) residual 

imprint of the polished surface. 

Fig. 7. Surface state of the polished surface: (a) crystallo- 

graphic misorientation state and (b) roughness state. 

Table 1 

Final surface properties. 

Roughness 

Crystallographic misorientation 

(pre-hardening) Residual stresses 

R a = 4 nm less than 5° 𝜎11 ≈ 0 MPa/ 𝜎22 ≈ 0 MPa 
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Table 2 

Experimental protocol for indentation tests using the 

worn Berkovich indenter. 

P m ( mN ) h m ( nm ) Loading / unloading rate ( mN / min ) 

0.3 25 0.5 

1 68 1 

3 150 3 

10 330 6 

15 420 6 
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s of about 28 nm, i.e. 20 times R a [24] . The properties of the surface at

he end of the preparation procedure are listed in Table 1 . 

.2. Nanoindentation experiments 

Once the working surface was prepared, the nanoindentation exper-

ments were optimized and conducted on the polished surface. All the

anoindentation experiments were conducted using the worn Berkovich

ndenter of tip radius r = 1200 nm ( Fig. 2 (a)) in load controlled mode

t room temperature on a NHT 2 commercial nanoindenter from Anton

aar instruments. The optimum loading/unloading rate was determined

xperimentally on the optimized working surface. Series of nanoin-

entation experiments were conducted using a constant loading force

 m 

= 10 mN and varying the loading rate. The total indentation work

 W t , Eq. (11) ) constant until a value of loading rate near to 25 mN/min,

fter this value, W t increase linearly ( Fig. 8 (a)). Therefore we consid-

red that using loading rates lower than 25 mN/min allows neglecting

he time dependent effects (e.g. indentation creep) for P m 

= 10 mN. 

On the smaller scale, the time dependent effects can be observed in

he first stage of the loading nanoindentation curve ( P m 

between 0 and

.5 mN), where loading rates greater than 6 mN/min introduce a slight

ncrease in the loading curve ( Fig. 8 (b)). Finally using the loading rate

lose to 6 mN/min allows obtaining comparable indentation curves for

ifferent indentation loading values. The values of loading/unloading

ate used in this study ( Table 2 ) were selected respecting this rule, and

onsidering the acquisition frequency to have similar quantity experi-

ental points (i.e. using lower loading rates for the smaller Pm). 

Based on this information, the experimental protocol was defined

 Table 2 ). This table also presents the h produced by the selected P .
m m 
he maximum h m 

is inferior to 500 nm, as required for the present study,

nd the minimum h m 

is greater than 20 nm, which is valid with respect

o the local roughness of the working surface ( Fig. 7 (b)). 

A total of nine nanoindentations were applied for each of the five

eak loads listed in the Table 2 , spaced enough to avoid interferences.

ccording to the literature [24] , the indentation must be spaced at least

hree times the diameter of the imprint mark. In this study we used a

pacing of ten times the diameter of the residual imprint. From each

roup of nine indentations the P − h curves sharing the same loading

ath were selected ( Fig. 9 (a)), and an AFM capture of their respective

esidual imprints was taken ( Fig. 9 (b)). 

. Numerical method 

.1. Finite element modeling of the specimen 

All the simulations in this paper were conducted in controlled dis-

lacement applied to the indenter. The specimen was modeled as an

xisymmetric body and as a full 3D model [37] using the implicit non-

inear geometry FE algorithm in Abaqus [38] . 

Firstly, the axisymmetric model was optimized through a mesh re-

nement convergence analysis, using a fixed h m 

= 500 nm, a rigid

one equivalent to a perfect Berkovich indenter [39] , a frictionless

ontact, and the elastoplastic parameters of the Eq. (1) : E = 180 GPa,

𝜎y = 148 MPa, n = 0.278 [40] . The iterative procedure was applied

ntil the loading curve remained constant. 



Fig. 8. Analysis of nanoindentation time dependent effects on 

316L: (a) effects of loading rate on W t and (b) effects of loading 

rate on the first portion of the loading nanoindentation curve. 

Fig. 9. Nanoindentation experiments using the worn 

Berkovich indenter: (a) P − h curves and (b) residual imprints 

associated to each P − h curve. 
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Once the optimum mesh and size of the specimen was found for the

xisymmetric model ( Fig. 10 (a)), the characteristics of the axisymmetric

odel were replicated on the 3D model ( Fig. 10 (b)). Then, the mesh

ensity of the 3D model was increased by adding partitions ( Fig. 10 (c)),

ntil the loading curves of the 3D and the axisymmetric models were

quivalents ( Fig. 10 (d)). 

Finally both models were parametrized, using as master parameter

 m 

:therefore the same model was suitable for the analysis of a large

ange of h m 

, ensuring similar contact conditions ( Fig. 10 (e)). 

.2. Finite element modeling of the indenter 

The proposed method is based on the use of several values of the

ection area A of the indenter and their corresponding values of z , i.e.

 ( z ), with z the neutral axis of the indenter ( Fig. 11 ). The values of A are

sed to define the points of the generatrix at the corresponding z values.

hen, the generatrix is rotated around the z axis following a circular

irectrix to obtain a conical indenter ( Fig. 11 (a)). In the case of a 3D

ndenter, the generatrix is moved along a straight directrix to generate

ne wall of the indenter. Then, using a circular pattern the other three

alls are generated and trimmed on the intersections ( Fig. 11 (b)). The

teps required to obtain the generatrix for both indenters are explained

elow. 

For simplicity, the explanation of the method is based on the assump-

ion of a perfect Berkovich indenter ( Fig. 11 ). Considering the area of the

ircular section of a cone, the associated radius is given by the equation:

 ( 𝐳 ) = 

√ 

𝐀 ( 𝐳 ) 
𝝅

(2)

here r ( z ) is the generatrix in the axisymmetric finite element model

 Fig. 11 (a)). 

Moving to the 3D indenter, the section of the indenter has a shape

f an equilateral triangle ( Fig. 11 (b)). The length of each side of the
riangle is given by the equation: 

 ( 𝑧 ) = 

√ 

𝐴 ( 𝑧 ) 4 √
3 

(3) 

Then, the perpendicular distance from the axis of the indenter to the

ide of the triangle is computed from: 

 ( 𝑧 ) = 

𝑎 ( 𝑧 ) 
2 

tan 
(
30 ◦

)
(4) 

In this case c ( z ) is the generatrix of the wall, and a ( z ) is the direc-

rix. Introducing the indenter on the finite element model requires the

alues of A along the axis z of the indenter. A well-known relation is the

erkovich function area A ( z ) = 24.5 z 2 [1] . Using this relation on the

roposed procedure a perfect Berkovich indenter is generated, which is

haracterized by an angle 𝜃 = 70.3° in the case of an axisymmetric in-

enter ( Fig. 11 (a)), or by an angle 𝛼 = 65.3° in the case of a 3D indenter

 Fig. 11 (b)). 

Since the objective is to introduce the true indenter geometry on

he finite element model, it is required to estimate A at several points

f the z axis of the physical indenter. This problem was solved a few

ecades ago by Oliver and Pharr [1] . The principle of this method is to

stimate A at a given contact depth, h c , through the indentation on a

ell-known material ( Fig. 1 ). On their work they proposed to use the

used quartz as indented material with the elastic constants E s = 72 GPa

nd 𝜈s = 0.17; and a diamond Berkovich indenter with the elastic con-

tants E i = 1141 GPa and 𝜈i = 0.07. 

Firstly, A is calculated using the relation: 

 = 

𝑑𝑃 

𝑑ℎ 
= 

2 √
𝜋
𝐸 𝑟 

√
𝐴 (5)

here S is the contact stiffness, computed at the initial portion of the

nloading data ( Fig. 1 ), and the reduced modulus, E , is computed using
r 



Fig. 10. Nanoindentation finite element modeling: (a) axisymmetric model (b) section of the 3D model (c) partitioning of the 3D model, (d) equivalence between 

the 3D and the axisymmetric model and (e) loading curves produced by the parametrized models on a wide range of h m . 

Table 3 

Experimental protocol for indentations on fused quartz. 

Indentation numbers Peak load (mN) 

Loading/unloading rate 

(mN/min) 

Oliver and 

Pharr [1] 

1–10 0.1 0.6 

11–20 0.3 1.8 

21–30 1 6 

31–40 3 18 

41–50 10 60 

51–60 20 120 

Extension 61–70 40 240 

71–80 60 360 

81–90 80 480 
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he relation: 

1 
𝐸 𝑟 

= 

1 − 𝜈𝑠 
2 

𝐸 𝑠 

+ 

1 − 𝜈𝑖 
2 

𝐸 𝑖 

(6)

here 𝜈s and E s are the elastic constants for the specimen, and 𝜈i and E i 
re the same parameters for the indenter. 

Then, h c is computed from the equation: 

 𝑐 = ℎ 𝑚 − ℎ 𝑠 (7)

here h s is the deflection of the surface outside the contact area ( Fig. 1 ),

hich is computed from the equation: 

 𝑠 = 

2 
𝜋
( 𝜋 − 2 ) 

𝑃 𝑚 

𝑆 
(8)

On this study, the method of Oliver and Pharr [1] was used under

hree considerations: 1) h c is equivalent to z , 2) the original nanoin-

entation protocol used on the fused quartz ( Table 3 ), was extended to

stimate the value of A for a corresponding value of z = 500 nm, and
) the elastic constants of the Berkovich indenter and the fused quartz

ere the same that those proposed by Oliver and Pharr [1] ; both, the di-

mond Berkovich indenter and the standardized sample of fused quartz

ere obtained from the manufacturer of the NHT 2 nanoindenter. The

ndenters generated with the proposed procedure are referred as true

ndenters. 

Finally, 9 values of A ( z ) were computed using the extended method

f Oliver and Phar [1] indenting on fused quartz ( Fig. 12 ), to cover a

aximum z = 500 nm. 

The physical Berkovich indenter was introduced in the finite element

odel applying this procedure through Python scripts in Abaqus, in sep-

rate models in the form of axisymmetric ( Fig. 13 (a)) and 3D ( Fig. 13 (b))

ndenters, respectively. The experimental points A ( z ) were directly used

o generate the indenter geometries adding an initial point in the origin.

o fitting procedure was included to create the generatrix of the inden-

ers. The axisymmetric model ( Fig. 13 (a)), is presented in the form of

 cone using the visualization capabilities of Abaqus. The 3D indenter

 Fig. 13 (b)), is a full 3D representation of the physical Berkovich used

n the experiments. 

Once the characteristics of the specimen and the procedure to gen-

rate the indenter were established, the next step is to define the inter-

ction behavior between the surfaces of the indenter and the specimen.

.3. Indenter-specimen contact modeling 

The interaction between the indenter and the specimen was defined

n Abaqus Standard using the master-slave configuration [38] . The mas-

er surface was the external surface of the indenter, and the slave surface

as the external top surface of the specimen. The interaction between

he indenter and the specimen was analyzed in two ways: 1) in friction-

ess contact, and 2) with friction contact. The friction was introduced

n the model using the formulation of Coulomb included in Abaqus



Fig. 11. Geometric specifications of the indenters: (a) conical 

indenter and (b) 3D indenter. 

Fig. 12. Experimental points obtained from indentation on fused quartz using 

the worn Berkovich indenter. 
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38] . This formulation assumes that there is no relative movement if

he equivalent frictional stress given by 

𝑒𝑞 = 

√ 

𝜏2 1 + 𝜏2 2 (9) 

s inferior to the critical stress, 𝜏crit , which is proportional to the contact

ressure, p , in the form: 

𝑐𝑟𝑖𝑡 = 𝜇𝑝 (10)

The friction coefficient, 𝜇, is a function of the contact pressure, p ,

he slip rate, the average temperature, and the average field variables

t the contact point. If 𝜏crit = 𝜏eq , slip occurs. In this study the friction is

onsidered isotropic. The direction of the slip and the frictional stress is

oincident. 

.4. Optimization procedure for elastoplastic parameters identification 

The Levenberg-Marquardt [41] optimization algorithm was used to

etermine the elastoplastic behavior parameters. The objective function

roposed is formulated using both loading and unloading branches of

he P − h curve ( Fig. 1 ). 
From the loading curve the total indentation work, W t , is obtained

ith the expression: 

 𝑡 = 

ℎ 𝑚 

∫
0 
𝑃 𝑑ℎ (11)

hich is used to define the first component of the objective function in

he form: 

 𝑡 = 

𝑊 𝑡𝑛 − 𝑊 𝑡𝑒 

𝑊 𝑡𝑒 

(12) 

here W tn is the total indentation work obtained from the simulated

oading curve, and W te is the total indentation work obtained from the

xperimental loading curve. 

Using the unloading curve, the elastic indentation work, W e , is ob-

ained through: 

 𝑒 = 

ℎ 𝑚 

∫
ℎ 𝑓 

𝑃 𝑑ℎ (13)

hich is used to define the second component of the objective function

n the form: 

 𝑒 = 

𝑊 𝑒𝑛 − 𝑊 𝑒𝑒 

𝑊 𝑒𝑒 

(14) 

here W en is the elastic indentation work obtained from the simulated

nloading curve, and W ee is the elastic indentation work obtained from

he experimental unloading curve. 

Using the Eqs. (12) and (14) , the objective function for the whole

 − h curve is assembled in the form: 

 ( 𝛽) 
𝑚𝑖𝑛 

= 

[ 
𝑓 𝑡 
𝑓 𝑒 

] 
(15) 

here 𝛽 represents the set of elastoplastic parameters. Finally, the mini-

ization of the objective function is achieved using the algorithm shown

n the Fig. 14 . 

The algorithm used in this work was set with a step tolerance and

unction tolerance of 10 − 14 . Changes in residuals was set with a value

f 10 − 6 , and the number of iterations was set as infinite. 
Fig. 13. Berkovich indenter modeling: (a) generatrix of the 

axisymmetric indenter and (b) generatrix of the 3D indenter. 



Fig. 14. Optimization algorithm used for the elastoplastic parameter estima- 

tion. 
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. Results and discussion 

.1. The true indenter geometry modelling 

For the investigated indenter height, i.e. 0 nm < z ≤ 500 nm, the

rofile of the true axisymmetric indenter ( Fig. 15 (a)), looks more like

 parabola than a sphero-conical indenter as stated by some authors

25, 26, 27, 28, 29] . In fact, the profile of the true indenter never exhibits

 parallelism with respect to the perfect indenter (70.3°). This found

elps to explain why the polynomial form of the function area used by

liver and Pharr [1] is able to describe the Berkovich indenter with high

recision regardless a physical meaning. Another method to determine

he function area, including a physical meaning, was proposed by Lou-

et et al. [42] . This method relies on the estimation of the height of a

ounded portion (the tip defect), connected to a perfect indenter. The 3D

ndenter modeled with the method proposed in this paper cannot be de-
Fig. 15. Comparison between the profiles of perfect indenters and the
cribed using this assumption, because the sections of the true indenter

re curved ( Fig. 15 (b)). 

In addition, the cloud of points gathered by the Atomic Force Mi-

roscopy (AFM) was directly used for comparisons, founding that at

east one of the three sections obtained from the AFM capture of the

erkovich tip is partially similar to the section of the true indenter, ex-

ibiting a relation with the physical indenter. 

.2. Elastoplastic parameters identification 

The three elastoplastic parameters of the 316 L constitutive model

escribed in Eq. (1) were estimated from each experimental P − h

urve obtained with the indentations using the worn Berkovich inden-

er ( Fig. 9 (a)) and the parameter identification routine ( Fig. 14 ). Both

erfect and true indenter models were used in the axisymmetric models,

ssuming frictionless contact ( 𝜇 = 0 in Eq. (10) ). The estimated param-

ters were plotted as a function of the maximum indentation depth in

ig. 16 , and the values of the parameters obtained by tensile test were

ncluded as reference. 

The three elastoplastic parameters obtained with the perfect inden-

er model increase with respect to the reference (tensile) value when

 m 

decreases. For the minimum value of h m 

, the error in the hardening

xponent reaches % err = 166 i.e. n = 0.61, which is out of the range for

etals [19] ; the error in the yield stress reaches % err = 370 and is also

ut of the parametric range of metals [19] . 

However, the elastic modulus and the hardening exponent estimated

ith the true indenter model exhibit a constant trend near the refer-

nce. The hardening exponent and the elastic modulus have a mean

rror % err = 3.7 and % err = 17.8 respectively compared to the reference.

he error in the yield stress on the maximum value of h m 

is % err = 21.6.

his error increases with the decrease of h m 

to reach % err = 72.9. In

he literature, the increase of the yield strength with the decrease of

 m 

, reflected on the hardness, is referred as indentation size effect (ISE)

43, 44, 45] . We suppose that the ISE is already present in the maximum

 m 

investigated, and that is why the value of the elastic limit is greater

han the value found by tensile test. This finding open the possibilities

o new experimental-numerical studies of the ISE, besides the existing

ormulations based on the hardness e.g. the method of Gao et al. [44] . 

In addition, the parameter identification conducted with the per-

ect indenter model was close to the known (reference) solution for the

ndentation corresponding to the greater h m 

. This effect can be easily

bserved in the P − h curves, where the simulation of the shallow in-

entation exhibits a great difference with respect to the experimental

urve ( Fig. 17 (a)), while in the deepest indentation the difference be-

ween them is reduced ( Fig. 17 (b)). Nevertheless, the parameter esti-

ation performed using the true indenter geometry showed powerful
 true indenters: (a) axisymmetric indenter and (b) 3D indenter. 



Fig. 16. Elastoplastic parameters evolution in function of h m . 

Fig. 17. Comparison between the true indenter and the per- 

fect indenter P − h curves in (a) shallow and (b) deep inden- 

tations. 

Fig. 18. Comparison between the experimental residual imprint profile and the 

numerical residual imprint profile obtained with the 3D model. 
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apabilities of this model to faithfully reproduce the experimental curve

or deep and shallow indentations ( Fig. 17 (a) and (b)). 

Finally, the section of the residual imprint produced by the 3D true

ndenter model with P m 

= 15 mN, for the respective determined elasto-

lastic parameters, is very close at least to one of the three sections

btained experimentally ( Fig. 18 ). This great resemblance also confirms

hat the optimization routine converged to the correct solution in this

ase. 

.3. Friction analysis 

The parameter identification routine was executed two times sepa-

ately using the friction coefficients 𝜇 = 0.1 and 𝜇 = 0.2 respectively,

or each investigated experimental indentation on the 316 L. The start-

ng point of the routine was the last set of parameters determined with
he frictionless configuration of each parameter identification execu-

ion. The true indenter finite element model was used. In all cases, after

 few iterations the routine stopped because the changes in the curve

ere negligible ( Fig. 19 (a) and (b)), in consequence the changes in the

alue of the parameters were also negligible. Therefore, the effect of the

nvestigated friction coefficients ( 𝜇 = 0; 𝜇 = 0.1; 𝜇 = 0.2) were evalu-

ted using the determined elastoplastic parameters for the experimental

 m 

= 15 mN. The residual imprint showed a decrease of the height of the

ile-up (until 31 nm for 𝜇 = 0.2), compared to the frictionless contact

 Fig. 19 (c)), revealing small variations in the contact area. 

Based on this evidence, the hardness, H = P m 

/ A ( h c ) [1] , was com-

uted for the experimental P − h curves with P m 

= 3 mN, P m 

= 10 mN

nd P m 

= 15 mN using the AFM captures of their corresponding resid-

al imprints. In the case of the numerical models, A ( h c ) was determined

t h m 

. The results were plotted in function of h m 

( Fig. 20 ). The results

how an increase of H with the decrease of h m 

. For the indentations in-

erior to h m 

= 200 nm, the effects of the friction are reduced, i.e. the

hanges in the contact area are negligible. For indentations superior to

 m 

= 200 nm, the experimental H is close to the simulation using fric-

ionless contact, and the increase when 𝜇 = 0.2 induces % err = 19.6,

eaning a difference of H about 490 MPa. 

The literature reports a maximum increase of ~ 20 % in the hard-

ess for contacts with friction coefficients 𝜇 > 0 [46] . The maximum

ifference found in this work (% err = 19.6) is consistent with these ob-

ervations. However, for the deeper indentations analyzed in this work,

he values of the hardness obtained using frictionless contact are closer

o the experimental values. 

Mata et al. [46] observed two effects of the friction on the pile-up:

) the height of the pile-up decreases with the increase of the friction

oefficient, and 2) the indentations with low height of pile-up are less

ensitive to the variations of the friction coefficient. The two effects ob-

erved by Mata et al. are presented in this study ( Fig. 21 ). The first one

s observed with indentations of h m 

> 300 nm, where a maximum dif-

erence of 27.8 nm on the height of the pile-up is observed comparing

rictionless contact and contact with friction coefficient 𝜇 = 0.2. The

econd effect is observed with indentations of h m 

< 100 nm, where the

eight of the pile-up is similar regardless the value of 𝜇. 



Fig. 19. Friction effects: (a) in shallow and (b) in deep indentation, on the P − h curves, (c) on the residual imprint. 

Fig. 20. Friction coefficient effect on the surface hardness. 

Fig. 21. Effects of the variations of the friction coefficient on the pile-up height. 
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. Conclusion 

A new methodology to improve the representation of the geometry of

he physical Berkovich indenter in the finite element model is proposed

n this paper. 

This inclusion of the physical indenter in the finite element model

eads to a correct reproduction of the experimental P − h curve and
esidual imprint of the tested material, providing an estimation of the

lastoplastic parameters with significantly improved accuracy in the op-

rative range 0 < h m 

≤ 500 nm. The observed variations of the yield

tress as a function of the indentation depth open new insights on the

ndentation size effect, which now can be analyzed through sophisti-

ated numerical models on indentations with h m 

< 100 nm. This paper

ocused on the analysis of strain hardening solids, however complex mi-

romechanical systems (e.g. ultrathin layers, nanocrystalline structures,

tc.) can be analyzed using the accurate finite element model of the

ndenter geometry. 

The effects of the friction coefficient were observed in the contact

nterface between the indenter and the sample surface modifying the

alue of the hardness, which is in good agreement with other works

eported in the literature. No effects of the friction coefficient used in

he finite element simulations were observed on the P − h curve or on

he estimated parameters. 
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