
HAL Id: hal-03036457
https://hal.science/hal-03036457v1

Submitted on 2 Dec 2020 (v1), last revised 3 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Myocardial Perfusion Simulation for Coronary Artery
Disease: A Coupled Patient-Specific Multiscale Model

Lazaros Papamanolis, Hyun Jin Kim, Clara Jaquet, Matthew Sinclair, Michiel
Schaap, Ibrahim Danad, Pepijn van Diemen, Paul Knaapen, Laurent Najman,

Hugues Talbot, et al.

To cite this version:
Lazaros Papamanolis, Hyun Jin Kim, Clara Jaquet, Matthew Sinclair, Michiel Schaap, et al.. Myocar-
dial Perfusion Simulation for Coronary Artery Disease: A Coupled Patient-Specific Multiscale Model.
Annals of Biomedical Engineering, 2020, �10.1007/s10439-020-02681-z�. �hal-03036457v1�

https://hal.science/hal-03036457v1
https://hal.archives-ouvertes.fr


Myocardial perfusion simulation for coronary artery

disease: a coupled patient-specific multiscale model

Lazaros Papamanolis1, Hyun Jin Kim2, Clara Jaquet3, Matthew Sinclair2,6,

Michiel Schaap2,6, Ibrahim Danad4, Pepijn van Diemen4, Paul Knaapen4,

Laurent Najman3, Hugues Talbot1,3,5, Charles A. Taylor2,

Irene Vignon-Clementel1

accepted in Annals of Biomed. Eng. 2020

affiliations: 1 Inria, France

2 HeartFlow Inc., US

3 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée

4 Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands
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Abstract
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Patient-specific models of blood flow are being used clinically to diagnose and plan

treatment for coronary artery disease. A remaining challenge is bridging scales from

flow in arteries to the micro-circulation supplying the myocardium. Previously pro-

posed models are descriptive rather than predictive and have not been applied to human

data. The goal here is to develop a multiscale patient-specific model enabling blood

flow simulation from large coronary arteries to myocardial tissue. Patient vasculatures

are segmented from coronary computed tomography angiography data and extended

from the image-based model down to the arteriole level using a space-filling forest of

synthetic trees. Blood flow is modeled by coupling a 1D model of the coronary arteries

to a single-compartment Darcy myocardium model. Simulated results on five patients

with non-obstructive coronary artery disease compare overall well to [15O]H2O PET

exam data for both resting and hyperemic conditions. Results on a patient with severe

obstructive disease link coronary artery narrowing with impaired myocardial blood

flow, demonstrating the model’s ability to predict myocardial regions with perfusion

deficit. This is the first report of a computational model for simulating blood flow

from the epicardial coronary arteries to the left ventricle myocardium applied to and

validated on human data.

keywords: Heart, Hemodynamics, MBF (Myocardial Blood Flow), Coronary artery

disease, PET perfusion map
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1 Introduction

Coronary artery disease (CAD), affecting millions of people each year, is the leading cause of

death world-wide. Numerous cardiac exams are in clinical use for assessment of CAD, often

relying on medical imaging to quantify anatomical and physiological measures prognostic

for patient risk. Non-invasive testing modalities most widely utilized have demonstrated

only modest diagnostic performance resulting in unnecessary hospital procedures37 costing

billions of dollars annually. Some diagnostic modalities involve invasive protocols, putting

patients at increased risk. With advances over the last few decades in medical imaging

and functional modeling, patient-specific models (PSMs) have emerged as a non-invasive,

cost-saving and integrative approach to assessing CAD42.

One of the remaining challenges in applying PSMs to quantify blood flow is to connect the

disparate scales of cardiovascular physiology44. The coronary arteries and the myocardium

exhibit scale-specific properties and hence require different modeling approaches to suffi-

ciently capture their behaviour at each scale.

Faced with the inherent challenges of modeling multiscale phenomena in the coronary

circulation, many models focus either on the macro or micro vasculature. Taylor et al.

describe a PSM to simulate blood flow inside large coronary arteries extracted from coronary

Computed Tomography Angiography (cCTA) imaging data, to identify hemodynamically

significant lesions via estimation of Fractional Flow Reserve (FFR)42. This method, named

FFRCT, relies on solving the 3D Navier-Stokes equations27,42. FFRCT is cleared for clinical

use by the U.S. Food and Drug Administration (FDA), has been extensively validated in

multiple prospective clinical studies28,32,35,15 and applied clinically in tens of thousands of

patients to date36. Other investigators have described alternate approaches for estimation

of FFR with reduced order models of blood flow18,40 or hybrid methods9.

However in this and other PSMs to model coronary blood flow, functional data is limited

to the larger epicardial vessels due to the image resolution: the behaviour of the downstream

coronary circulation is approximated by terminal vessel boundary conditions. Hence, al-

though the effect of individual lesions in the epicardial coronary arteries on vessel blood flow
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can be modeled, the consequence of disease on blood flow to the myocardial tissue cannot

be directly evaluated.

PSMs that seek to model the coronary microcirculation in more detail are still maturing.

To handle the enormous number of small arteries, pre-arterioles, arterioles and capillaries

in the modeling of whole heart coronary trees, most proposed methods leverage a porous-

media model governed by Darcy’s law7. Michler et al.31 have developed and tested a multi-

compartment porous model in a porcine myocardium, using cryomicrotome data providing

vessels down to the arteriole level. Limitations include the multicompartment computational

cost and the difficulty in parameterizing the model with patient-specific data. Recently Alves

et al.2 proposed a porous model applied to human data, which is able to simulate contrast

agent transport and quantify perfusion. This model correlated well with perfusion MRI data,

but was only applied to 2D slices of the myocardium.

A few multiscale models have been developed bridging functional analysis in large vessels

with tissue perfusion. A major limitation is the anatomical gap between macro and micro

scales. To extend the functional analysis, Smith et al.41 extrapolated a canine coronary

anatomy from epicardial coronaries to small vessels by synthetic networks for the arterial

and venous systems. 1D flow models in the latter were connected by 0D microcirculatory

components: results exhibit realistic vessel pressure distribution, and inside the myocardium

the spatial flow heterogeneity follows a fractal pattern as previously described3. Hyde et

al.21 used animal cryomicrotome data to connect epicardial arteries and microvessels, with

a one-way coupling between a 1D coronary model and a multi-compartment porous model:

inclusion of vascular data significantly improves the continuum perfusion results in compari-

son to a more simplistically parameterized model. Conversely, knowledge of perfusion16 and

coronary flow repartition33,9 may improve coronary model boundary conditions. Finally, Lee

et al.29 proposed a two-way coupling between a 1D coronary model and a single compart-

ment poromechanical model, simulated in a porcine geometry extracted from cryomicrotome.

This model reproduces layer-dependent perfusion pattern during the whole heart cycle. This

framework also includes contrast agent transport modeling and was used to simulate per-
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fusion images, demonstrating a perfusion deficit in the neighbouring region of a simulated

stenosis.

So far all models connecting coronary blood flow to myocardial perfusion have been devel-

oped on animal data and are descriptive rather than predictive. These models demonstrate

the expected characteristics of spatial flow distribution inside the myocardium, but have not

been compared with ground-truth data. Furthermore, when relying on destructive image

acquisition such as cryomicrotome, these methods are not suited for clinical application.

The aim of this work is to develop a multiscale patient-specific model on human data,

enabling blood flow simulation from the large coronary arteries to myocardial tissue. The

model is adapted to the patient’s coronary arterial network, which is extended with a syn-

thetic vasculature23. The computational model couples a 1D flow model in coronaries with a

single compartment porous model for the myocardium. We applied this method to 6 patients

with suspected CAD who underwent cCTA and [15O]H2O Positron Emission Tomography

(PET)13 prior to invasive coronary angiography, which demonstrated non-obstructive CAD

in 5 patients and obstructive CAD in 1 patient. We analyzed hemodynamic results both

along the coronary vasculature and inside the myocardium with respect to the literature,

and compared simulated perfusion with [15O]H2O PET perfusion data.

2 Materials and Methods

Regarding ethics, this post hoc substudy comprises the 6 patients mentioned above, from

the PACIFIC trial (NCT01521468). The study complied with the Declaration of Helsinki,

the study protocol was approved by the VUmc Medical Ethics Review Committee, and all

patients provided written informed consent.

This section further consists of five parts: generation of the coronary arterial network from

the aorta down to the arteriole level, the one-dimensional blood flow model, the myocardium

perfusion model, the coupling of the one-dimensional blood flow model and the myocardium

model, and the definition of post-processed quantities.
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In modeling the coronary arterial circulation, the aorta, epicardial coronary arteries and

left ventricle myocardium are first segmented from patient cCTA image data using custom

methods (HeartFlow Inc., US). The coronary trees are then extended from the image-based

model down to the arteriole level using a space-filling synthetic forest of arterial trees. The

downstream coronary circulation is either taken into account by a terminal resistance, when

the coronary model is used stand-alone, or by a myocardium model. The latter is thus

described along with its coupling with the coronary model. In both models, blood is con-

sidered as an incompressible Newtonian fluid. In this paper we only compute steady-state

hemodynamic quantities, seeking to model only mean flow and pressure under resting and

hyperemic conditions to study myocardial perfusion. Finally, relevant quantities are derived

from the simulations for comparison with the literature and [15O]H2O PET perfusion data.

The complete modeling pipeline is summarized in Fig. 1. Imaging protocols for cCTA and

[15O]H2O PET are provided in Electronic Supplementary Material (ESM) section 5.1.

2.1 Vascular network generation

The vascular networks are patient-specific hybrid vasculatures composed of (1) the aorta and

epicardial coronary vessels segmented from cCTA and (2) synthetic trees of the downstream

arteries. The synthetic coronary trees are generated as described in Jaquet et al.23. Briefly,

synthetic tree roots are defined at segmented coronary outlets and additionally along the sides

of the segmented vessels according to the patient’s branching pattern. These additional roots

are added to represent the smaller branches expected to be missed in the segmentation due

to the limited cCTA spatial resolution. Only synthetic tree roots close to the left ventricular

myocardium are identified for vascular tree generation. A target flow to each tree root is

estimated based on the root diameter and the total baseline flow defined later in equation

2. The synthetic tree is generated by minimizing the total generated vascular volume, and

constrained by patient-specific priors which are the segmented vessels and left ventricular

myocardium. The competitive growth between multiple synthetic trees is driven by tree

target flows. Tree generation terminates once a certain number of terminal segments is
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reached.

The resulting hybrid vasculature is composed of two bifurcating trees, the left and right

(RCA) coronary arteries branching of the aorta. The left side bifurcates into the left anterior

descending (LAD) and left circumflex (LCX) arteries. Each vasculature is characterized by

the number of terminal segments nterm. Each terminal segment outlet i, i = 1...nterm, is

identified in the manuscript with superscript T,i.

Due to initialization or geometrical constraints, some synthetic trees do not extend prop-

erly during the vascular growth computation. They do not reach their target flow and gen-

erate few terminal segments, typically with large diameters. To limit discrepancy between

terminal segments and to improve scale consistency of the synthetic network, we remove

those synthetic trees arising from the segmented vessels which reach less than 20% of their

target flow.

2.2 Coronary model

2.2.1 Model description

In the vascular network defined above, blood flow is modeled with the one dimensional

approximation of the Navier-Stokes equations17. Combined with the mass balance equation,

the system of equations describing steady blood flow along the centerline axis of each vessel

is:

∂Q

∂z
= 0 (1a)

∂

∂z
(α
Q2

S
) +

S

ρ

∂p

∂z
+ 8πν

Q

S
= 0 (1b)

with z the coordinate of the centerline axis, Q and p the flow rate and pressure respectively,

S the cross-sectional area of the vessel, α a geometry-related parameter, ρ the blood density

and ν the kinematic viscosity. Flow rate and pressure are respectively reported in mL min−1

and mmHg. Blood density is set to 1.06 g cm−3 and dynamic viscosity to 0.053 g cm−1 s−1.

The constant α = 4/3 is obtained for a parabolic velocity profile. For area-increasing regions,
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α values are adjusted to prevent full pressure recovery downstream (Table 1). The values

are empirically derived to minimize differences between 1D and 3D CFD solutions.

At each bifurcation of the vascular network, conservation of mass and continuity of pres-

sure provide a relationship between vessel unknowns, completing the system of equations.

In contrast to the segmented arteries which have variable vessel areas S, for synthetic vessels

the system is practically reduced to Poiseuille law as S remains constant along each segment.

At the left and right coronary trees inlet, the average aortic pressure over a cardiac cycle

is set to PAO = 93 mmHg. The same aortic pressure is maintained at hyperemia, as FFR

remains relatively constant with variations in aortic pressure values and heart rate14,24.

At terminal segments of the network, flow rate boundary conditions are imposed. Given

these boundary conditions, flow rate solutions are first obtained for each segment up to

the vasculature root. Pressure solutions can then be computed from the root down to the

terminal segments. When solving the 1D equations, the flow rate boundary conditions and

the synthetic tree geometry are updated iteratively to reflect rest and hyperemic conditions

as described in the next section.

Note that segmented coronary arteries are discretized based on their centerline: 1D

meshes consist of nodes and elements (connections between consecutively connected nodes).

The spacing between two nodes is 0.01 cm. For the synthetic part of the vasculature, as the

model is reduced to 0D, no spatial discretization is needed. The spatial location of each

synthetic segment is tracked using starting and ending points. This framework has been

implemented in an in-house code.

2.2.2 Parameterization for rest and hyperemic conditions

Resting conditions The total myocardial baseline flow Qtot
rest,LV is estimated from the

segmented left ventricular myocardial volume VLV, following the relationship defined by Choi

et al.8:

Qtot
rest,LV = ζ × VLVγ (2)
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Table 1: Multiplication factor to the default α value of 4/3 for area-increasing regions under

resting and hyperemic conditions.

Segmented vessel node α value

Resting conditions

In bifurcating region 0.29

Outside bifurcating region 0.34

Hyperemic conditions

In bifurcating region 0.72

Outside bifurcating region 0.36

with γ set to 0.758. The coefficient ζ is assigned a value of 3.41 mL0.25 min−1. This value

was determined empirically using a left ventricular myocardial mass distribution of patients

enrolled in previously completed clinical studies34,28 by fitting to a normal distribution of

myocardial blood flow with a median of 1 mL min−1 g−1.

The flow at each terminal segment that is perfusing the left ventricle is initialized based

on its radius:

qT,i
rest =

(rT,i)2.7

nterm∑
i=1

(rT,i)2.7
Qtot

rest,LV (3)

where rT,i is the terminal segment radius. An iterative process is used to maintain the values

of these baseline flow boundary conditions as much as possible. If they create excessive pres-

sure losses in the tree (and thus too low terminal resistance compared to an ideal minimum

terminal resistance), then synthetic trees are dilated to replicate the physiological dilation

of arterioles and small arteries. The iterative process for resting conditions is described in

detail in ESM section 5.2.1.

Hyperemic conditions The hyperemic conditions approximate a stress state where the

coronary vessels are maximally dilated as occurring when administrating adenosine for inva-

sive FFR measurement or perfusion imaging (ESM section 5.1). Wilson et al. showed that
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under these conditions, the total coronary resistance falls to a fourth of the resting value43.

Thus, the total ideal hyperemic flow is defined as:

Qtot
stress,LV = 4Qtot

rest,LV (4)

and the diameters of all synthetic segments are dilated to their maximal capacity (40%) from

the initial, undilated values, consistent with a Poiseuille relationship between resistance and

diameter. Thus, some of the dilation capacity can be used at rest to accommodate oxygen

demand of the perfused myocardium at baseline and any remaining dilation capacity is used

to simulate maximum hyperemia. Ideal terminal segment flows are calculated as:

qT,i
stress = 4qT,i

rest (5)

The iterative process for hyperemic conditions is described in detail in ESM section 5.2.2.

Arteries not perfusing the left ventricle For the vessels not perfusing the left ventricle

(mostly vessels in proximal RCA), terminal segment flow boundary conditions are:

qT,i
rest =

(rT,i)2.7

nterm,non-LV∑
i=1

(rT,i)2.7
Qtot

rest,non-LV (6)

where rT,i denotes the terminal segment radius, nterm,non-LV the number of outlets not perfus-

ing the left ventricle, and Qtot
rest,non-LV = 0.2 ·Qtot

rest,LV (see11). Ideal hyperemic flow is defined

as:

qtotstress,non-LV = 4qtotrest,non-LV (7)

2.3 Myocardium model

For simplicity, hereafter the left ventricle myocardium and the septum are referred to as the

myocardium.

2.3.1 Model description

Blood flow in the myocardium is modeled by a single compartment Darcy model7,10:

w + K∇p = 0 (8a)
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∇ ·w = βsource (psource − p)− βsink (p− psink) (8b)

with K the permeability tensor, ω the Darcy velocity, p the capillary bed pressure, psource and

psink the source and sink pressure terms respectively, βsource and βsink parameters describing

the conductance of flow entering and exiting the myocardium respectively.

In terms of physiological meaning, source and sink terms represent respectively the

flow entering the myocardium through the coronary model outlets and the venous system

drainage. Flow within the myocardium is driven by pressure differences. A no-flux boundary

condition is applied to the myocardial wall, which is considered impermeable. Equations 8a

and 8b are combined as a single Poisson equation which is solved for p using P1 elements,

implemented in the FreeFEM framework20. Myocardial meshes consist of ≈500,000 tetra-

hedral elements with an average element volume of 2× 10−4 mL, a sufficient resolution to

obtain mesh-independent solutions with regards to myocardial blood flow.

2.3.2 Parameterization

We consider an isotropic permeability field with constant value K = 2× 10−5 cm2 Pa−1 s−1

(see7). The coefficient βsource is assumed constant over the entire myocardial volume and

estimated as:

βsource =
Qtot

(psource − p̄)VLV
(9)

where VLV denotes the myocardial volume, Qtot the total myocardial blood flow, psource

the average pressure of all source terms, and p̄ =15 mmHg the targeted average capillary

pressure7. Notice that the proportionality to Qtot ensures that βsource is increased from rest

to hyperemia. This increase reflects the vasodilatory response of the myocardium under

hyperemia.

The sink terms are homogeneously distributed over the myocardial volume, thus the

coefficient βsink is assumed constant and estimated as:

βsink =
Qtot

(p̄− psink)VLV
(10)

Hence βsink also increases under hyperemia reflecting increased micro-vessel recruitment and
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venous elastic dilation. psink is regarded as the reference pressure and is thus equal to

0 mmHg.

Figure 1: Illustration of the pipeline for a patient with disease in the left anterior descending

coronary artery. (a) CT imaging data. (b) Segmented geometry and FFRCT analysis. (c)

FFRCT results in segmented and synthetic vasculature. (d) Illustration of the coupling loop,

demonstrating quantities exchanged between the coronary model (left) and the myocardium

model (right) at coupling iteration k. (e) Hyperemic MBF for coupled model. (f) Comparison

of simulated (right) and [15O]H2O PET (left) hyperemic perfusion maps.
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2.4 Coupling of the two models

The coronary and the myocardium model are strongly coupled. The interaction between

the two models takes place at the terminal segment outlets which correspond to the source

terms in the porous model description.

Each coronary outlet flow is associated to a respective perfusion territory in the my-

ocardium. Those territories Ωi are estimated from a discrete weighted Voronoi tessellation39

using the terminal segment diameters as weights (equivalent to a Laguerre tessellation). Con-

sequently, segments with larger diameters, carrying a higher amount of flow, are assigned

larger perfusion territories. For blood flow, the coupling process involves an initialization

loop, followed by iterations coupling the two models and is described in detail in ESM section

5.3. Exchange quantities at coupling iteration k are illustrated in Fig. 1d. The coupling

framework has been developed in an in-house code.

2.5 Post-processing of results

Simulations provide pressure and flow rate information at different levels. FFRCT is com-

puted as the pressure at a given vessel location in the coronary tree divided by aortic inlet

pressure. The clinical threshold between positive and negative results is 0.8. Note that

for the segmented vasculature, FFRCT results are visualized in 3D by projecting centerline

values to the arterial wall.

Another quantity of interest is the Myocardial Blood Flow (MBF) for a given perfusion

volume, defined as:

MBFj =
Qj

Ωj

(11)

where Qj is the flow rate associated to a perfusion volume Ωj. When Ωj corresponds to a

Voronoi territory, Qj is the associated terminal segment flow qT,j. One can decompose the

myocardial volume into smaller volumes and calculate the MBF value of each such volume.

Depending on the volume decomposition chosen, characterization of MBF is possible at

different spatial resolutions by computing statistics (mean, SD and range) over the MBF
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values of the sub-volumes.

Here we consider 4 distinct levels of spatial resolution encountered in clinical practice,

detailed in Table 2. The 3D simulation results depict MBF values on a scale with character-

istic volume of 10−4 mL (”voxels” resolution level in cCTA imaging). The whole myocardial

volume is decomposed into 17 standardized segments proposed by the American Heart As-

sociation (AHA)6 (”AHA segments” resolution level). Based on the AHA segmentation, 3D

MBF results are visualized with a 2D perfusion map representing the myocardial volume.

Perfusion maps depict MBF values derived from the resolution of the [15O]H2O PET im-

age, which has a characteristic volume of 6.4× 10−2 mL, while indicating the approximate

boundaries of each AHA segment. The apex segment is not included, since its volume is

negligible.

The local flow heterogeneity is assessed with the fractal analysis described in Bassingth-

waighte et al.3. The Relative Dispersion (RD = SD/mean) values of the flow distribution at

each scale are plotted in logarithmic scale against myocardial territory volumes of increasing

size. Obtaining a line expresses self-similarity, its slope relating to the Fractal Dimension

(FD) as: slope = 1−FD. A FD value equal to 1 indicates that the heterogeneity is uniform

at all scales. The higher the FD, the more heterogeneous the flow becomes when probed at

finer scales.

3 Results

The generated synthetic vasculatures consist of varying number of terminal segments nterm

depending on the study. The synthetic trees that did not extend properly during vascular

growth due to constraints were trimmed but they carried less than 2% of the total number

of terminal segments.
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Table 2: Different levels of spatial resolution considered for MBF calculation.

Resolution level Notation Total number Order of Description

of volumes magnitude

Whole myocardium MBFmyo 1 100 mL Organ scale. MBFmyo is cal-

culated according to eq. 11,

where the entire myocardial

volume is considered as the per-

fusion volume.

Main coronary arteries MBFtrees 3 35 mL Each perfusion volume corre-

sponds to the perfusion ter-

ritory of each main coronary

artery (RCA, LAD, LCX).

AHA segments MBFAHA 17 6 mL Perfusion volumes correspond

to AHA segments detailed in6.

Voxels MBFvoxels ≈1,000,000 10−4 mL High resolution from cCTA, for

characterization of MBF at the

local level.
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3.1 Baseline behaviour: Coronary model versus coronary-myocardium

coupled model in a reference case

We explore the main behavior of the coronary and coupled model by comparing simulation

results in both resting and hyperemic conditions for a single patient with non-obstructive

CAD (Patient 1). A synthetic vasculature with around 3000 terminal segments defines the

reference case. We investigate the main differences between the two models regarding blood

flow behaviour in the coronaries and inside the myocardium.

While the mean coronary outlet flow remains the same between the two models, the

standard deviation of outlet flows is increased by around 25% for rest and hyperemia in the

coupled model compared to the coronary model (Table 3).

Pressure results along the vasculature are evaluated based on the diameter-defined Strahler

order vessel numbering system26. A global view of the pressure drop in hyperemic conditions

for the whole vasculature is provided in Fig. 2a, where pressure values for each vessel are

grouped according to the vessel’s Strahler order. While such a description can be useful in

identifying median pressure and range at different scales, it can often be misleading: pressure

may increase with decreasing order (see median pressure in orders 9-8). For this reason one

should not interpret the median, minimum or maximum pressure per order as representative

pressure drop along individual paths.

To emphasize this point, pressure drop results for paths spanning from segmented vessels

(orders 9-11) to terminal segments (mainly orders 5-7) are plotted individually (Fig. 2b). For

visualization purposes, only one randomly selected path per main coronary tree is displayed

for both models in resting and hyperemic conditions. As expected, results show a larger

pressure drop in hyperemia compared to rest, with minor differences between the two models.

Pressure is always decreasing when going down a Strahler order. Similar results were found

for all paths.

Next, we assess the blood flow results inside the myocardium. For a given model, mean

MBF remains practically constant across the different levels of resolution detailed in Table 2.
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Table 3: Blood flow results along vasculature and inside the myocardium for vascular net-

works with varying number of terminal segments for Patient 1.

Coronary model Coupled model

Number of terminal segments 3,000 6,000 12,000 3,000 6,000 12,000

Terminal segment flows ([mL min−1]×10−2)

Resting conditions 2.89 ±

2.25

1.44 ±

1.1

0.73 ±

0.56

2.84 ±

3.62

1.42 ±

2.14

0.71 ±

1.05

Hyperemic conditions 9.73 ±

7.72

4.86 ±

3.79

2.44 ±

1.92

9.49 ±

12.33

4.73 ±

7.31

2.36 ±

3.58

MBFAHA (mL min−1 g−1)

Resting conditions 1.24 ±

0.68

(0.39–

3.24)

1.22 ±

0.52

(0.48–

2.42)

1.23 ±

0.54

(0.43–

2.39)

1.14 ±

0.05

(1.04–

1.21)

1.14 ±

0.05

(1.04–

1.2)

1.14 ±

0.05

(1.03–

1.21)

Hyperemic conditions 4.17 ±

2.27

(1.28–

10.32)

4.11 ±

1.75

(1.58–

7.75)

4.12 ±

1.82

(1.41–

7.77)

3.84 ±

0.31

(3.27–

4.32)

3.83 ±

0.29

(3.33–

4.28)

3.79 ±

0.33

(3.18–

4.3)
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Figure 2: Pressure results along vasculature for reference case. (a) Pressure for vessels in

each Strahler order for hyperemic conditions (coupled model). Median and mean pressure

values for each order are depicted with horizontal lines and grey squares, respectively. (b)

Pressure along 1 random path in each of the three main coronary trees (RCA, LAD and

LCX) for resting and hyperemic conditions.

However, increasing the resolution leads to a significant increase in the standard deviation

of MBF values, as locally heterogeneous regions which were previously averaged out are

revealed (Fig. 3).

Comparing the two models, no significant difference is observed in predicted mean MBF.

However, when taking into account the variance and range of MBF values, the coronary

model displays extremely heterogeneous results. On the other hand, the coupled model ex-

hibits a more homogeneous distribution of MBF values which seems physiologically more

realistic. In hyperemic conditions, computed mean MBF increases by a factor of approxi-

mately 3.4 across all scales, reflecting the increase of total flow in the system. The behaviour

of the two models remains the same compared to resting conditions.

Finally, the impact of the synthetic vasculature geometry on the results is assessed by

generating different vasculatures for Patient 1. In particular, we investigate (1) the effect

of the number of terminal segments (ESM section 5.4.1), and (2) the effect of the inherent

randomness in the tree generation method (ESM section 5.4.2). The coupled model demon-

strated robustness in the geometrical variability of the synthetic vasculature for both studies.
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For the rest of this paper, we generate vasculatures with 12000 terminal segments in order to

explicitly model as many vessels as possible, while maintaining a manageable computational

cost.

Thereafter we consider the AHA segment resolution as the default scale for MBF calcu-

lation, unless otherwise stated. For simplicity, the AHA subscript is dropped and MBFAHA

will be denoted by MBF.

Figure 3: MBF results for the reference case at different levels of spatial resolution detailed

in Table 2, for resting (left) and hyperemic (right) conditions. Mean MBF values for each

scale are depicted with grey squares. Coronary model outliers for the ”AHA segments” and

”voxels” resolutions are not depicted for legibility purposes; other scales and the coupled

model do not present outliers.

3.2 Patients with non-obstructive CAD

We extend the study to 5 patients (Patient 1 included) with non-obstructive CAD (see

ESM section 5.5 for patient clinical data). Generated vasculatures achieved similar levels of

vascular growth for 4 out of 5 patients, extending down to Strahler order 4 (though segments

of that order represent < 0.5% of synthetic segments). Most synthetic segments belong to

orders 5 and 6, and constitute 20% - 30% and 45% - 55% of the total number of segments,

respectively. The vascular network for Patient 5 was the only one that reached a Strahler
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order of 3 (< 1% of segments), with 7%, 33% and 41% of synthetic segments belonging to

orders 4, 5 and 6, respectively. Diameter distribution within each Strahler order is provided

for each patient in ESM section 5.6.

Blood flow in the vascular network Blood flow results along the vasculature are ini-

tially compared to Kassab et al.25, where vascular trees were generated based on porcine

statistical data. For this purpose, elements (series of segments belonging to the same Strahler

order) are grouped by their Strahler order and mean flow for each order is calculated. Coro-

nary model results for resting conditions follow a similar logarithmic law as in25 (Fig. 4).

The law is maintained in hyperemic conditions with similar slope but higher intercept, as the

total flow is increased. Similar results are obtained for the coupled model with the exception

of flows at order 4, which deviate from the logarithmic law. This is due to the low amount

of segments belonging to that order (with the exception of Patient 5), which does not allow

for calculation of reliable statistics.

Findings for the reference case regarding terminal segment flows are extended for the

rest of the patients: standard deviation of outlet flows is increased in the coupled model

compared to the coronary model, while mean flow remains the same regardless of the model.

From resting to hyperemic conditions, the mean outlet flow increase ranges from a factor of

2.7 to 3.35 across patients. The initial target factor of 4 is not attained due to the network

resistance. Both conditions have the same relative flow heterogeneity.

Mean pressure drop for the coupled model from the aortic root to tree outlets ranges

from 6.5 mmHg to 10.6 mmHg at rest, and from 16.5 mmHg to 24.2 mmHg at hyperemia for

patients 1 to 4, with similar values for the coronary model. Mean pressure drop is higher for

Patient 5, as the vasculature extends down to an additional Strahler order, with 18.7 mmHg

at rest and 36.4 mmHg at hyperemia. These results are consistent with values obtained

in25: pressure drop from root to vessels with Strahler order 6, 5 and 4 was reported at

5±1.3 mmHg, 8.8±1.7 mmHg and 24.5±2.8 mmHg, respectively. To compare, note that for

patients 1 to 4 the majority of terminal segments belong to orders 6 and 5, while for Patient

20



Figure 4: Mean blood flow of elements in the vascular network per Strahler order for (a)

coronary model and (b) coupled model. For each model: resting conditions (left), hyperemic

conditions (right). The slope of the fitted line for results is equal to 1.57 and 1.59 in resting

and hyperemic conditions, respectively, for both models.
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5 to orders 5 and 4. The spatial distribution of pressure highlights the patient-specificity of

FFRCT analysis (ESM Fig. 5.4).

From resting to hyperemic conditions, mean pressure drop increase ranges from a factor

of 1.95 to 2.7 across patients. Note the pressure drop increase is thus less than the increase of

flow from rest to hyperemia: this highlights the decrease of tree resistance due to synthetic

network dilation, which partially compensates for the resistance increase in the segmented

network due to increased flow.

Under resting conditions, the resistance of the overall coronary tree (segmented plus syn-

thetic), defined as [PAO−mean
i

(pT,i)]/
∑
i

qT,i, accounts for 7% to 11.3% of the total resistance

of the system (macro- and micro-vasculature) for patients 1 to 4 and for 20% for Patient

5. Coronary tree resistance plays a more significant role in hyperemic conditions, making

up 17.7% to 26% of total resistance for patients 1 to 4 and 39.1% for Patient 5. The coro-

nary tree resistance is thus non-negligible compared to the resistance of the downstream

micro-vasculature. The dilation of the vessels in the synthetic network reduces the network

resistance but not enough to compensate for the added inertial resistance of the increased

flow from rest to hyperemia.

Blood flow inside the myocardium Following a fractal analysis (described in section

2.5), the local flow heterogeneity is assessed under resting conditions for the 5 patients and

compared to literature (Fig. 5). Coronary model results are comparable to similar models

relying on synthetic networks. In particular, fractal dimension values show good agreement

with results obtained with the extended canine synthetic vasculature of Smith et al.41. The

relative dispersion of flow is slightly lower in the coronary model at all scales, indicating a

more homogeneous flow distribution. Compared to the synthetic network of Beard et al.4

based on porcine data, the coronary model exhibits a higher level of flow heterogeneity and

lower fractal dimension, but within the same order of magnitude.

The fractal analysis on animal populations by Bassingthwaighte et al.3 provides reference

physiological values. Compared to these data, the coronary model results have consistently
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higher RD at all scales, while on the contrary, the coupled model consistently lower. This sug-

gests that blood flow predicted by the coronary model tends to be overly heterogeneous, flow

predicted by the coupled model overly homogeneous, with physiological values in-between.

Furthermore, the very low fractal dimension of the coupled model (close to 1) indicates

that there exists only a small difference in heterogeneity across different levels of spatial

resolution. The fractal dimension of the coronary model is closer to physiological data.

Figure 5: Fractal analysis at resting conditions for 5 patients with non-obstructive CAD and

comparison with literature.

Next, MBF results for both models are compared with [15O]H2O PET exam patient data

(Fig. 6a). For resting conditions, mean MBF matched measured data regardless of the model

used, with prediction error less than the mean MBF inter-patient variability. When taking

into account the variance of the AHA segment MBF, the coronary model exhibits extremely

heterogeneous flow distribution which does not correspond with patient data. This behaviour

is consistent with the fractal analysis results. However, the coupled model overcomes this

limitation demonstrating MBF values within measured range and better agreement overall.

Despite the fact that fractal analysis revealed overly homogeneous flow at smaller scales,

the considered spatial resolution is low enough that the model produces physiologically valid
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results with predictive value. Results are similar for both resting and hyperemic conditions

for Patients 1-4.

Simulated perfusion maps for hyperemic conditions are directly compared with [15O]H2O

PET perfusion maps. Coronary model perfusion maps do not correlate well with PET

data due to their overly heterogeneous distribution and therefore are not displayed. Coupled

model maps (Fig. 6b), while not capturing the exact spatial flow distribution, allow in general

for a correct estimation of CAD’s impact on myocardial perfusion. Hyperemic results for

Patient 5 did not match measured data, predicting a significant perfusion deficit which was

not present in PET data. Lower simulated pressure at the terminal segment outlets led to

lower hyperemic MBF. This patient had unique characteristics compared to other patients

including higher hyperemic flow and coronary flow reserve (CFR) in the PET exam (Fig.

6a) and a synthetic vasculature upstream of the impaired region that was extended to lower

Strahler orders.

3.3 Patient with obstructive CAD

Here we present preliminary results for an extension of the model to a patient with a lesion in

the left anterior descending coronary artery (close to 80% reduction in diameter) - apparent

from the FFRCT analysis (Fig. 1c). The [15O]H2O PET exam perfusion map for hyperemic

conditions revealed a significant perfusion deficit in the myocardial region corresponding to

the LAD tree. For this patient, estimating total coronary flow using the power-law relation

between flow and myocardial mass8, led to significantly increased flow compared to PET

data (24% and 56% excess flow in resting and hyperemic conditions respectively). For this

reason, blood flow in the system was instead estimated with the MBFmyo value provided by

the PET exam in order to determine if the relative effect of the stenosis could be modeled.

Previous limitations of the coronary model in terms of flow heterogeneity still apply, thus

the analysis is focused on the coupled model.

As MBF is significantly impaired, this patient provides a suitable framework for evalu-

ation of the model’s capacity for vascular dilation. As demonstrated in Fig. 7b, synthetic

24



Figure 6: MBF analysis for 5 patients with non-obstructive CAD. (a) Comparison of

MBFAHA results with [15O]H2O PET exam data for resting (left) and hyperemic (right)

conditions. Mean MBFAHA values are depicted with grey squares. (b) Comparison of sim-

ulated perfusion maps (left) to [15O]H2O PET exam perfusion maps (right) for the coupled

model under hyperemic conditions. Note the upper limit of color map range is truncated to

match PET exam range.
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segments arising from the LAD were dilated up to 15% under resting conditions, in con-

trast to healthy trees arising from RCA and LCX where dilation was minimal (up to 3%).

These results highlight the model’s ability to account for flow deficits downstream of diseased

vessels and adapt diameters accordingly, reflecting the underlying physiological response to

ensure adequate myocardial perfusion at rest in patients with epicardial disease.

Pressure drop along three random paths in each main coronary artery is shown in Fig. 7a.

LAD paths display higher pressure drop in both resting and hyperemic conditions compared

to healthy coronary trees, which takes place almost exclusively in large vessels (between

orders 11 and 10). This significant drop early in the vasculature strongly indicates the

existence of a hemodynamically significant stenosis in an epicardial vessel of the LAD tree.

In addition, outlet pressure decreases almost twice as much from rest to hyperemia in LAD

paths (≈ 20 mmHg) compared to RCA and LCX paths (≈ 10 mmHg), reflecting a larger

difference between resting and hyperemic flow in regions perfused by LAD trees.

While the total blood flow in the system was explicitly tuned to match PET exam

MBFmyo, distribution of flow throughout the coronary tree follows the same procedure as

previously described. As illustrated in the perfusion map simulated under hyperemia (Fig.

1f), the exact region of the MBF perfusion deficit in the myocardium (in green) is predicted by

the coupled model. Under resting conditions, even though synthetic segments corresponding

to the impaired region were dilated (Fig. 7b), a lower perfusion is still visible: the simulated

map exhibits the same level of lower perfusion as in the PET exam, but the spatial spread is

different. In fact, under hyperemia MBF in the perfusion deficit zone is 0.92 mL min−1 g−1

for a myocardium average MBF of 1.9 mL min−1 g−1, which is more drastic than at rest where

the lower perfusion is of 0.73 mL min−1 g−1 for an average MBF of 0.81 mL min−1 g−1.

4 Discussion

In this paper, a multiscale method for simulation of coronary and myocardial blood flow is

presented and applied to human data. Patient-specific three-dimensional coronary artery
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models were segmented using cCTA image data and synthetic trees were generated down to

the arteriole level. A stand-alone coronary model and a coronary-myocardium coupled model

were investigated with the aim of simulating myocardial perfusion in health and disease. The

coupled model demonstrated robustness to variations of the generated vasculature (different

initialization, number of terminal segments) and better agreement with [15O]H2O PET exam

data overall. In this section, we discuss some of our modeling assumptions, we propose

alternative parameterization choices and provide directions for future work. Limitations and

clinical potential of the model are also discussed.

4.1 Model assumptions and parameterization

Only steady-state hemodynamic quantities were computed in this paper, which is sufficient

for simulated MBF to be comparable to [15O]H2O PET data, keeping in mind that the acqui-

sition is performed over multiple cardiac cycles. Pulsatile flow simulations would necessitate

additional assumptions, more parameters to estimate30, or other patient-specific data not

easily measurable, overall introducing additional complexity which is outside of the scope

of the current study. In future work, incorporation of flow pulsatility in the model would

potentially allow for assessing the risk of plaque rupture in the coronaries.

Moreover, blood was modeled as a Newtonian fluid. For larger epicardial vessels seg-

mented from cCTA, shear rate was actually above 10 s−1 for all patients in this study. Re-

cent 3D work1 has demonstrated for mild to severe coronary stenoses that the Newtonian

model did not lead to a significantly different centerline velocity compared to three non-

Newtonian models, validated by clinical measurements. Moreover, while viscosity changes

can affect velocity profiles, it has a minor effect on flow and pressure losses38. The effect of

viscosity uncertainty on perfusion could be assessed in future work, but it would require ad-

ditional patient-specific measurements (hematocrit, plasma viscosity). For smaller synthetic

vessels (Strahler orders 4-5), future work could also consider the Fahraeus-Lindqvist effect

and plasma skimming.

A single Darcy compartment was used in the myocardium model with homogeneous flow
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conductance parameters (βsource and βsink). Previous studies have considered more com-

plex porous model descriptions with multiple compartments modeling different scales of the

micro-circulation31,21, but this approach makes the flow conductance parameters difficult to

estimate and relies on complex anatomical information. The simpler myocardium model pro-

posed herein enables parameter estimation using easier-to-derive patient-specific variables,

such as the total coronary flow and the myocardial volume, for which estimation laws already

exist8,42. This simplified approach is sufficient for MBF characterization at the AHA segment

level as demonstrated by the good agreement with PET exam data. However, finer details

of the flow are not captured which can be seen in the almost uniform flow at lower spatial

resolutions (Fig. 5). This could be tackled with a homogenization approach on parameter

estimation22.

Several refinements in the parameterization of the coupled model are possible. While

the mechanical properties of the myocardial tissue are non-uniform and anisotropic7, the

myocardial permeability tensor K is considered herein as constant and isotropic. Note that

simulations with an increased K value, to account for the additional vessels recruited under

hyperemia19, did not result in any noticeable difference in terms of perfusion. Furthermore,

the aortic pressure is based on a population average. Patient-specific values could help fine-

tune the range and spatial distribution of MBF for each patient but are variable at rest and

difficult to predict under hyperemic conditions.

As shown in the simulated perfusion maps, even though the main MBF characteristics

are adequately captured, the spatial distribution of flow does not exactly match PET exam

maps. Note that for any given MBF distribution, a corresponding source-sink field can be

determined and vice versa. An interesting direction for future work to improve results such

as for Patient 5, would be to estimate spatially-heterogeneous flow conductance parameters

via a machine learning model, utilizing PET exam data and other patient-specific features.
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4.2 Limitations

In the current model, total flow in hyperemic conditions cannot exceed four times the resting

total flow. As a result, the model is unable to predict MBF of patients with CFR higher

than 4, like Patient 5. Interestingly for this patient, in a separate simulation with increased

hyperemic total flow based on PET data, a perfusion deficit with similar magnitude is still

present. This indicates that the upstream vasculature is unable to accommodate additional

flow, which could be a potential drawback of the synthetic network generation method.

Challenges with the estimation of total flow are apparent from the example of the patient

with a severe LAD lesion as the myocardial-mass-based total flow over-estimated the baseline

flow. While there is significant variability in resting MBF13, our current estimation method

is able to capture the reported median level of resting MBF for patients with non-obstructive

CAD, as seen in Fig. 6a (rest). For the obstructive CAD patient, our method overestimated

total flow by 24%, which is nevertheless within the range reported by Danad et al. for

obstructive CAD patients. Studies in additional patients with obstructive CAD may be

needed to determine if parameters in addition to the myocardial mass are needed to predict

absolute resting blood flow in such patients. Note, in separate simulations, the coupled

model was still able to identify the perfusion deficit region, even when the flow estimation

was based on myocardial mass, albeit with over-estimated absolute MBF values.

Results on a patient with LAD stenosis demonstrated the model’s ability to mimic the

physiological response of arterial dilation. While vasculature downstream of a diseased epi-

cardial vessel was partially dilated at rest to accommodate more flow, the spatial results

show that, as for some of CAD non-obstructive patients, the model may need to include

more heterogeneous parameterization.

Future work will include a study on how the coupled model affects the prediction of

FFRCT, especially for cases near the cut-off value. Finally, more patients are needed for

further validation of the model.
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4.3 Conclusion and perspectives on clinical relevance

A full pipeline from cCTA to simulation of MBF with potential for clinical application

is described. Absolute hyperemic MBF has been shown to have better prognostic5 and

diagnostic13 performances compared to other clinical metrics, like CFR. By utilizing readily

available information from a CT scan, this approach enables quantitative assessment of

CAD’s impact on myocardial perfusion. With the exception of one non-obstructive CAD

case for which the model needs to be further refined, simulated MBF matched [15O]H2O PET

exam data at the AHA segment scale, a widely used resolution in clinical practice. In case of

severe CAD, a direct link between coronary artery narrowing and impaired myocardial blood

flow is achieved. This framework also makes possible the calculation of ischemic burden, an

important clinical metric for evaluation of CAD severity. At the same time, it provides a

testbed to explore different combinations of positive/negative FFR and presence/absence of

perfusion deficit and better elucidate their different contributions for treatment choice.

As FFRCT analysis is already utilized in clinical practice, incorporation of this method

could enhance its current capabilities by extending the analysis to the myocardium: it would

constitute a diagnostic tool capable of multiscale simulation of blood flow from the epicardial

coronary arteries to the myocardial tissue and enable identification of those regions of the

myocardium with diminished blood flow or at risk of infarction in the event of atherosclerotic

plaque rupture.
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5 Electronic Supplementary Material (ESM)

5.1 Imaging protocols

The imaging data for coronary artery and myocardium segmentation from cCTA and for

perfusion map ground truth from [15O]H2O PET was acquired as described by Danad et.

al.12.

5.1.1 Coronary Computed Tomography Angiography (cCTA)

Patients underwent coronary angiography on a 256-slice CT scanner (Philips Brilliance iCT,

Philips Healthcare, Best, the Netherlands) with a collimation 128 x 0.625 mm and a tube

rotation time of 270 ms. To visualize the coronary artery lumen a bolus of 100 mL iobitidol
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(Xenetix 350) was injected intravenously 5.7 mL s−1, with immediately after a 50 mL saline

chaser. The scan was triggered with an automatic bolus tracking technique. The region of

interest was placed in the descending thoracic aorta with a threshold of 150 HU. Metoprolol

50 to 150 mg was administered orally if patients had a prescan HR ≥ 65 beats per minute

(bpm) one hour before the start of the CT protocol. If necessary, 5 to 25 mg metoprolol was

given intravenously during the scan to achieve a heart rate < 65 bpm. All patients received

800 µg of sublingual nitroglycerine immediately before cCTA.

5.1.2 [15O]H2O Positron Emission Tomography (PET)

Patients had to refrain from taking products containing caffeine or xanthine 24 hours before

imaging. Patients fasted for at least 4 hours before the scan protocol. All patients were

imaged on a hybrid PET/CT device (Philips Gemini TF 64, Philips Healthcare, Best, The

Netherlands). During resting conditions as well as vasodilator stress induced by intravenous

infusion of adenosine (140 µg kg−1 min−1), a 370 MBq of [15O]H2O was used as a perfusion

tracer. For more information on the cardiac [15O]H2O PET protocol, image acquisition and

quantification of MBF, see Danad et al.13.

5.2 Parameterization of coronary model in resting and hyperemic

conditions: Detailed description

5.2.1 Resting conditions

Using the initialized flows in eq. 3, we calculate ideal baseline resistance at each terminal

segment:

RT,i
base =

PAO

qT,i
rest

(12)

For each terminal segment, an expected minimum resistance is estimated as follows:

RT,i
min =

1

4
RT,i

base (13)

Here, we assume a uniform factor but this can vary for each patient. Anatomically, the factor

represents a maximal radius dilation capacity of 40% based on uniform dilation of a tree to
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achieve a 4-fold reduction in resistance43. Note that minimum resistances are calculated

once and fixed for the whole parameterization process.

Using the terminal segment flows as boundary conditions for the first iteration, flow

and pressure are computed for the entire tree by solving the 1D equations. The computed

terminal segment pressure pT,i and the assigned terminal segment flow qT,i
rest determine the

simulated terminal segment resistance RT,i
sim:

RT,i
sim =

pT,i

qT,i
rest

(14)

If the simulated terminal segment resistance is lower than the minimum resistance value

RT,i
min, we update both the geometry and the flow. We dilate the radius of the terminal

segment and its upstream synthetic segments by multiplying them with a uniform factor

of
(
RT,i

base

RT,i
min

)0.25
=
√

2. We reduce the terminal segment flow by δq by solving the following

equation

(qT,i
sim,rest + δq)RT,i

min = PAO −RT,i
p (qT,i

sim,rest + δq) (15)

where RT,i
p =

PAO−pT,i
sim,rest

qT,i
sim,rest

.

If the simulated terminal segment resistance is greater or equal to RT,i
min, we update the

geometry by multiplying by a factor of
(
RT,i

base

RT,i
sim

)0.25
but maintain the same flow qT,i

rest.

Note that each terminal segment can have a different radius dilation factor as the re-

sistance of the terminal segment will depend on the pressure loss accumulated along the

path. For the upstream segments branching to child segments with different dilation factors,

bigger dilation factors are chosen to dilate them. Several iterations are necessary to obtain

convergence as both the geometry and boundary conditions are updated in each iteration.

The convergence criteria used:

max
i

∣∣∣∣∣R
T,i
sim,n+1 −R

T,i
sim,n

RT,i
sim,n+1

∣∣∣∣∣ < 1% (16)

with n the iteration counter. Note that for synthetic trees arising from the segmented

vessel outlets, the dilation propagation stops before reaching the root segment since this was

directly observed in the CT data. For synthetic trees arising along a segmented vessel, the
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dilation propagation is applied up to and including the root segment. This ensures that

only arteriole and small artery vessels are dilated since they contribute most to coronary

resistance modulation and are dilated most under hyperemic conditions. Further, the CT

data is obtained with the use of sublingual nitrates so the segmented tree is assumed to be

fully dilated at rest.

5.2.2 Hyperemic conditions

The minimum resistance at each terminal segment is computed using the ideal terminal

segment flow:

RT,i
min,stress =

PAO

qT,i
stress

(17)

Since the whole system is already dilated to the maximum radius dilation capacity, only

terminal flows can be changed. The system is first solved using qT,i
stress as a boundary condition

at each terminal segment outlet. With the resulting simulated pressures pT,i
stress and set flows,

we calculate the simulated resistance:

RT,i
sim,stress =

pT,i
stress

qT,i
stress

(18)

In each iteration, the terminal segment flow is incremented by δq by solving the following

equation:

(qT,i
sim,stress + δq)RT,i

min, stress = PAO −RT,i
p (qT,i

sim,stress + δq) (19)

where RT,i
p =

PAO−pT,i
sim,stress

qT,i
sim,stress

.

Consequently when the simulated resistance RT,i
sim,stress is less than the minimum resistance

RT,i
min,stress, the flow is decreased. Otherwise flow is increased.

Simulation is repeated with the updated terminal flow values. Upon iteration, the com-

puted terminal resistance values converge to the minimum resistance values. The convergence

criteria is:

max
i

∣∣∣∣∣R
T,i
sim,stress,n −R

T,i
min,stress

RT,i
min,stress

∣∣∣∣∣ < 1% (20)
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5.3 Coupling method

For blood flow, the coupling process involves an initialization loop, followed by iterations

coupling the two models. The variable k represents the coupling iteration counter.

During the initialization loop (k = 0), 1D equations are solved iteratively to generate

possibly dilated geometry with converged flow and pressure fields as described in the param-

eterization section, either for rest or hyperemic conditions. Initial porous model parameters

are determined using the converged flow and pressure values. The converged outlet pressures

pT,i
k=0 are used to estimate the βsource and βsink parameters of the myocardium model. The

initialized parameters are maintained constant along all following coupling iterations unless

otherwise stated.

In the coupling iterations, the resulting pressure of the coronary model at each terminal

segment end pT,i
k is used as input to the porous model, defining the source pressure in each

tessellation territory Ωi. The porous model is then solved for flow values for each perfusion

territory, that are used as new inputs for the coronary model, qT,i
k+1. For iterations with k > 0,

the coronary model solves for pressure with given flows while keeping the same geometry and

boundary conditions. The coupling loop is illustrated in Fig. 1d. The coupling convergence

is established considering the terminal segment flow values between iteration k and iteration

k + 1: ∣∣∣qT,i
k − q

T,i
k+1

∣∣∣
qT,i
k

< 1% for all i (21)

In practice for a few cases, in particular the patient with significant obstructive disease, a

relaxation scheme was necessary.

Note that in principle, each perfusion territory is assigned to one and only one segment.

However in some cases, the scale of the segment outlets is much smaller than the resolution

of the myocardial mesh. As a result, during the Voronoi tessellation computation, two

segments can be assigned to the same perfusion territory, which can cause problems to the

coupling algorithm. In order to avoid this, we locally refine the myocardial mesh and rerun

the tessellation. If the issue persists as the segments are too close to each other and an
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excessively refined mesh resolution is required, we modify the vasculature by trimming the

smallest terminal segment and recompute the tessellation.

5.4 Sensitivity to the synthetic vascular network

In this section, we assess the impact of the vascular network on the results by generating

different synthetic vasculatures for the same patient as in section 3.1 (Patient 1).

5.4.1 Varying number of terminal segments

We generated three distinct synthetic vasculatures with 3000, 6000 and 12000 terminal seg-

ments, respectively.

Vasculature analysis We evaluate the vascular depth reached in each vasculature using

the Strahler order system26. Overall, increasing the number of terminal segments leads

to a greater percentage of synthetic segments with lower Strahler orders (5-6) and a lower

percentage of segments with higher Strahler orders (7-9) (Fig. 5.1a). This implies that

vasculatures with higher number of terminals achieved greater depth. In particular, close

to 20% of synthetic segments in the 12000-terminals vasculature were extended down to

Strahler order 5, while < 5% and < 1% of segments reached that order in the 3000 and

6000-terminal vasculatures, respectively.

Further investigating the diameter distribution of terminal segments reveals that both

smaller diameters and greater terminal diameter uniformity is achieved with an increase in

number of terminal vessels (Fig. 5.1b). Mean and standard deviation of terminal diameters

are 195±48 µm, 155±38 µm and 123±30 µm for the 3000, 6000 and 12000 terminal vascular

trees, respectively.

Hemodynamic results Blood flow in the three generated vasculatures is summarized in

Table 3. In terms of blood flow in the coronary arteries, increasing the number of terminals

leads to a more homogeneous flow distribution at the outlet level for both coupled and
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Figure 5.1: Geometrical analysis of vascular networks comprising 3000, 6000 and 12000 ter-

minal segments. (a) Percentage of synthetic segments in each Strahler order. (b) Distribution

of terminal segment diameters.

coronary models, as suggested by the lower standard deviation of terminal flows (Table 3).

This behaviour reflects the more homogeneous diameter distribution. Naturally, the mean

terminal segment flow is also lower, as the same amount of total flow is distributed in more

segments.

In terms of blood flow in the myocardium, mean MBF remains almost identical regardless

of the number of terminals and the model used. While the coronary model MBF values

remain extremely heterogeneous, a slight reduction is observed when increasing the terminal

segments (see reduced SD, Table 3). In contrast, the coupled model exhibits the same level

of homogeneity regardless of vasculature, showing robustness to the variation in number of

terminal segments.

The level of heterogeneity for both models is also illustrated in their respective perfusion

maps: coronary model maps consist of significantly over- and under-perfused regions, while

the coupled model ones are quite homogeneous. In terms of spatial distribution, although

perfusion maps are not identical, the main perfusion features are present across vasculatures

(Fig. 5.2).

For all the above considered characteristics, varying the total number of terminal seg-

ments has a similar impact on the results in both resting and hyperemic conditions.
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Figure 5.2: Simulated perfusion maps for vasculatures with varying number of terminal

segments for (a) resting and (b) hyperemic conditions. For each vasculature: coronary

model (left), coupled model (right). Note the upper limit of the color map matches the

maximum MBF value of the coupled model across vasculatures. Coronary model MBF

values in perfusion maps reach up to 77 mL min−1 g−1 and 243 mL min−1 g−1 in resting and

hyperemic conditions, respectively, across vasculatures.

To conclude, the 12000-terminals vasculature demonstrates preferable morphological fea-

tures (greater vascular depth, more uniform outlet diameter size) leading to a minor, albeit

noticeable, improvement in the coronary model results. In order to explicitly model as

many vessels as possible while maintaining a manageable additional computational cost, we

consider 12000 terminal segments as the default choice for this paper.

5.4.2 Varying randomness of the vasculature

Here we generate 5 vasculatures comprising 12000 terminal segments. All synthetic trees start

from the same roots on the segmented vessels, but grow differently based on the inherent

randomness in the tree generation as described in23. Thus these 5 ”seeds” lead to different

but similar-looking synthetic networks.

MBF results for both models across different seeds are presented in Fig. 5.3. The
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choice of seed is only significant in the global flow heterogeneity of the coronary model

(Fig. 5.3a, 5.3b). In fact, choosing a particular seed has a larger impact on the standard

deviation of simulated MBF for the coronary model, compared to varying the number of

terminal segments. The coupled model provides consistent results regardless of the seed,

demonstrating robustness in the geometrical variability of the vasculature.

The associated perfusion maps display some regional differences, but their spatial distri-

bution of flow has similar main characteristics (Fig. 5.3c). For example, regions from 7 to 9

o’clock consistently have lower MBF compared to the rest of the map. Results are similar

for resting and hyperemic conditions.
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Figure 5.3: MBFAHA results for 5 random seeds for (a) resting and (b) hyperemic conditions.

Mean MBFAHA values are depicted with grey squares. (c) Simulated perfusion maps for

hyperemic conditions. For each seed: coronary model map (left), coupled model map (right).

Note the upper limit of the color map matches the maximum MBF value of the coupled model

across seeds. Coronary model MBF values in perfusion maps reach up to 225 mL min−1 g−1

across seeds.
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5.5 Patient selection and characteristics

For this study, a total of 6 patients were selected to have high cCTA image quality and

contain a wide distribution of heart dominance (3 right, 2 codominant, 1 left). They are

grouped based on non-obstructive CAD (5 patients) or obstructive CAD (1 patient), with

obstructive CAD defined as > 30% reduction in diameter in at least one location on the

larger segmented vessels.
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Table 4: Patient characteristics of 6 patients with suspected CAD who underwent cCTA and

[15O]H2O Positron Emission Tomography (PET)13 prior to invasive coronary angiography,

which demonstrated non-obstructive CAD in 5 patients and obstructive CAD in 1 patient.

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient

with ob-

structive

CAD

Age 54 59 59 56 46 53

Sex female female male male female male

Body mass index (kg m−2) 22.95 28.08 27.90 20.38 29.32 25.93

Heart dominance right right codominant codominant left right

Comorbidities

Current smoker No No No Yes No No

Smoking history No No No Yes No Yes

Diabetes (type I) No No No No No No

Diabetes (type II) No No No No No No

Hypertension Yes No No No No No

Hypercholesterolemia No Yes No No No Yes

Family history of CAD Yes No No Yes Yes No

Medications

Acetylic acid Yes Yes Yes Yes No Yes

Statin Yes Yes Yes Yes No Yes

ACE inhibitors No No Yes No No Yes

ARBs Yes No No No No No

Long acting nitrates Yes No No No No No

Beta blockers Yes No No Yes No Yes

Calcium channel blockers Yes No No No No Yes

Symptoms atypical

angina

aspecific

chest pain

atypical

angina

typical

angina

aspecific

chest pain

typical

angina
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5.6 Additional illustrations

Figure 5.4: FFRCT analysis along the segmented and synthetic vasculature for 5 patients

with non-obstructive CAD (hyperemic conditions).
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Figure 5.5: Diameter distribution of segmented vessels (orders 9-11) and undilated synthetic

segments (orders 3-9) within each Strahler order for five patients with non-obstructive CAD.

Vasculatures comprise 12000 terminal segments.
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