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Efficiency of subspace-based estimators for

elliptical symmetric distributions
Habti Abeida and Jean-Pierre Delmas

Abstract

Subspace-based algorithms that exploit the orthogonality between a sample subspace and a parameter-

dependent subspace have proved very useful in many applications in signal processing. The purpose of this

paper is to complement theoretical results already available on the asymptotic (in the number of measurements)

performance of subspace-based estimators derived in the Gaussian context to real elliptical symmetric (RES),

circular complex elliptical symmetric (C-CES) and non-circular CES (NC-CES) distributed observations in

the same framework. First, the asymptotic distribution of M -estimates of the orthogonal projection matrix is

derived from those of the M -estimates of the covariance matrix. This allows us to characterize the asymptotically

minimum variance (AMV) estimator based on estimates of orthogonal projectors associated with different M -

estimates of the covariance matrix. A closed-form expression is then given for the AMV bound on the parameter

of interest characterized by the column subspace of the mixing matrix of general linear mixture models. We also

specify the conditions under which the AMV bound based on Tyler’s M -estimate attains the stochastic Cramér-

Rao bound (CRB) for the complex Student t and complex generalized Gaussian distributions. Finally, we prove

that the AMV bound attains the stochastic CRB in the case of maximum likelihood (ML) M -estimate of the

covariance matrix for RES, C-CES and NC-CES distributed observations, which is equal to the semiparametric

CRB (SCRB) recently introduced.

Index Terms

Subspace-based algorithm, asymptotically minimum variance estimators, stochastic Cramér-Rao bound,

CES/RES distributions, circular/non-circular, M -estimators, Tyler’s M -estimate
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I. INTRODUCTION

Noisy linear mixtures of signals in which the parameter of interest is characterized by the mixing matrix are

very common in many applications, including array processing and linear system identification (see e.g., [1]–

[3]). To get rid of the nuisance parameters, subspace-based estimates obtained by exploiting the orthogonality

between a sample subspace and a parameter-dependent subspace have been exploited since the seminal paper [4]

that introduces the multiple signal classification (MUSIC) algorithm for direction of arrival (DOA) estimation.

These methods are always the object of active research in many applications (see e.g., [5], [6]), with generally

many possible algorithms (see e.g., [7] for special structures of the mixing matrix). In these noisy linear

mixtures, two statistical models have been commonly used [8]. If the signals in the mixture are nonrandom, but

rather unknown deterministic parameters, the model is called deterministic or conditional and the associated

CRB on the parameter of interest is called deterministic CRB. Otherwise, they are random and the model is

a stochastic or unconditional model and the associated CRB is called stochastic CRB. Note, however, that,

the deterministic CRB is not asymptotically achievable by the maximum likelihood estimator with respect to

the number of snapshots, while the stochastic CRB is attainable. Considering the family of subspace-based

estimators, it was proved [9] in the context of DOA estimation for circular (C-CG) and generally non-circular

complex Gaussian (NC-CG) observations, that there exists among these estimators, an AMV estimator or an

asymptotically best consistent estimators (ABC) introduced by Porat and Friedlander [10] and Stoica et al [11],

respectively, whose covariance attains the stochastic CRB.

We are mainly interested in this paper, to extend the previous results in [9] to both (i) generic noisy linear

mixture whose parameters of interest are characterized by the columns space of the mixing matrix, (ii) orthogonal

projectors derived from the principal subspace of different M -estimates of the covariance, and (iii) RES (see e.g.

[12]), C-CES (see e.g. [13]) and NC-CES [14] (introduced in [15] under the name Generalized CES) distributed

observations. First, we extend to NC-CES distributions, the asymptotic distribution of the M -estimate of the

covariance as well as the asymptotic distribution of the associated projectors. This allows us to consider the

RES, C-CES and NC-CES distributions in the same framework and to give a common closed-form expression

of the AMV bound on the parameter of interest based on the projectors. We prove in particular that the AMV

bound attains the stochastic CRB in the case of ML M -estimate of the covariance matrix for all RES, C-CES

and NC-CES distributions with finite fourth-order moments. We specify the conditions under which the AMV

bound associated with the projector derived from Tyler’s M -estimate attains the stochastic CRB for the complex

Student t and complex generalized Gaussian distributions. Finally, we prove that the SCRB introduced in [16]

and the stochastic CRB for the parameters of interest depending on the covariance matrix resulting from a

noisy linear mixture model are equal.
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This paper is organized as follows. Section II specifies the general parametric model of RES, C-CES, and

NC-CES distributed noisy mixtures and formalizes any subspace-based algorithm as a mapping linking an M -

estimate of the covariance matrix to the estimate of the parameter of interest. The problem formulation and a

brief review of AMV estimators are given in Section III. Section IV reviews different properties of M -estimates

of the covariance matrix for RES and C-CES distributions and extends them to NC-CES distributions. This

allows us to deduce the asymptotic distribution of the associated M -estimates of the orthogonal projection

matrices and then derive a closed-form expression of the AMV bound based on projector statistics, enabling

us to prove that this one attains the CRB in the case of ML M -estimate of the covariance matrix for all RES,

C-CES and NC-CES distributions. Section V presents simulation results to validate the theoretical results, and

finally this paper is concluded in Section VI.

The notations used throughout this paper are the following. Vectors and matrices are denoted by bold-faced

lowercase and uppercase letters, respectively. ∗, T , and H respectively represent the conjugate, the transpose

and the conjugate transpose operators and the symbol + stands for T in the real case and for H in the

complex case. |.|, (.)# and span(.) are the determinant, Moore-Penrose inverse and range space of a matrix,

respectively. →d denotes convergence in distribution, ∼ means ”distributed as” and =d stands for ”shares the

same distribution as”. NR(0,R) and NC(0,R,C) denote the zero-mean real (resp., complex) valued Gaussian

distributions, where R and C are the covariance and complementary covariance matrices, respectively. vec(·)

is the vectorization operator that turns a matrix into a vector by stacking the columns of the matrix one below

another which is used in conjunction with the Kronecker product A⊗B as the block matrix whose (i, j) block

element is ai,jB and with the vec-permutation matrix Kq which transforms vec(C) to vec(CT ) for any q × q

matrix C. The matrix J is the exchange matrix

0 I

I 0

.

II. DATA MODEL AND SUBSPACE-BASED ESTIMATION

A. General parametric model

Assume that you have a set of K independent and identically distributed zero-mean N -dimensional RES,

C-CES or NC-CES distributed data snapshots (yk)k=1,..,K , such that the probability density function (p.d.f.)
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can be written1 as:

p(yk) = |Σ|−1/2gr
(
yTk Σ−1yk

)
(real case), (1)

= |Σ|−1gc
(
yHk Σ−1yk

)
(circular complex case), (2)

= |Γ̃|−1/2gc

(
1

2
ỹHk Γ̃−1ỹk

)
(non-circular complex case), (3)

where ỹk
def
= (yTk ,y

H
k )T and Γ̃

def
=

 Σ Ω

Ω∗ Σ∗

 with Σ and Ω are N × N Hermitian positive definite and

complex symmetric matrices, respectively called scatter and pseudo-scatter matrices. The functions gr(.) and

gc(.) : R+ 7→ R+ satisfy δN,gr
def
=
∫∞

0 tN/2−1gr(t)dt < ∞ and δN,gc
def
=
∫∞

0 tN−1gc(t)dt < ∞. The r.v. yk

admits the following stochastic representation:

yk =d

√
QkTuk, (real [12] and circular complex [13] cases), (4)

=d

√
QkTvk, (non-circular complex case [14]), (5)

where the random variables Qk and uk [resp. Qk and vk] are independent. uk is uniformly distributed on

the unit real or complex N -sphere and vk is defined by [14] vk = ∆1uk + ∆2u
∗
k, where ∆1

def
= ∆++∆−

2 ,

∆2
def
= ∆+−∆−

2 , ∆+
def
=
√

I + ∆κ and ∆−
def
=
√

I−∆κ, with ∆κ is an N×N diagonal matrix containing the

non-circularity coefficients (κn)n=1,..,N of yk [17] satisfying 0 ≤ κn ≤ 1, and Σ = TTH and Ω = T∆κT
T

are factorizations of Σ and Ω, respectively, where T has full rank. We note that (5) is equivalent to ỹk =d
√
QkΓ̃1/2ũk with ũk

def
= (uTk ,u

H
k )T and that in the complex circular case vk and (3) reduce to uk and (2),

respectively.

It follows from (4) and (5) that the quadratic/Hermitian forms

y+
k Σ−1yk =d Qk (real and complex circular cases), (6)

1

2
ỹHk Γ̃−1ỹk =d Qk (non-circular complex case), (7)

and hence the p.d.f. of the 2nd-order modular variate Qk (or the quadratic/Hermitian forms) is given by

p(qk) = δ−1
N,gr

q
N/2−1
k gr(qk) (real case), (8)

= δ−1
N,gc

qN−1
k gc(qk) (complex case). (9)

Furthermore, to remove the so-called scale ambiguity, the density generators gr and gc are here constrained

1These expressions are consistent with the ones given in [12], [13] and [14] for the RES, C-CES and NC-CES, respectively, because
the normalizing constant is here included in the functions gr and gc.
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such that δN+1,gr/δN,gr = δN+1,gc/δN,gc = N or equivalently E(Qk) = N given that 2nd-order moments exist

[13, (20)], to ensure that the scatter matrix Σ and the extended scatter matrix Γ̃ are equal to the covariance

matrix Ry
def
= E(yky

H
k ) and the extended covariance matrix Rỹ

def
= E(ỹkỹ

H
k ), respectively.

We assume that the covariance Σ matrix in (1) and (2) takes the following structured form:

Σ = A(θ)RxA
+(θ) + σ2

nI, (10)

where Rx is a P ×P (with P < N ) positive definite, real-valued symmetric or Hermitian matrix in the real and

circular complex case, respectively. In the non-circular complex case, we assume that the extended covariance

matrix Γ̃ in (3) takes one of the following structured forms:

Γ̃ = Ãr(θ)RrÃ
H
r (θ) + σ2

nI, (11)

Γ̃ = Ãc(θ)Rx̃Ã
H
c (θ) + σ2

nI, (12)

where Rr is a P × P (with P < 2N ) positive definite, real-valued symmetric matrix and Rx̃ is a 2P × 2P

(with P < N ) positive definite Hermitian matrix structured as

Rx Cx

C∗x R∗x

. Ãr(θ) and Ãc(θ) are structured

2N × P and 2N × 2P matrices, respectively, with Ãr(θ) =

 A(θ)

A∗(θ)

 and Ãc(θ) =

A(θ) 0

0 A∗(θ)

.

We assume that the real-valued parameter of interest θ ∈ RL is characterized by the subspace generated by

the columns of the full column rank matrices A(θ), Ãr(θ) and Ãc(θ). The nuisance parameters are ρ and σ2
n

where ρ collects the real and imaginary parts of the unknown matrices Rx, Rr or Rx̃.

This case of a low-rank plus identity covariance matrix is commonly used in signal processing to account

for low dimensional signals embedded in white noise. This is in particular the case of the general noisy linear

mixture model:

yk = A(θ)xk + nk. (13)

This low-rank signal in full-rank noise data model (13) encompasses many far or near-field, narrow or wide-

band DOA models with scalar or vector-sensors for an arbitrary number of parameters per source xk,p (with

xk
def
= (xk,1, .., xk,P )T ) and many other models as the bandlimited SISO, SIMO [2] and MIMO [3] channel

models. For example, parametrization (11) can be applied for DOA estimation modeling with rectilinear or

strictly second-order sources and for SIMO channels estimation modeling with BPSK or MSK symbols [18]

where θ represents both the localization parameters (azimuth, elevation, range) and the phase of the sources, and

the real and imaginary parts of channel impulse response coefficients, respectively. Whereas, parametrization

(12) is used for DOA modeling with generally non-circular complex sources.
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We note that xk and nk cannot be both elliptical symmetric distributed as the family of elliptical symmetric

distributions is not closed under summation except for the Gaussian distribution. But fixing both the structure

of the covariance matrices Σ (10) or Γ̃ (11), (12) and the elliptical symmetric distribution of yk (1), (2) or

(3) can be considered as good approximations thanks to the flexibility of the family of the elliptical symmetric

distributions. Furthermore, this family of distributions offers robustness to outliers and heavy tailed samples.

B. Subspace-based estimation

Since the parameter of interest θ is characterized by the subspace generated by the columns of the full

column rank matrices A(θ), Ãr(θ) or Ãc(θ), a simple way to get rid of the nuisance parameters ρ and σ2
k,

is to consider subspace-based algorithms as the following mapping:

(y1, ..,yk, ..,yK) 7−→ RK 7−→ ΠK
alg7−→ θ̂K , (14)

where RK can be either any estimate Ry,K of Ry or any estimate Rỹ,K of Rỹ
def
= E(ỹkỹ

H
k ), and ΠK

denotes either the orthogonal projection matrix Πy,K associated with the so-called noise subspace of Ry,K or

the orthogonal projection matrix Πỹ,K associated with the so-called noise subspace of Rỹ,K . The functional

dependence θ̂K = alg(ΠK) constitutes an extension of the mapping

Π(θ)
def
= I−B(θ)[B+(θ)B(θ)]−1B+(θ)

alg7−→ θ, (15)

in the neighborhood of Π(θ) with B(θ) can either be A(θ), Ãr(θ) or Ãc(θ). Each extension alg(.) specifies

a particular subspace algorithm, whose conventional MUSIC algorithm [4] based on Πy,K and non-circular

MUSIC algorithms [19] based on Πỹ,K for parametrization (11) can be seen as examples in DOA estimation.

III. PROBLEM FORMULATION AND BRIEF REVIEW OF AMV ESTIMATORS

A. Problem formulation

The existence of a lower bound for the covariance of the asymptotic distribution of DOA-estimates given

by an arbitrary weakly consistent subspace-based algorithm has been proved in [9]. This bound can be used

as a benchmark against which to assess the asymptotic statistical accuracy of any subspace-based algorithms.

This bound which is itself generally lower bounded by the stochastic CRB derived from the arbitrary likelihood

functions related to the observations, and it has been proved in [9] to be equal to the stochastic CRB in the

case of circular and non-circular Gaussian observations associated with the parameterizations (10) and (12),

respectively. The problem, we tackle here, is to extend these results to the subspace-based algorithms built

from different M -estimates of scatter matrix in (10) [resp. in (11) and (12)] of RES/C-CES [resp. of NC-CES]
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distributed observations where the parameter of interest θ is characterized by the subspace generated either by

the columns of the full column rank matrices A(θ), Ãr(θ) or Ãc(θ) for arbitrary parametrizations.

B. Brief review of AMV estimators

For the reader’s convenience, we briefly summarize here the necessary background of the AMV estimators.

Let sy,K be a sequence of statistics which is a weakly consistent2 estimate of s(θ) for which θ is identifiable

from s(θ). We suppose that sy,K (function of (y1, ...,yK)) is asymptotically Gaussian distributed with zero mean

and a possibly singular covariance matrix Rs, i.e.,
√
K(sy,K−s(θ))→d NR(0,Rs) (real case), NC(0,Rs,Cs)

(complex case). Let θ̂K be an estimator of the unknown parameter θ defined by a mapping alg(.): sy,K
alg7−→ θ̂K ,

which is differentiable w.r.t. (Re(s(θ), Im(s(θ)) whose differential matrix3 is denoted by D, we therefore get

by the standard theorem of continuity (see e.g., [20, p. 122])
√
K(θ̂K − θ)→d NR(0,Rθ) where Rθ satisfies

the following theorem proved in [21].

Theorem 1: The covariance matrix Rθ of the asymptotic distribution of a weakly consistent estimate θ̂K of

θ given by any algorithm considered as a differentiable mapping sy,K 7→ θ̂K = alg(sy,K) is bounded below

by the real symmetric matrix R
AMV(s)
θ = (S+R#

s S)−1 with S def
= ds(θ)

dθ :

Rθ = DRsD
+ ≥ (S+R#

s S)−1, (16)

if the following two conditions hold:

span(S) ⊂ span(Rs) and s∗y,K = Psy,K , (17)

where P is a permutation matrix.

Furthermore, under the assumptions of Theorem 1, it has been also proved in [21], that the following nonlinear

least square estimate achieves the lower bound (16):

θ̂K = arg min
ω∈RL

[sy,K − s(ω)]+R#
s [sy,K − s(ω)]. (18)

We note that the asymptotic covariance of the nonlinear least square estimate (18) is preserved if the weighting

matrix is replaced by any weakly consistent estimate WT of R#
s [21].

2We remind that a sequence of estimators of a parameter is weakly consistent if it converges in probability to this parameter.
3This differential matrix D is defined by the relation θ̂K = alg(sy,K) = alg(s(θ))︸ ︷︷ ︸

θ

+D(sy,K − s(θ)) + o(sy,K − s(θ)).
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IV. EFFICIENCY OF PROJECTOR-BASED ESTIMATORS

A. M -estimate of covariance matrices

Let us first focus our attention on the estimation of the covariance matrix Ry. The practical applications of

array processing generally require the use of a sample covariance matrix (SCM) Ry,K
def
= 1

K

∑K
k=1 yky

+
k , which

is the ML estimator for real or circular complex Gaussian distributed observations. However, the performance

of SCM-based subspace algorithms can be drastically degraded in heavy-tailed scenarios, as shown in [13,

sec.VII.C] with MUSIC DOA estimation algorithm. In these scenarios, if the density generator gr(.) of the

RES (1) distributions [resp., gc(.) of C-CES distributions (2)] is known, the ML estimate of Ry is solution of

the implicit equation in ΣT :

ΣK =
1

K

K∑
k=1

φ(y+
k Σ−1

K yk)yky
+
k , (19)

where φ(t)
def
= − 2

gr(t)
dgr(t)
dt [resp. φ(t)

def
= − 1

gc(t)
dgc(t)
dt ] for RES [resp. C-CES] distributions. The solution of

(19) is unique. It can be obtained by an iterative fix point algorithm, given any initial symmetric or positive

definite Hermitian matrix Σ0 and that the observations, yk, fulfill certain mild regularity conditions [24] [13,

sec.V.A]. When the density generator gr(.) of the RES distributions and [resp., gc(.) of the C-CES distributions]

is unknown, M -estimators have been proposed to estimate Ry. They are also solutions of the implicit equation

(19), where φ(.) in (19) is replaced by a real-valued non-negative weight function u(.) which is not related

to a particular RES or C-CES distribution. Tyler’s and Huber’s M -estimators are examples of such estimators

(see e.g., [13, sec.V.C]). Existence and uniqueness of the solution Σu
K of (19) have been proved in the real

case provided that u(.) satisfies a set of general conditions (called Maronna conditions) stated by Maronna in

[22]. These conditions have been extended to the complex case in [23] and [13]. Under these conditions, it has

been also proved in the real case that the solution of (19) can be derived by an iterative fix point algorithm

[24]. The sequence Σu
K of solutions of (19) converges in probability to Σu proportional to Ry [13, (45)]:

Σu = σuRy, (20)

where σu depending on u(.) and the RES [28, sec.3 ex.3] or C-CES [13, (46)] distribution of yk, is solution

of

E[u(Qk/σu)Qk/σu] = N, (21)

where Qk has the same distribution as the symmetric/Hermitian form (6), and has p.d.f. (8) in real case and

(9) in complex case.

Consider now the estimate of the extended covariance matrix Rỹ associated with the NC-CES distribution
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(3). Following similar proof than (19) from the p.d.f. (3) [13, sec. V.A], we get the following implicit equation:

Γ̃K =
1

K

K∑
k=1

φ

(
1

2
ỹHk Γ̃−1

K ỹk

)
ỹkỹ

H
k . (22)

where φ(t)
def
= − 1

gc(t)
dc(t)
dt . For the NC-CG distribution (i.e., gc(t) = exp(−t)), we have φ(t) = 1, which yields

the extended SCM Γ̃K = 1
K

∑K
k=1 ỹkỹ

H
k as the unique ML of Γ̃. Similarly, an extended M -estimator of Rỹ

denoted by Γ̃uT is defined to be any positive definite Hermitian matrix that solves (22) with φ(t) is replaced by

u(t) (as defined above) such that

Γ̃uK =
1

K

K∑
k=1

u

(
1

2
ỹHk Γ̃u

−1

K ỹk

)
ỹkỹ

H
k . (23)

Using the one-to-one mapping ỹk 7→ ȳk defined by ȳk = Mỹk with M
def
= 1

2

 I I

−iI iI

 and ȳk
def
=

[Re(yTk ), Im(yTk )]T , it follows that ỹHk Γ̃u
−1

K ỹk = ȳHk Γ̄u
−1

K ȳk with

Γ̄uK
def
= MΓ̃uKMH (24)

and therefore (23) is tantamount to:

Γ̄uK =
1

K

K∑
k=1

u

(
1

2
ȳTk Γ̄u

−1

K ȳk

)
ȳkȳ

T
k . (25)

Noting that ȳk ∈ R2N is RES distributed with covariance Rȳ = E(ȳkȳ
T
k ) = MΓ̃MH = MRỹM

H , and

therefore the M -estimate solution of (23) inherits all the properties provided above for the RES distributions.

In particular Γ̄uK converges in probability to Γ̄u proportional to Rȳ and thus Γ̃uK also converges in probability

to Γ̃u proportional to Rỹ:

Γ̃u = σuRỹ = σuΓ̃, (26)

where σu is also similarly deduced from [28]:

Γ̃u = E

(
u

(
1

2
ỹHk Γ̃u

−1

ỹk

)
ỹkỹ

H
k

)
, (27)

which successively gives the following equalities: I = E
(
u
(

1
2 ỹHk Γ̃u

−1

ỹk

)
Γ̃u
−1

ỹkỹ
H
k

)
,

2N = E
(
u
(

1
2 ỹHk Γ̃u

−1

ỹk

)
Tr
(
Γ̃u
−1

ỹkỹ
H
k

))
, N = E

(
u
(

1
2 ỹHk Γ̃u

−1

ỹk

)
1
2 ỹHk Γ̃u

−1

ỹk

)
, N =

E
(
u
(

1
2 ỹHk Γ̃−1ỹk/σu

)
1
2 ỹHk Γ̃−1ỹk/σu

)
, and from (7),

E[u(Qk/σu)Qk/σu] = N, (28)
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where Qk has p.d.f. (9).

Finally, note that the normalized SCM estimate studied in [25]: Ry,K
def
= 1

K

∑K
k=1 S(yk)S

H(yk) with

S(yk)
def
= yk/‖yk‖ if yk 6= 0 and S(0)

def
= 0, which is not an M -estimate of Ry, is not the object of

our study.

B. Asymptotic distribution of the projector estimator

To apply Theorem 1 to the statistic sy,K = vec(Πy,K) in the real and circular complex cases and to

sy,K = vec(Πỹ,K) in the non-circular complex case, we need to derive their asymptotic distributions and to

check the conditions (17). Note that the asymptotic distribution of vec(Πy,K) has been given for the real and

circular complex case in [26] and in the circular complex case in [27]. This asymptotic distribution has been

derived from the asymptotic distribution of any M -estimate of Ry derived for the real case in [28, sec.3 ex.3],

and for the circular complex case in [29, rel. (7) and (12)]. These asymptotic distributions have the following

form, when the arbitrary weight function u(.) satisfies the Maronna’s conditions [22]:

√
K(vec(Πy,K)− vec(Πy(θ))→d NR(0,Rπy) in the real case (29)

NC(0,Rπy ,Cπy) in the circular complex case (30)

with

Rπy =
ϑ1

σ2
u

L[(UT⊗Πy(θ)) + (ΠT
y(θ)⊗U)] and Cπy = RπyKN2 (31)

where U
def
= σ2

kS
#RyS

# with S
def
= A(θ)RxA

+(θ) and

ϑ1
def
=

E[u2(Qk/σu)Q2
k]

N(N + 2)(1 + 2[N(N + 2)]−1cu)2
and L

def
= I + KN2 in the real case (32)

ϑ1
def
=

E[u2(Qk/σu)Q2
k]

N(N + 1)(1 + [N(N + 1)]−1cu)2
and L

def
= I in the circular complex case, (33)

where σu is the solution of (21) and cu
def
= E[u′(Qk/σu)Q2

k/σ
2
u] [28, sec.3 ex.3], [13, (47)], where u′(x)

def
=

du(x)/dx and the p.d.f. of Qk is given by (8) or (9).

As pointed in [30] and [13], Tyler’s M -estimator, i.e., solution of (19) with weight u(t) = N
t , does

not satisfy Maronna conditions [22]. However, it has been proved for RES distributions in [30] that, after

normalizing the solution of (19) such that Tr(R−1
y Σu

K) = N , the sequence Σu
K converges in probability to

Ry and is asymptotically Gaussian distributed. These properties have been extended to C-CES distributions in

[31]. Following the perturbation analysis of projection matrix of [26], the associated projector Πy,K is also

asymptotically Gaussian distributed and (31), (32) and (33) follow with σu = 1 and ϑ1 = ϑ1,Tyler independently
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of the RES and C-CES distributions with:

ϑ1,Tyler =
N + 2

N
, in the real case (34)

=
N + 1

N
, in the complex case. (35)

The asymptotic distribution of vec(Πỹ,K) can be proven similarly to (33), using the asymptotic distribution

of any M -estimate Rỹ,K of Rỹ. This follows from the asymptotic distribution of any M -estimate Γ̄uK of Rȳ

which is given from [28, sec.3 ex.3] by:

√
K(vec(Γ̄uK)− vec(σuRȳ))

L→ NR(0,RΓ̄u), (36)

with RΓ̄u = ϑ1(I + K(2N)2)(Rȳ ⊗ Rȳ) + ϑ2vec(Rȳ)vecT (Rȳ), where both ϑ1 and ϑ2 are also specified in

[28, sec.3 ex.3] and [29, rel. (7)] by replacing N by 2N . It follows from (24), that the sequence vec(Γ̃uK) is

also asymptotically Gaussian distributed with asymptotic covariance RΓ̃u and complementary covariance CΓ̃u

given by:

RΓ̃u = (M∗−1 ⊗M−1)RΓ̄u(M−T ⊗M−H)

= ϑ1[(M∗−1RȳM
−T )⊗ (M−1RȳM

−H) + K(2N)2{(M−1RȳM
−T )⊗ (M∗−1RȳM

−H)}]

+ ϑ2vec(M−1RȳM
−H)vecH(M−1RȳM

−H)

= ϑ1[(R∗ỹ ⊗Rỹ) + K(2N)2(Cỹ ⊗C∗ỹ)] + ϑ2vec(Rỹ)vecH(Rỹ), (37)

and CΓ̃u = RΓ̃uK(2N)2 where Cỹ
def
= E(ỹkỹ

T
k ) = RỹJ = MRȳM

T . Then using the standard perturbation

result associated with the mapping Rỹ,K = Rỹ + δRỹ 7→ Πỹ,K = Πỹ + δΠỹ for orthogonal projectors [32]

(see also the operator approach in [33]) applied to Πỹ associated with the noise subspace of Rỹ:

δ(Πỹ) = −Πỹ(θ)δ(Rỹ)S̃
# − S̃#δ(Rỹ)Πỹ(θ) + o (δ(Rỹ)) , (38)

where S̃
def
= Ãr(θ)RrÃ

H
r (θ) or S̃

def
= Ãc(θ)Rx̃Ã

H
c (θ), the asymptotic behaviors of Πỹ,K and Γ̃uK are directly

related. The standard theorem of continuity (see e.g., [20, p. 122]) on regular functions of asymptotically

Gaussian statistics applies:
√
K (vec(Πỹ,K)− vec(Πỹ(θ)))

L→ NC
(
0,Rπỹ ,Cπỹ

)
with

Rπỹ =
ϑ1

σ2
u

[(S̃T# ⊗Πỹ(θ)) + (ΠT
ỹ (θ)⊗ S̃#)]RΓ̃u [(S̃T# ⊗Πỹ(θ)) + (ΠT

ỹ (θ)⊗ S̃#)], (39)

and Cπỹ = RπỹK(2K)2 . Then plugging (37) into (39) and using Πỹ(θ)S̃# = 0, Cỹ = RỹJ and S̃#RỹΠỹ(θ) =

0, we get the following result after simple algebraic manipulations:

Result 1: The sequence
√
K(vec(Πỹ,K)−vec(Πỹ(θ))) converges in distribution to the zero-mean Gaussian
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distribution NC(0,Rπỹ ,Cπỹ) where:

Rπỹ =
ϑ1

σ2
u

(I + K(2N)2(J⊗ J))[(ŨT⊗Πỹ(θ)) + (ΠT
ỹ(θ)⊗ Ũ) and Cπy = RπyK(2N)2 , (40)

where ϑ1 is associated with the 2N -dimensional RES distributions given in [28, sec.3 ex.3], and can be simplified

as:

ϑ1 =
E[u2(Qk/σu)Q2

k]

N(N + 1)(1 + [N(N + 1)]−1cu)2
. (41)

with cu
def
= E[u′(Qk/σu)Q2

k/σ
2
u] and σu is solution of (21) where the p.d.f. of Qk =d

1
2 ȳHk Γ̄−1ȳk = 1

2 ỹHk Γ̃−1ỹk

is given by (9) and Ũ
def
= σ2

kS̃
#RỹS̃

#.

Note that Result 1 also applies to Tyler’s M -estimator from the asymptotic distribution of RΓ̄u (36) where

ϑ1 can be obtained from the value associated with the real case (34) by replacing N by 2N with σu = 1 and

ϑ1,Tyler = 2N+2
2N = N+1

N which is independent of the NC-CES distributions.

C. Subspace AMV bound

Note that from (31) and (40) Rπy = ϑ1

σ2
u
RC−CG
πy and Rπỹ = ϑ1

σ2
u
RNC−CG
πỹ , where RC−CG

πy and RNC−CG
πỹ are

in the specific DOA modeling (10) and (12), the covariances of the asymptotic distributions of the projectors

given by [9, rel.(3.4)] and [9, rel.(3.6)], respectively, and which are associated with the SCM estimate for the

C-CG and NC-CG distributions, respectively [9, Lemma 1]. Because, under the C-CG and NC-CG distributed

observations, the proofs of span(S) ⊂ span(RCG
πy ) and span(S) ⊂ span(RCG

πỹ ) given in [9, Appendix A] are

valid for an arbitrary parametrization of A(θ), Ar(θ) and Ac(θ), then the first condition of (17) also holds,

i.e., span(S) ⊂ span(Rπy) and span(S) ⊂ span(Rπỹ). The second condition of (17) is trivially valid by the

structure of both statistics Πy,K and Πỹ,K . Consequently, Theorem 1 applies to the statistics vec(Πy,K) and

vec(Πỹ,K), and the following result is proved in the Appendix.

Result 2: The covariance matrix Rθ of the asymptotic Gaussian distribution of any weakly consistent estimate

θ̂K of θ given by any algorithm considered as a differentiable mapping Πy,K 7→ θ̂K = alg(Πy,K) [resp.,

Πỹ,K 7→ θ̂K = alg(Πỹ,K)] for RES and C-CES [resp., NC-CES] distributed observations is bounded below

by R
AMV(Π)
θ :

Rθ ≥ R
AMV(Π)
θ =ϑ1β

σ2
n

2

[
Re

(
da+

θ

dθ
(HT⊗Π(θ))

daθ
dθ

)]−1

, (42)

where:

aθ
def
= vec(A(θ)), H

def
= R+

x A+(θ)Σ−1A(θ)Rx and Π(θ)
def
= Πy(θ) in the real and complex circular case,

aθ
def
= vec(Ãr(θ)), H

def
= RrÃ

H
r (θ)Γ̃−1Ãr(θ)Rr and Π(θ)

def
= Πỹ(θ) in the complex non-circular case4

4Note that in this case daHθ
dθ

(HT⊗Π(θ)) daθ
dθ

is real-valued.
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associated with the structured extended covariance (11) and

aθ
def
= vec(A(θ)), H

def
=
(
RxA

H(θ),CxA
T (θ)

)
Γ̃−1

 A(θ)Rx

A∗(θ)C∗x

 and Π(θ)
def
= Πy(θ) in the non-circular

complex case associated with (12) and β = 2 [resp., 1] in the real [resp., complex] case.

It is important to note that the cost functional in (18) depends either on R#
π or R#

π̃ depending on the

distribution of observations, which can be replaced by weakly consistent estimates Wk obtained from consistent

estimates of Πy, Ry, S, σ2
n (or Πỹ, Rỹ, S̃, σ2

n).

D. Efficiency

Let’s consider here that Ry and Rỹ are estimated using the ML M -estimate as in (19) and (22) from RES/C-

CES and NC-CES distributed observations, respectively. We prove in the Appendix that σu = 1 in (32), (33),

and (41), and that these expressions of ϑ1 reduce to:

ϑ1,ML =
E[φ2(Qk)Q2

k]

N(N+2)(1+2[N(N+2)]−1E[φ′(Qk)Q2
k])

2
with φ(t)=− 2

gr(t)

dgr(t)

dt
in the real case (43)

=
E[φ2(Qk)Q2

k]

N(N+1)(1+[N(N+1)]−1E[φ′(Qk)Q2
k])

2
with φ(t)=− 1

gc(t)

dgc(t)

dt
in the complex case,(44)

where the p.d.f. of Qk is respectively given by (8) and (9).

Otherwise, for C-CES and NC-CES distributed observations, the concentrated stochastic CRBs on the

parameter of interest θ characterizing the associated projection matrices have been given in [14]. Following

similar steps as in [14], and using the Fisher information matrix derived in [34], the stochastic CRBs for real

and complex cases take the following general form (with the same notations as in Result 2):

CRB(θ) =
β

ξ2

σ2
n

2

[
Re

(
daHθ
dθ

(HT ⊗Πy(θ))
daθ
dθ

)]−1

, (45)

with

ξ2 =
E[φ2(Qk)Q2

k]

N(N + 2)
, in the real case (46)

=
E[φ2(Qk)Q2

k]

N(N + 1)
, in the complex case. (47)

Note that for DOA modeling with scalar sensor array whose output are C-CG distributed, we have g(t) = e−t,

u(t) = 1 and β = ξ2 = 1, and therefore, (45) reduces to the well-known relation for a single parameter per

source case:

CRB(θ) =
σ2
n

2
{Re

(
(DH(θ)Πy(θ)D(θ))�HT

)
}−1, (48)

where A(θ)
def
= [a(θ1), ..,a(θP )], D(θ)

def
=
[
da(θ1)
dθ1

, .., da(θP )
dθP

]
and a(θp)p=1,..P are the steering vectors.
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Comparing (42) to (45), the following result is proved in the Appendix

Result 3: For RES, C-CES and NC-CES distributed observations, we have ϑ1,MLξ2 = 1 and thus the AMV

bounds (42) based on the projector statistics associated with the ML estimate of the covariances are equal to

the stochastic CRB (45).

R
AMV(Π)
θ,ML = CRB(θ). (49)

Therefore, the AMV estimators (18) based on projectors associated with ML M -estimate of the covariance

are asymptotically efficient w.r.t. the number K of measurements. Furthermore, the equality ϑ1ξ2 = 1 and

the relations (31) and (40) imply that all specific subspace-based algorithms built on the ML estimate of Ry

[resp. Rỹ], that are asymptotically efficient for RG or C-CG [resp. NC-CG] distribution, are also asymptotically

efficient for RES or C-CES [resp. NC-CES] distributions. This is particularly the case in the DOA modeling

for the conventional MUSIC algorithm applied to a single source [35] and to uncorrelated sources when the

signal-to-noise ratio of all sources tend to infinity [36].

The following result is proved in the Appendix:

Result 4: The RES, C-CES and NC-CES ML M -estimator dependent asymptotic variance parameter ϑ1,ML =

1/ξ2 in (43)-(44) are upper bounded by the one associated with the Tyler’s M -estimator (34)-(35) as

ϑ1,ML < ϑ1,Tyler =
N + 2

N
, in the real case (50)

ϑ1,ML < ϑ1,Tyler =
N + 1

N
, in the complex case (51)

and consequently

CRB(θ) = R
AMV(Π)
θ,ML < R

AMV(Π)
θ,Tyler . (52)

For example, for the complex generalized Gaussian distribution with exponent β > 0, it was evaluated that

ϑ1,ML = N+1
N+β [26]. It is clear that ϑ1,ML < ϑ1,Tyler and ϑ1,ML/ϑ1,Tyler ≈ 1 for N � 1 or small values of β

which are associated with heavy-tailed distributions.

Result 4 proves that the AMV subspace estimators based on Tyler’s M -estimator of the covariance matrix

are not efficient. To obtain a truly robust efficient subspace-based estimator, one has to find M -estimators with

an appropriate u(t) such that ϑ1 be close or equal to ϑ1,ML.

In general the stochastic CRB associated with a finite-dimensional parameter of a distribution whose p.d.f.

is characterized by a functional form, is lower bounded by the semiparametric CRB (denoted by SCRB(θ))

introduced by [37] when this functional form is unknown. This SCRB has been studied for RES and C-CES

distributions in [38] and [16], respectively. In particular, a closed-form expression of the semiparametric CRB
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has been derived in [16] for the DOA parameter of C-CES distributed observations. It is given by

SCRB(θ) =
1

ξ2

σ2
n

2
{Re

(
(DH(θ)Πy(θ)D(θ))�HT

)
}−1, (53)

which happens to be equal to the stochastic CRB. This property seems to have been overlooked in [16]. By

slightly modifying and extending the proof given in the support document of [16] to general RES, C-CES and

NC-CES distributed noisy linear mixture models (13), we have proved the following result:

Result 5: The stochastic CRB on the parameter of interest θ that characterizes the column space of A(θ),

Ãr(θ) or Ãc(θ) is not reduced when the density generator g(.) of the RES, C-CES or NC-CES distribution is

known, viz:

CRB(θ) = SCRB(θ). (54)

We note that this property is very specific to the parameter of interest characterized by the column space of

the mixing matrix. This property is explained by the fact that this column space does no depend on the density

generator g(t). It is important, however, to note that if the AMV estimator (18) is efficient w.r.t. the stochastic

CRB, it is no longer efficient w.r.t. the semiparametric CRB because the AMV estimator is built from the ML

M -estimate of the covariance matrix based on the knowledge of the density generator g(t).

V. NUMERICAL ILLUSTRATIONS

This section illustrates the theoretical asymptotic results provided in section IV, focusing on the DOA

estimation model for rectilinear correlated signal sources [14], for which the observation data follows a NC-

CES distribution with a structured extended covariance matrix Γ̃ given by (11). We consider throughout this

section that P = 2 narrowband equal-power source signals with power σ2 impinge on an ULA of N = 6

sensors for which the steering vectors are a(αk) = (1, eiπ sinαk , . . . , ei(N−1)π sinαk)T , k = 1, 2, where αk

are the DOAs relative to the normal of array broadside. The matrices A(θ) and Rr in (11) are given by

A(θ) = [a(α1)eiφ1 ,a(α2)eiφ2 ] where the phases φk associated with different propagation delays are assumed

fixed, but unknown during the array observation with θ def
= (α1, α2, φ1, φ2)T , and Rr = σ2

 1 ρ

ρ 1

 with ρ

is the correlation factor. The signal-to-noise ratio (SNR) is defined as 10 log10(σ2/σ2
n) dB.

We use the AMV estimator in (18) to estimate the DOA α1 from the covariance estimate and to calculate

the empirical mean squared error (MSE) E(α̂1 − α1)2 from 1000 Monte Carlo runs, by assuming that yk,

k = 1, ...,K = 500, follows a non-circular complex Student’s t distribution with a number of degrees of

freedom ν (0 < ν <∞). The corresponding stochastic representation is given by (5) for Qk ∼ NF2N,ν , where

Fn,q denotes the F-distribution with n and q degrees of freedom [13, sec. IV.A], which has finite second and

fourth-order moments, respectively, for ν > 2 and ν > 4.
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In the illustrations below, we consider three covariance estimates: the complex Student’s ML M -estimator and

the complex Tyler’s M -estimator (which does not depends on the distribution of Qk) for which the associated

weight functions φ(t) and u(t) in (22) and (23) are respectively defined in [13] by φ(t) = 2N+ν
ν+2t and u(t) = N

t .

The SCM estimator corresponding to the ML in the Gaussian case is obtained with u(t) = 1.

The following table gives the values of the parameter ϑ1 involved in different asymptotic covariance matrices

for the complex Student’s ML-estimator [26], the complex Tyler’s M -estimator [31] and the SCM estimator.

Student’s ML M -estimator Tyler’s M -estimator SCM

ϑ1
N+ν/2+1
N+ν/2

N+1
N 1

Table.1. Parameter ϑ1 used in the illustrations.

Fig.1a and Fig.1b illustrate the validation of theoretical Results 2 and 3. These figures display the non-circular

stochastic CRB (45) and the MSEs of the subspace-based estimator (18) with consistent estimate of R#
π̃ built

from Πỹ,T derived from for Student’s ML M -estimator, Tyler’s M -estimator and SCM. It can be seen from

these figures that the empirical MSEs associated with the Student’s and Tyler’s M -estimator reach the stochastic

CRB as SNR or DOA separation increases. We also observe that the AMV subspace-based estimator based

on Tyler’s M -estimator has close performance as the one based on Student’s ML M -estimator. On the other

hand, as expected, the AMV subspace-based estimator based on SCM has poor performance in the presence

of heavy-tailed complex non-circular observations.

SNR(dB)

0 5 10 15 20 25 30

C
R

B
(α

1
)

10-7

10-6

10-5

10-4

10-3

10-2

10-1 Non-circular AMV Est. based on SCM

Non-circular AMV Est. based on Tyler's M-estimator

Non-circular AMV Est. based on ML M-estimator

Stochastic CRB

DOA separation (rd)

0.05 0.1 0.15 0.2 0.25 0.3

C
R

B
(α

1
)

10-6

10-5

10-4

10-3

10-2
Non-circular AMV Est. based on SCM

Non-circular AMV Est. based on Tyler's M-estimator

Non-circular AMV Est. based on ML M-estimator

Stochastic CRB

(a) ∆α = 0.2rd, ∆φ
def
= |φ2 − φ1| = 0.3rd, ρ = 0.5 (b) SNR= 20dB, ∆φ = 0.1rd, ρ = 0.5

Fig. 1. Non-circular stochastic CRB (45) and MSEs obtained with AMV subspace-based estimator (18) build from Πỹ,K versus SNR
(and versus DOA separation ∆α = |α2 − α1|) for non-circular complex Student t-distributed observations with ν = 4.1.

Fig.2 illustrates Result 4, by plotting the ratio r
def
= R

AMV(Π)
α1,ML /R

AMV(Π)
α1,Tyler = ϑ1,ML/ϑ1,Tyler =

N(N+ν/2+1)
(N+1)(N+ν/2) < 1 versus N for different values of ν, where ϑ1,ML and ϑ1,Tyler are the values of ϑ1
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associated, respectively, with Student’s ML M -estimator and Tyler’s M -estimator, given in Table.1. It

can be seen from this figure that, for a small value of ν (heavy-tailed distribution), the AMV bound

associated with the Student’s ML M -estimator becomes closer to the one associated with Tyler’s M -

estimator as N increases. In other words, the AMV estimate built from Tyler’s M -estimator becomes

efficient in the sense that it asymptotically achieves the stochastic CRB when N � 1 and ν not too large.

N

2 4 6 8 10 12 14 16 18 20

r

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ν=5

ν=30

ν=10

ν=3

Fig.2. Ratio r def
= R

AMV(Π)
α1,ML /R

AMV(Π)
α1,Tyler versus N for different values of ν.

VI. CONCLUSION

This paper has derived the asymptotic (in the number of measurements) distribution of estimates of the

orthogonal projector associated with different M -estimates of the covariance matrix in the context of RES,

C-CES, and NC-CES distributed observations whose covariance is low rank structured, in the same framework.

Then it has presented the AMV subspace-based estimator of the parameter of interest characterized by the

column subspace of the mixing matrix for general linear mixtures models, associated with the M -estimates

of the covariance matrix. It has given a common closed-form expression of the AMV bound which can be

used as a benchmark against which the subspace-based algorithms are tested. This has allowed us to prove

that this AMV bound attains the stochastic CRB in the case of ML M -estimate of the covariance matrix

for RES, C-CES, and NC-CES distributed observations, and to specify the conditions for which the AMV

bound based on Tyler’s M -estimate attains this stochastic CRB for complex Student t and complex generalized

Gaussian distributions. Finally, it has proved that this stochastic CRB is equal to the semiparametric CRB

recently introduced. However, the AMV estimator is not efficient w.r.t. the semiparametric CRB, which raises

the question of finding an efficient estimator w.r.t. this CRB, which is a challenge.
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VII. APPENDIX

Proof of Result 2: In [9] it has been proved, for the DOA modeling with both C-CG and NC-CG (with

parametrization (12)) observations, that R
AMV(Π)
θ = σ2

k

2

[
Re
(
daHθ
dθ (HT ⊗Πy(θ))daθdθ

)]−1
with the notations

of Result 2 and that, respectively, RC−CG
πy = (UT ⊗Πy(θ)) + (ΠT

y (θ)⊗U) and RNC−CG
πỹ = (ŨT ⊗Πỹ(θ)) +

(ΠT
ỹ (θ)⊗ Ũ). This expression of R

AMV(Π)
θ is straightforwardly extended to the parametrization (11). As the

proof does not depend on the parametrization of A(θ), (42) is valid with β = 1 for the C-CES and NC-CES

distributions for both (11) and (12) parametrizations from (31).

For the RES distributions, the derivation of R#
πy from (31) is not direct. Because L2 = 2L, we get

Rπy =
1

2
L[(UT ⊗Πy(θ)) + (ΠT

y (θ)⊗U)]LT =
1

2
LRC−CG

πy LT .

Following the derivation of the AMV bound given in [10], this bound is the result of the minimization:

R
AMV(Π)
θ = min

DS=I
DRπyD

T =
1

2
min
DS=I

(DL)RC−CG
πy (DL)T . (55)

Checking that LS = 2S with S def
= dvec(Πy)

dθ , the constraints DS = I and DLS = 2I are equivalent, and

therefore (55) is tantamount to

R
AMV(Π)
θ = 2 min

(DL/2)S=I

(
DL

2

)
RC−CG
πy

(
DL

2

)T
.

As a result, the steps of the derivation for the C-CES distributions apply and we get (42) with β = 2 for RES

distributions.

Proof of rel. (43) and (44): When the ML estimate of either Ry or Rỹ is considered for RES and C-CES

distributions or for NC-CES distributions, the solution of either (21) or (28) is σu = 1 because E[u(Qk)Qk] =

E[φ(Qk)Qk] = N from φ(t) = − 2
gr(t)

dgr(t)
dt [resp., φ(t) = − 1

gc(t)
dgc(t)
dt ] with (8) [resp., (9)] for RES [resp.,

C-CES or NC-CES] distributions and consequently (43) and (44) are proved.

Proof of Result 3: Comparing (42) to (45), (49) is equivalent to ϑ1ξ2 = 1. To prove this relation, consider first

the complex case for which it is tantamount to:

E[φ2(Qk)Q2
k] = N(N + 1) + E[φ′(Qk)Q2

k]. (56)

Using the p.d.f. (9) of the r.v. Qk, we straightforwardly get:

E[φ2(Qk)Q2
k]− E[φ′(Qk)Q2

k] =

∫ ∞
0

δ−1
N,gc

qN+1d
2gc(q)

dq2
dq,
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where ∫ ∞
0

δ−1
N,gc

qN+1d
2gc(q)

dq2
dq = [δ−1

N,gc
qN+1dgc(q)

dq
]∞0 − (N + 1)

∫ ∞
0

δ−1
N,gc

qN
dgc(q)

dq
dq.

The second term can be simplified as follows∫ ∞
0

δ−1
N,gc

qN
dgc(q)

dq
dq = [δ−1

N,gc
qNgc(q)]

∞
0 −N

∫ ∞
0

δ−1
N,gc

qN−1gc(q)dq = −N,

because limq→∞ q
N+1 dgc(q)

dq = limq→∞ q
Ngc(q) = 0 using the fact that the fourth-order moment of Qk is

assumed finite and
∫∞

0 δ−1
N,gc

qN−1gc(q)dq = 1. Hence,
∫∞

0 δ−1
N,gc

qN+1 d
2gc(q)
dq2 dq = N(N + 1), thus concluding

the proof. The real case is similarly proved by replacing N(N + 1) by N(N + 2) in (56) and using the p.d.f.

(8).

Proof of Result 4: Using in the complex case ϑ1,ML = N(N+1)
E[φ2(Qk)Q2

k] from Result 3 and (46) and (E[φ(Qk)Qk])2 =

N2, the Cauchy-Schwarz inequality (E[XY ])2 ≤ E[X2] E[Y 2] with X = φ(Qk)Qk and Y = 1 gives ϑ1,ML ≤

ϑ1,Tyler with equality if and only if the r.v. φ(Qk)Qk is constant. Since φ(t) = − 1
gc(t)

dgc(t)
dt , this property is

equivalent to gc(t) = ta where a is constant. Since there is no constant a such that δN,gc
def
=
∫∞

0 tN−1tadt <∞,

the equality ϑ1,ML = ϑ1,Tyler is not possible. The real case is similarly proved.
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