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Chapter 43 
The Multidimensional Epistemology 

of Computer Simulations: Novel Issues and the Need to 
Avoid the Drunkard’s Search Fallacy 

Cyrille Imbert 

Abstract Computers have transformed science and help to extend the boundaries of 
human knowledge. However, does the validation and diffusion of results of computa- 
tional inquiries and computer simulations call for a novel epistemological analysis? 
I discuss how the notion of novelty should be cashed out to investigate this issue 
meaningfully and argue that a consequentialist framework similar to the one used 
by Goldman to develop social epistemology can be helpful at this point. I highlight 
computational, mathematical, representational, and social stages on which the valid- 
ity of simulation-based belief-generating processes hinges, and emphasize that their 
epistemic impact depends on the scientific practices that scientists adopt at these dif- 
ferent stages. I further argue that epistemologists cannot ignore these partially novel 
issues and conclude that the epistemology of computational inquiries needs to go 
beyond that of models and scientific representations and has cognitive, social, and 
in the present case computational, dimensions. 

Keywords  Computer simulations · Novelty · Epistemology · Validation · 
Goldman · Consequentialism · Social epistemology · Random numbers · 
Computational values · Monte Carlo · Random number generator · Modeling
norms · Modularity · Opacity · Verification · Reproducibility · Models · 
Invisibleness of failure · Naturalism

The drunkard’s search or streetlight fallacy corresponds to a type of situation where people search 
at the easiest site, even if what they are searching for is unlikely to be there. Typically, the drunkard 
searches for her keys under a streetlight even if they were lost somewhere else. 



 

43.1 Introduction: Computer Simulations, a Revolutionary 
Epistemology? 

The search for innovation and novelty are major goals across social fields. Unsur- 
prisingly, when new technologies, artifacts, techniques, methods, practices, perspec- 
tives, or issues are developed, bold statements about their potential impacts are made. 
So-called “revolutions” or “turns” are regularly announced across science and it is 
legitimate to be methodologically cautious about such claims. 

It is hardly controversial that computers have largely transformed science and help 
to extend the boundaries of human knowledge. Yet, it might be the case that computers 
merely bring about more inferential power but that concerning how scientific results 
are justified and come to be trusted, science is left unchanged by the computational 
revolution. 

Philosophers of science have had a long-standing tradition of analyzing experi- 
ments, theories, and scientific reasoning. However, specific epistemological analyses 
of simulations did not develop until the 1990s with work by philosophers like Paul 
Humphreys, Eric Winsberg, or Manfred Stöckler, historians of science like Peter 
Galison, scientists interested in philosophical issues like Fritz Rohrlich, or scholars 
at the crossroads of several fields like Evelyn Fox Keller. These different authors 
mostly agreed that computational methods not only provided a new powerful way 
to practice science, but also did not match existing categories and called for specific 
and novel analyses, above and beyond those concerning experiments, theories, or 
models. 

In a thought-provoking and conservative article, Roman Frigg and Julian Reiss 
stood against this move and argued that claims about the novelty of computational 
science were overblown and ill-grounded and that there was no more to the episte- 
mology of simulations than the epistemology of modeling (Frigg and Reiss 2009). 
Making final and flawless contributions is difficult for those who pioneer in a field and 
various aspects of Frigg and Reiss’s jubilant refutation were convincing. The need to 
guard against the lure of apparent novelties was later confirmed, for example, by the 
criticism by Barberousse and Imbert (2013) of revolutionary claims about cellular 
automata based simulations (a case that was recurrently used in favor of novelty 
claims) or by the sober and deflationary analysis by Beisbart of the deeply argu- 
mentative nature of simulations despite their genuine similarities with experiments 
(Beisbart 2018, see also Barberousse et al. 2009). However, Frigg and Reiss were not 
content to refute claims about the novelty of specific aspects of simulations. They 
extrapolated that simulations “raise few if any new philosophical problems” (593) 
and suggested considering the literature on simulations “as contributing to existing 
debates about, among others, scientific modeling, idealization or external validity, 
rather than as exploring completely new and uncharted territory” (595). 

Paul Humphreys quickly responded that this general non-novelty claim was sim- 
ply false. In (Humphreys 2009), he highlighted that issues such as the epistemic 
opacity of computational processes, the importance of syntax, complexity questions, 
or the specific role of time in simulations all make the epistemological and seman- 



 

tic analysis of computational science novel, beyond genuine overlaps with existing 
philosophical analyses of science. 

The present chapter focuses specifically on the epistemology of simulations, how 
their results are validated, and whether the problems that arise in this context are 
novel. Frigg and Reiss’ debunking paper was a sanitizing contribution. Nevertheless, 
I will also argue that their main conclusion is false because simulations raise new 
epistemological questions or raise traditional questions that require novel or specific 
answers for simulations. 

I devote Sect. 43.2 to philosophical preliminaries: I first discuss how the notion 
of novelty should be cashed out here and argue that using a conceptual framework 
similar to the one used by Goldman to develop social epistemology is appropriate 
for the investigation of the present question. In Sect. 43.3, I list computational, math- 
ematical, representational, and social loci on which the validity of simulation-based 
belief-generating processes hinges. Additionally, I emphasize that their epistemic 
impact depends on the practices that scientists adopt to face these problems. I further 
argue in Sect. 43.4 that epistemologists cannot ignore these issues and conclude in 
Sect. 43.5 that this analysis agrees with those which emphasize that the epistemology 
of science needs to go beyond that of scientific representations and has cognitive, 
social, and here computational, dimensions. 

43.2 Methodological and Conceptual Preliminaries 

First, the notion of novelty should be clarified if it is to frame the discussion. What is 
scientifically novel is contingent upon which claims, theories, or perspectives have 
been defended within a field. Thus, the real issue is whether an object of inquiry 
should be analyzed along the same lines as other objects. The difference can be 
illustrated as follows. In the context of computer simulations, it is blatantly obvious 
that complexity and computational resources must be taken into account to analyze 
the constraints that frame computational inquiries. Accordingly, focusing on what 
is possible in practice (Simon 1957; Humphreys 2004; Wimsatt 2007) and empha- 
sizing the importance of the scarcity of resources for agents is appropriate. How- 
ever, resource-boundedness is a general constraint that frames both computational 
and noncomputational inquiries. Humphreys suggests the general epistemological 
principles that “it is the invention and deployment of tractable mathematics that 
drives much progress in the physical sciences” and that “most scientific models are 
specifically tailored to fit, and hence are constrained by the available mathematics” 
(see Humphreys 2004, 55–56 and Barberousse and Imbert 2014 for a detailed dis- 
cussion). Still, it so happens that in existing discussions about models, complexity 
issues merely arise as a peripheral point to justify the need to make approximations. 
In brief, whereas the development of computational science somewhat relaxes com- 
putational constraints and resource-boundedness constitutes a much more restrictive 
straightjacket for traditional noncomputational inquiries (see again Barberousse and 



 

Imbert 2014), quite paradoxically, the need to adopt a bounded-resource perspective 
is blatant and apparently novel in discussions about computational inquiries. 

Also, the notion of the novelty of questions, discussions, or of “uncharted terri- 
tory”, partly places novelty in the wrong location. While some aspects of computer 
simulations trigger new questions (e.g., concerning code or the epistemic opacity 
of computational processes), others raise questions of types that are already ana- 
lyzed by epistemologists but need no less epistemologically revolutionary answers. 
For example, the role of human faculties in the architecture of human knowledge 
is a central issue in mainstream epistemology. This role sometimes changes. Over 
the centuries, the development of measurement instruments transformed empiri- 
cal science and made it less dependent on our senses. However, till the advent of 
computers, methods, languages but also objects of inquiries were adapted to human 
reasoning and inferential abilities, the reliability of which was crucial to that of scien- 
tific results. The development of computer-assisted science keeps transforming this 
situation (Humphreys 2009, 616). Computers carry out increasing parts of inferential 
processes and scientific inquiries are less adapted to our inferential capacities in their 
objects and methods. However, humans remain the architects of these inquiries, the 
devisers and warrantors of methods and instruments, and the recipients of scientific 
results. In brief, science is no longer human-tailored but remains human-centered 
(Imbert 2017, 771), and we are faced with the “anthropocentric predicament, of how 
we, as humans, can understand and evaluate computationally based scientific meth- 
ods that transcend our abilities” (Humphreys 2009, 617). Overall, the development of 
computational science requires reexamining the place of human faculties in knowl- 
edge and analyzing the evolving distribution of roles between human capacities and 
the epistemic instruments that we use as surrogates. 

Second, a conceptual framework is needed to investigate the scope of this episte- 
mological inquiry about the epistemological novelty of simulations and their valida- 
tion. General epistemology analyzes issues such as the nature, sources, or structure 
of knowledge and justified belief. Specific, applied epistemological inquiries can be 
pursued about the specific practices or processes through which beliefs are acquired 
within fields for which the promotion of epistemic objectives is important, such as 
adjudication, library science, journalism, or science. For example, the epistemol- 
ogy of science investigates how novel scientific contents are unraveled by processes 
such as mental reasoning, calculus, thought-experiments, experiments, or computer 
simulations (El Skaf and Imbert 2013). 

A consequentialist framework like the one used by Goldman for social episte- 
mology (Goldman 1999, 87) provides a useful tool to analyze the various aspects of 
such belief-generating processes. The inquiry is pursued relative to some epistemic 
states, such as knowledge, error, ignorance, or consensus, which are considered to 
have primary or fundamental value. Then, practices can be described as having instru- 
mental value depending on how much they promote or impede the development of 
such epistemic states. Further, it is useful to adopt a fine-grained description of the 
resulting epistemic states. Goldman proposes the notion of “mental infosphere” 
at a time t, which consists of the beliefs of all the people inhabiting the globe at t 
(Goldman 1999, 161). Then, this conceptual framework is used “to widen epistemol- 



 

ogy’s vista” (ibidem, preface) and to show how particular communication systems, 
adjudication rules, media funding systems, testimonial rules, etc., have a positive or 
negative impact on the dissemination of false or true beliefs in the mental infosphere. 
Similarly, one can analyze how much the practices involved in belief-generating pro- 
cesses that comprise computer simulations favor the development of true, error-free, 
consensual, reliable, etc., beliefs in the mental infosphere, or in its scientific part. 

Belief-generating processes involving computer simulations require the expertise 
of specific scientists, organized in specific ways, dedicated to specific practices, and 
using specific tools, languages, or types of resource. Thus, trivially, their epistemo- 
logical appraisal corresponds to a task in its own right since it requires analyzing 
and understanding new types of objects and processes. Further, because inquiries 
involving computational methods represent a large part of scientific activities, this 
task is an important one in scientific epistemology. 

However, the importance and specificity of this task do not imply that, once 
epistemologists tackle it, they are always faced with novel problems. Nevertheless, 
could it really be the case that the computational, logical, mathematical, cognitive, 
and social specificities of computer simulations do not make a single epistemological 
difference and that all the epistemological problems that they raise boil down to 
problems that epistemologists have already solved in different contexts? If this is 
so, applied epistemologists should celebrate this cosmic coincidence and rejoice that 
their past works have such unintended scope. 

In any case, even if simulations reveal epistemological problems that are similar 
or identical to those raised by other scientific activities, they can still be epistemolog- 
ically different. Indeed, answering a traditional question about a novel object is not 
usually trivial. When one tries to solve equations of a new type, one tackles a novel 
problem. Saying that a mathematician who has successfully done so has achieved 
nothing new, because this is (once again!) the same old stew or problem of solving 
an equation would be mathematically naive. Naturally, it may be that answers to 
epistemological questions about simulations are sometimes identical to answers to 
similar questions about other activities, but it cannot be assumed that this will be 
systematically so. Finally, showing that a problem about some type of object is actu- 
ally the same as another problem about another type of object is usually not simple; 
and showing that a problem reduces to another, or that the solution of the latter can 
be adapted to solve the former, is usually an achievement. 

Overall, it is difficult to tell in advance how much the epistemology of computer 
simulation shares with that of other activities. Computer simulations have the same 
target as other scientific activities, rely partly on the same theoretical material, use 
common parts of applied mathematics, and are partly carried out by agents that are 
subject to similar cognitive, scientific or social constraints. Like experiments, they can 
be part of “big science”, often involve using material and nonmaterial instruments, 
massive budgets, various collaborators, and may yield big data. Because all such 
features are not epistemologically neutral, the epistemology of computer simulations 
cannot be radically new, nor should it be carried out separately from epistemological 
inquiries about instruments, mathematics, computer science, statistics, experiments, 
and, naturally, scientific representations and models (see also Frigg and Reiss 2009, 



 

611, Humphreys 2009, 615). In brief, there is no doubt that the epistemology of 
simulations has a lot in common with that of other scientific activities. Identifying 
genuine overlaps, disentangling and explaining shallow similarities from deep ones, 
and determining what is epistemologically specific to computer simulations strictly 
speaking and what is a general feature of computational science corresponds to a 
research program for applied epistemologists (for a critical overview of the case 
of simulations and experiments, see e.g., Imbert 2017, 34.5) In any case, claiming 
from the start that nothing novel is to be found in the epistemology of simulations 
remains puzzling. It is as if Columbus, after only one month in America, had claimed 
that there was nothing specifically new or interesting on this continent because local 
indwellers also had two legs and no road panel pointing at hot discoveries was in 
sight for newcomers. 

For the following discussion, I adopt the following characterization of computer 
simulations (see Imbert 2017, 34.2.1 for more details): 

A computer simulation corresponds to the actual use of a computer to unfold the behavior of 
a physical system S, by generating a description of a potential trajectory of S in the state space 
of a computational model of this system by applying repeatedly an algorithm that computes 
the description of the next state of the trajectory from the description of the previous states. 

Analyzing how the conclusions that are reached with the help of computer sim- 
ulations can be validated requires discussing more than computer simulations per 
se. Computer simulations are embedded within larger scientific inquiries aimed to 
answer specific questions about certain target systems (El Skaf and Imbert 2013, 
3454, Frigg and Reiss 2009, 596). At the end of the day, the key issue is not whether 
computer simulations faithfully represent some target systems but whether the data 
that they yield can be used to provide target questions with answers that are likely 
to be correct. Below, I shall consider that validation describes the process of making 
sure that this is the case. Validation in this sense is directed at inquiries and investi- 
gates the soundness of the production and use of computational results. As for any 
form of reasoning, the value of the final results hinges on both the content of the 
material that feeds them (typically premises, theories, or models) and whether the 
inferential process (which here includes the running of the simulation) is properly 
carried out. As we shall see, the process of validating simulation-based inquiries 
goes beyond the adoption of good scientific methods and has a social or communal 
dimension. 

43.3 Dimensions of Computational Inquiries, or Where 
Things Can Go Wrong Epistemically 

Belief-generating processes relying on simulation-based inquiries are extremely 
complex, from the elaboration and running of computer simulations to the reception 
of results in scientific communities and beyond. An important task for epistemolo- 
gists is to pin down within these processes the various problems that scientists must 
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solve for the final results to be valid, and where detrimental effects can be triggered 
and spoil the process. 

Philosophers of science do not have a strong tradition of investigating scientific 
or epistemic failure. Inquiries about errors and practices are mostly carried out by 
sociologists of science (e.g., see the symmetry thesis about the explanation of false 
and true results in Bloor 1976), philosophers with specific orientations, such as 
naturalists, pragmatists, or advocates of a practice turn (see e.g., Kitcher 1993, Wim- 
satt 2007, Woods 2013), or philosophers investigating issues for which the question 
of errors can hardly be discarded, such as investigations about ampliative reasoning 
or statistics. Still, it is informational to locate within belief-generating processes the 
key factors (or “process variables”) that influence the validity of results or on which 
the epistemic impact of the results hinges, if only to better control these epistemic 
processes. Another task is to analyze specifically the epistemic impact of the adoption 
at these hinge points of particular choices, behaviors, practices, or policies. When 
the corresponding epistemic effects are specific to the context of computer-based 
inquiries, or when such key factors are specific to such inquiries, the validation of 
simulation-based inquiries is a novel problem, which calls for specific epistemolog- 
ical analyses. I illustrate in the following paragraphs such cases. 

43.3.1 The Production of Computational Results: Can We 
Control the Beast? 

Because computer simulations involve carrying out a wide variety of tasks, they 
can fail in many, often specific, ways. Errors may come from the hardware, e.g., if 
single-bit alterations are caused by physical interferences. Failures may be rooted 
in the types of miscomputations or malfunctions that can affect digital computers 
and communication systems (Fresco and Primiero 2013), in particular in the written 
code or the software, which do not always do what we believe they do. Problems 
may come from the type of algorithms that we use to compute functions, to approx- 
imate real functions, or to solve equations, but also from their implementation; from 
the discretization of mathematical objects to make them amenable to computable 
descriptions; from a mismatch between the algorithms (or the models) and the type 
of computational architecture that is used (supercomputers now use parallel archi- 
tectures, which require various adaptations), etc. 

I do not presume to present here an exhaustive list; quite the contrary. Inventorying 
and analyzing specific ways of failing, from the hardware to the inquiry level, and 
assessing the factors that favor or neutralize them is a substantial epistemological 
task. Potentially, it requires a wealth of distinct expertise concerning various parts 
of the process, which clearly makes the situation epistemically uncomfortable for 
epistemologists. Still, this is no reason to discard or ignore this task, which is no less 
important than the analysis of potential sources of errors in other belief-generating 
processes, such as cognitive biases and fallacies of reasoning, logical errors in formal 



 

inferences, typical ways of failing in thought-experiments, or bandwagon effects and 
cascades in belief exchanges within communities. I highlight below aspects of the 
production of computational inquiries that make their validation specific. 

43.3.1.1 Computational Practices: An Evolving Field with Specific 
Epistemic Values 

The success of computational science depends first on the ability of scientists 
to develop specific technical, mathematical, and human strategies to solve hard- 
ware and software problems effectively (for questions pertaining to verification, see 
Sect. 43.3.2 below and Chap. 10 of this volume by Rider). 

These questions cannot be discarded or identified by an armchair inquiry, since 
the issues of where reliability bottlenecks lie, how they are faced, and which ques- 
tions are hot concerning computer simulations and their validation keep evolving 
with technological and scientific progress. For example, for the first computers, “the 
overwhelming problem was to get and keep the machine in working order,” as is 
reflected in the names of societies such as the Association for Computing Machinery 
(Dijkstra 1972, 860). Also, the existence of single-bit alterations may no longer be a 
worry for ordinary simulations, even if it remains an issue for sensitive simulations, 
for which error-correcting code memory (ECC memory) devoted to scientific com- 
puting needs to be used. Similarly, in the late 1960s, the development of computer 
power had triggered needs that could not be answered by programmers’ abilities. 
“Programming ha<d> become an equally gigantic problem” (ibidem, 860), and “the 
software crisis” had arisen, with the development of low quality, inefficient, or dif- 
ficult to maintain software. How scientists have managed this crisis ever since is a 
question worth exploring. 

Anyhow, beyond discussions about the validity of particular inquiries, the average 
validity and global impact of computational inquiries depend on various properties 
of hardware and software. How much hardware and software is globally efficient, 
easily usable, standardized, maintainable, adaptable for follow-up inquiries, trans- 
ferable to other scientific problems, etc., influences how much sound results are 
produced. These properties correspond to epistemic values that are specific to com- 
putational inquiries, so investigations about their impact are clearly novel. For exam- 
ple, a science in which all codes are radically different and all practitioners develop 
their specific solutions is unlikely to be efficient and globally reliable. In contrast, 
the existence of shared codes of good practices and commonly developed software 
tools, or the adoption of common standards (e.g., in terms of hardware, programming 
languages, or mathematical tools) is bound to have positive effects. This shows that 
the epistemology of computational inquiries, like that of instruments, goes beyond 
that of individual practices and overlaps with social epistemology. How much the 
above properties need to be traded against one another and where actual computa- 
tional practices within empirical science lie on this multidimensional map are other 
questions worth investigating. 



 

43.3.1.2 Applied and Computational Mathematics for Limited Social 
Agents: The Case of Random Numbers 

To carry out computer simulations, scientists need to find ways of solving vari- 
ous mathematical problems. Understanding how they do so requires going beyond 
traditional questions in the epistemology of mathematics such as how we interact 
with mathematical entities, make reference to them, or access mathematical truths, 
since the epistemological issue of how we develop mathematical knowledge remains 
largely untouched by answers to these foundational questions. By contrast, the epis- 
temology of applied mathematics and computational science deals directly with the 
issue of how logical and mathematical content is unfolded, knowledge extracted, 
and problems solved given our limited wherewithal, the complexity of the task, and 
the features of the formal tools that we use (see e.g., Wimsatt 2007, El Skaf and 
Imbert 2013, Fillion and Corless 2014, Lenhard and Carrier 2017). Accordingly, 
it involves analyzing how heuristics for mathematical problems work and what we 
can expect from them; how to describe the quality of approximate solutions, how 
to develop mathematical strategies to analyze and control computational errors and, 
more generally, which features influence how applied mathematicians crawl their 
way through complex problems. While applied mathematics is not limited to its use 
in computational science, it is central to this field, and much of it is developed for 
the needs of computational inquiries. 

For illustrative purposes, I now present the case of the production of random 
numbers by simulation practitioners and highlight factors on which the reliability 
of this task depends. The production of random numbers is a central problem of 
modern science. Randomness is a key concept across various theories, and fields 
and scientific arguments involving statements about random properties are frequent. 
A specificity of computer simulations is that they often rely on the use of token 
numbers that instantiate the property of randomness (versus involve statements that 
attribute it). Accordingly, the validity of statements about random properties merely 
relies on the semantic relation between the content of these statements and what they 
denote. By contrast, that of computer simulations and computational inquiries using 
random numbers also relies on our ability to produce such random numbers. Various 
epistemological questions arise in this context. How easy is it to produce the random 
numbers that our computer simulations need? Which factors have an impact on this 
production? Can we expect the random numbers that are usually used in computer 
simulations to be good enough for the preservation of the validity of inquiries? I 
provide evidence that these questions cannot be ignored and have nontrivial answers 
that require going into the details of socio-computational practices, and perhaps the 
psychology of practitioners. 

Whereas almost all sequences of binary digits are random, producing random 
numbers is extremely difficult. The need for scientists to produce many such num- 
bers increases the difficulty of the task. Random number generators (hereafter RNG) 
must satisfy various requirements such as producing uniformly distributed, repro- 
ducible, random numbers, which have periods that are much larger than the samples 
used. Jointly fulfilling all these requirements is in general difficult, but even more so 



 

in the context of parallel computers (Hellekalek 1998). Parallel architectures involv- 
ing thousands of processors were developed in the 1990s and supercomputers are 
now massively parallel. Then, to the extent that parallelization is possible, parts of 
the computational task can be computed synchronically, which speeds up computa- 
tion. Typically, replicas for Monte Carlo simulations can be produced independently. 
Thus, good random generators should be parallelizable. For parallel RNG (hereafter 
PRNG), other requirements are the absence of correlations and, for reasons of effi- 
ciency, the need to generate numbers independently (ibidem, 85). After reviewing 
existing methods to fulfill these requirements, Hellekalek concluded that it was “not 
at all trivial to find high-quality RNGS for parallel machines” (ibidem, 82) and 
that some aspects of the problem (e.g., correlations between disjoint substreams of 
consecutive numbers) were “dangerous territory” (ibidem, 85). Indeed, his analy- 
sis showed that the application of parallelization techniques to standard RNG could 
“perform terribly” (ibidem, 86). Thus, his paper was named “Don’t Trust Parallel 
Monte Carlo”—arguably a big stone in scientists’ shoes, given the importance of 
parallel computers and Monte Carlo methods for computer simulations. 

Naturally, things have improved since Hellekalek’s paper, but full optimism may 
still be inadequate. Scientists’ needs have also increased massively and access to 
supercomputers is difficult. Simulations in nuclear medicine can require as many as 
1020 random numbers for computations carried out on thousands of processors. A 
fundamental problem is that scientists do not have theorems or techniques to prove 
the independence of two parallel random streams (Hill 2015, 68). Further, strong 
autocorrelations within pseudorandom numbers can appear far apart and spoil the 
application of parallelization techniques (De Matteis and Pagnutti 1988). In practice, 
the testing of PRNG is based on a battery of statistical tests, such as BigCrush 
TestU01, which represent the current state of knowledge about random numbers. 
and few PRNG satisfactorily pass the test. The epistemological moral is that it can 
require pointed expertise to determine whether a (P)RNG is sufficient for a scientific 
inquiry. 

The next question for epistemologists is to assess whether the (P)RNG that are 
actually used in science are in general satisfactory. After all, if scientists always use 
the currently best RNG, troubles are unlikely, and epistemologists should not bother. 
Evidence can be found that epistemological optimism may be misplaced again. For 
a scientist without expertise about RNG, the easiest option is to use the “rand” 
functions from standard libraries that are used by her community. The problem is 
that “almost all of these generators are badly flawed” (Jones 2010), and the somewhat 
inconvenient advice here is to “always use <one’s > own random number generator” 
(ibidem). The use of dedicated libraries is no guarantee either. In 2004, Joel Heinrich, 
a researcher in high-energy physics, pointed out serious defects in pseudorandom 
generators provided by standard libraries such as Linux C and C++ as well as a major 
bug in CLHEP (A Class Library for High Energy Physics) class library for random 
generators, that is, tools frequently used by physicists (Heinrich 2004). Similarly, 40 
out of 58 generators in the GNU scientific library were shown to have defects due to 
inadequate initialization schemes (Matsumoto et al. 2007). Indeed, an inadequate use 
of a good RNG can also spoil the broth. For example, a simple way to seed an RNG 



 

is to use the time function existing in most libraries. However, this is not acceptable 
if one launches too many jobs because a large number will start at the same time on 
different nodes. This leads to a repetition of the same calculations many times and 
surreptitiously spoils the statistics (Jones 2010). Unfortunately, this type of problem 
can be hard for practitioners and for the external community to detect. Overall, for 
random number production, the use of communal scientific resources does not protect 
against failure. Thus, because many scientists lack the relevant, evolving expertise 
and do not always resort to experts for such local choices, computational results may 
often be sullied. 

Even then, reliability may be preserved by the transmission of good computing 
practices within communities (see e.g., Wilson et al. 2014). Thus, the average validity 
of computer simulations using random numbers depends on whether communities 
are organized in a way that favors the adoption of sound practices and indirectly pro- 
motes reliability. Social epistemologists of science should then investigate whether 
the right information is easily accessible and actors are incented to do the right 
thing. Good practice guides like that of Jones (Jones 2010) can help practitioners 
adopt appropriate practices or understand that they need assistance. Explicit publica- 
tion standards in good journals can also point out sensitive aspects, if, for example, 
authors are systematically requested to provide details about the nature, properties, 
and implementation of the RNG that they have used. Overall, on this and other issues, 
the reliability of computational science is contingent on the adoption of appropriate 
practices at the community level and on how individual scientists tend to behave in 
this unsafe environment. 

43.3.1.3 Changes in Modeling Practices, Justification Strategies, 
and Typical Usages 

Based on their familiarity with particular types of simulations, some philosophers 
have tried to extrapolate and to single out specific features of the epistemology of 
simulations. For example, in early writings, cellular automata were seen as typical 
illustrations of the epistemological novelties brought about by computer simulations. 
More recently, Winsberg has suggested that the knowledge produced by simulations 
results from inferences that are downward (from theories to phenomena), motley (the 
justification process is a combination of disparate elements), and autonomous (see, 
e.g., Winsberg 2010, passim).

Unsurprisingly, such claims are easy to falsify. Simulations are versatile, mostly
neutral inferential tools. Like other general tools, they can be used in various (epis- 
temic) contexts and depending on the cases, the appropriateness of their use can be 
justified in different ways. In brief, simulations are epistemologically heterogeneous 
and the project of finding some general, novel features about how their results are 
justified seems doomed to fail. Because models are also versatile tools, their epis- 
temological uses are also heterogeneous. At the end of the day, it is no surprise 
that epistemological features instantiated by simulation-based inquiries can also be 
instantiated by (pen-and-pencil) model-based inquiries. The conclusion should not 



 

be that the general epistemology of simulations boils down to that of models but 
rather that neither (the class of) model-based inquiries nor (the class of) simulation- 
based inquiries correspond to epistemological kinds that provide appropriate units 
of analysis for general investigations about validation strategies. 

To discuss validation strategies and assess the different types of roles that simula- 
tions can play within these strategies, inquiries should be described at a fine-grained 
level by specifying their goals, what is known about the target systems, what tools 
and resources are available, etc. Then, it may be the case that simulations sometimes 
open up a space for novel validation strategies or, more frequently, for new versions 
of existing strategies. Generic modeling practices such as approximating, idealizing 
or abstracting are a way to use models which, though tractable and simple, produce 
results that suit the particular goals of inquiries. While these procedures are already 
analyzed in the literature on scientific models, it remains worth investigating whether 
these generic practices have specific versions and require particular epistemological 
scrutiny in the context of simulation-based inquiries. Similarly, ensemble forecasting 
can be seen as nothing novel since it amounts to combining different incompatible 
epistemic sources (here simulations) to make (predictive) judgments. However, it 
is usually agreed that this procedure calls for specific analyses in the context of 
simulations and climate analysis. 

Importantly, the epistemology of science should analyze what validation strategies 
are used in suitably described contexts, but also how frequently these strategies 
are used, and why. Epistemological features like those highlighted by Winsberg, 
though not specific to simulations, may correspond to strategies that develop with 
computational science. Arguably, because computer simulations are a powerful tool, 
they are likely to be used in more complex and uncertain cases, which would not be 
investigated otherwise and which constrains the selected strategies. Then, because 
of this type of use, computational inquiries may seem, on average, to have specific 
features and an epistemology of their own and they may modify how science is 
usually practiced. For example, simulations may more often involve approximations 
and departures from the truth, epistemologically mixed or impure methods, trade-offs 
between epistemic goals, etc., even if, when philosophers of science analyze their 
aspects individually, the practices that they find are not radically different from those 
identified for other types of model-based inquiries (see Imbert 2017 for more details 
and similar analyses about unexplanatoriness and simulations). Overall, the failure 
to note the difference between analyses in terms of properties of token inquiries and 
analyses in terms of frequent features of inquiries may be another cause of dissent 
concerning the novelty of the epistemology of simulations. 

In any case, computational science may require a specific analysis with respect 
to typical modeling or justification practices within communities. For example, the 
availability of computational power may change which modeling strategies are most 
often used. As noted by Frigg and Hartmann (2017, Sect. 3.1), computational power 
may encourage scientists “to swiftly come up with increasingly complex models.” 
This may lead in turn to an improvement of the empirical adequacy of predictions, 
but not necessarily to a better understanding of underlying mechanisms. In the end, 
such changes may modify which goals are valued and which modeling norms are 



 

dominant within the cultures of communities using simulations. Differences of these 
types can hardly be analyzed by scrutinizing exclusively the content of particular 
representations. 

43.3.1.4 Division of Scientific Labor, Computational Inquiries, 
and the Preservation of Validity 

Various types of tasks requiring different types of expert knowledge need to be ade- 
quately carried out for the production of valid computational results. Because no 
single individual can possess all the relevant knowledge, scientists need to divide 
the global task into subtasks, and delegate their completion to specific humans or 
machines. Then, how much computational science can felicitously “<push> back 
the boundaries of what can be known” (Humphreys 2004, 154), depends on how 
much safe practices of dividing labor, which does not compromise the validity of the 
global inquiry, can be applied. The possibility to divide inquiries into standardized 
nontrivial units or modules that can be carried out independently and recombined 
together to yield sound results is beneficial, in particular for the validation of simu- 
lations. For example, different actors with pointed expertise can be in charge of each 
module and produce more reliable collaborative inquiries; some failures can be more 
easily localized by means of local tests; other failures may have local impacts, etc. 
The advantages of modularity are not specific to computer simulations. However, 
how much modularity is possible and beneficial for simulations and their validation 
requires a specific investigation. The following argument can be used to clarify the 
situation and explain why validating simulations can be difficult. 

P1  If, in a perfectly modular structure, each individual module works, so does the whole 
structure. 

P2  Simulation-based inquiries are perfectly modular. 
P3  It is straightforward to check whether the modules of simulation-based inquiries work. 
∴		 It is straightforward to check whether simulation-based inquiries work 

Evidence seems to suggest that conditions P2 and P3 are often false for simula- 
tions. For example, while well-designed modularity is desirable, it is often conspic- 
uous by its absence from programs: “patches, ad hoc constructions, bandaids and 
tourniquets, bells and whistles, glue, spit and polish, signature code, blood-sweat- 
and-tears, and, of course, the kitchen sink—the colorful jargon of the practicing 
programmer seems to be saying something about the nature of the structures he 
works with” (Millo et al. 1979, 277). In various cases, there is uncertainty about 
how much modules actually work and whether potential departures from exactness 
are a worry. Typically, mathematical functions are often approximately computed 
by the versions that libraries provide. If users are not strongly aware of the lim- 
its of the specific functions within libraries, the results can be corrupted (see the 
case of random numbers described above). Lenhard also supplies the example of the 
practice of “kludging”, i.e., using quick-and-dirty and hard to maintain solutions to 
make software work (Lenhard, forthcoming, see also Chap. 38 by Lenhard in this 



 

volume). This implies that knowledge concerning the validity domain of parts of 
the software can become lost. Further, in many cases, the fact that black-boxes are 
used makes it impossible to check deeper into the modules. Overall, this means that 
the global validity of computational inquiries can become corrupted and uncertainty 
often remains as to whether this is the case. In practice, modularity may be a solution, 
but not always a blissful one. 

The various reasons for this corruption of modularity, whether it is inevitable, 
and the strategies developed by practitioners to preserve validity when modularity 
is eroded, are other questions worthy of study. Answers may differ depending on 
the aspects or fields considered. For software architecture, there are clearly “reasons 
for degeneration: ongoing evolutionary pressure, piecemeal growth. Even systems 
with well-defined architectures are prone to structural erosion” (Foote and Yoder 
1999, Chap. 29, quoted by Lenhard). At the same time, “a sustained commitment to 
refactoring can keep a system from subsiding into a big ball of mud” (ibidem). How 
much safe modularity is preserved depends on which types of tools, practices, and 
norms are actually adopted within a scientific community, from the hardware to the 
modeling level. This is again a contingent issue, which epistemologists cannot ana- 
lyze by armchair analyses. Importantly, different factors pull in different directions. 
Modularity brings about epistemic advantages, such as the facilitation of piece-wise 
validation and understanding of inquiries and their results. However, preserving mod- 
ularity can be extremely costly. Similarly, reusing and adapting modules beyond their 
initial domain of validity to produce more results quickly is a legitimate concern, 
even if this tends to make errors more likely. Describing more precisely the trade-offs 
between these different epistemic goals can help to understand the constrained epis- 
temic choices that resource-limited practitioners and communities are faced with, 
why some practices are considered as good, acceptable or sloppy, or why some types 
of errors or problems can be expected within computational inquiries. Depending on 
the orientations that are taken by communities concerning these matters, different 
types of computational science are possible. 

43.3.1.5 Computer Simulations for All: What Epistemological Effects? 

Computational science increasingly benefits from the development of various tools 
at the hardware, software, or modeling levels. Individual scientists would not be 
able to complete many inquiries without all these computational, mathematical, and 
modeling facilities. This situation keeps lowering the epistemic cost of the run- 
ning of computer simulations (in terms of what one needs to know). Even scholars 
within communities with no strong training in computer science and mathemat- 
ics can develop potentially valid simulations. But is this really safe: can individual 
scientists really afford epistemic ignorance and still produce sound computational 
results, or is this a lure? Actually, the epistemic price to validate results properly 



 

may remain high.1 Indeed, the question of whether partly reliable tools and facilities 
work well usually calls for a context-specific answer, and determining this answer 
requires expert knowledge concerning both the tools and the subject matter. Thus, 
new tensions arise from these modern facilities, which offer opportunities to produce 
a wealth of results across scientific fields but come with new risks of failure. While 
this tension exists for other complex activities, it is extremely acute here. How scien- 
tists eventually behave, i.e., how much they cope on their own or ask other experts or 
collaborators for help hinges on many factors. These include the cost of human and 
computational resources, how much failure is risky and acceptable, whether errors 
are often detected by peers and tarnish scientific reputation, etc. The productivity 
and reliability of computational science can vary significantly depending on what is 
the case concerning such factors. 

43.3.2 The Reception and Post Hoc Assessment 
of Computational Results 

A bad result that is used has a detrimental impact. A sound result that is ignored has 
no beneficial effect. In both cases, we are epistemically worse off. Accordingly, epis- 
temology must also scrutinize how results are publicly validated, accessed, trusted, 
and used once they are produced. I highlight below a couple of issues that make this 
problem specific for computational inquiries. 

43.3.2.1 Epistemic Access 

For mind-produced results, inferential processes and their conclusions, qua linguis- 
tic entities, are accessible to the authors, who personally carry out these activities. 
Publication extends this access to the public. Things are different for computer sim- 
ulations. These are carried out by external processes. Thus, the authors no longer 
have a privileged epistemic position. Furthermore, even if the content of computer 
simulations can be described logically (putting aside issues concerning physical 
implementation) and can be made accessible provided that scientists preserve bit- 
reproducibility (Demmel and Nguyen 2013), in practice, practitioners usually cannot 
access the details of computational processes. In other words, simulations remain 
globally epistemically opaque (Humphreys 2009), even when they are locally trans- 
parent (Imbert 2017, 726): a human mind can inspect any part of the process though 
it cannot inspect all the parts. Things are worse for the more distant scientific audi- 
ence. In most cases, the public can access a tiny fraction of the results through tables 
or graphs. In some cases, the whole data set and the code are available for inspection, 
while in rarer cases, this is true for the whole state-by-state simulation. However, it 

1Similarly, knowing the main effects of drugs may give lay people the illusion that they can safely 
decide whether they should take them when they are sick. 



 

is virtually never so for the bitwise computational process. Overall, how much of 
the process can be accessed, directly (by human minds) or indirectly (with software 
facilities), depends on computational questions, publication policies, issues related 
to openness and proprietary use, or the development and maintenance of storage 
facilities and exploitation software. (Note that the overlap with similar issues for 
experimental science is merely partial). Since public validation and good use are 
contingent on the possibility of access, the epistemic impact of simulations clearly 
depends on how this problem is socially and technologically treated within scientific 
communities. 

43.3.2.2 Verification of Program Correctness 

Accessing results is one thing, trusting them and using them is another. It does not 
matter that some type of process often produces adulterated results if its users can 
identify and use sound cases. In brief, whether it is possible to certify the reliability 
of simulations is crucial to their felicitous use. Here again, the epistemology of 
simulations overlaps with that of other activities but it has its specificities. 

At a low level, program verification is a matter of verifying whether token com- 
putational runs have the appropriate causal behavior, which is a specific version of 
the problem of inductive inference (Fetzer 1988, passim). At a higher level, it can be 
seen as that of verifying whether algorithms and their coded counterparts do what 
they should. De Millo et al. (1979) argued that program verification does not work 
like proof verification. Mathematical proofs are usually sketches of proofs (versus 
formal proofs in the logician sense), and their logical validity is publicly discussed 
by mathematical communities. Program verification is different, because proofs of 
program correctness for real-life systems are long, tedious, and repetitive, and are 
not usually published nor publicly discussed (De Millo et al. 1979, 276). Dijkstra (a 
defender of program verification) counterargues that proofs of program correctness 
can also be the object of lively exchanges between scientists. Further, trivial math- 
ematical theories also have simple statements “whose finite proofs are impossibly 
long” (Dijkstra 1978). Thus, for both proofs and programs, mathematicians need to 
find concise and elegant proofs. 

Fortunately, for the purposes of this chapter, there is no need to endorse a position 
about the nature and ideals of program verification. Epistemology deals with what we 
can do in practice and what we actually do, given our epistemic, computational, and 
cognitive wherewithal and the incentives within our epistemic communities. Simi- 
larly, Wikipedia may change nothing of the nature of knowledge, justification, and 
science, but it changes how agents with limited resources and cognitive biases access 
knowledge. Thus, its existence modifies our epistemological situation and changes 
which beliefs propagate throughout human societies. Here, even if proofs of program 
correctness and mathematical proofs share the same nature and ideals, in practice, 
strong epistemological differences between them remain. If proofs of program cor- 
rectness are usually not published, are less valued as scientific achievements, less 



 

scrutinized, much longer and extremely repetitive, then, from an epistemological 
point of view, program verification works differently. 

Further, verification of programs is de facto a partly specific problem for scientific 
activities outside mathematics and computer science. Millions of lines of code are 
regularly written for the purpose of scientific activities. The more software facilities 
develop, the more scientists with no specific background in computer science write 
code, which is neither verified by formal methods nor undergo the interested scrutiny 
of computer scientists or mathematicians. This raises the question of how these codes 
are actually tested and how reliable related procedures are. In the absence of a grand 
theory of testing, “programmers are probably better off using the tools and insights 
they have in great abundance. Instead of guessing at deeply rooted sources of error, 
they should use their specialized knowledge about the most likely sources of error” 
(De Millo 1978, 41) and rely on their “intuition and problem-dependent knowledge in 
a disciplined manner to test for a variety of specified error types” (Shapiro 1997, 31). 
Further, program correctness merely guarantees that the implementation matches the 
specifications; but these can themselves be flawed (Shapiro 1997, 32), and unexpected 
physical, mathematical or computational conditions or situations can bring about 
failure. In brief, testing often relies on a messy combination of formal and nonformal, 
subject-specific, and partly dirty strategies. Thus, while the epistemology of computer 
simulations and software engineering is at the crossroads of other disciplines and 
overlaps with them, it does not reduce to them and requires a specific scrutiny from 
philosophers of the empirical science, even if they still lack the corresponding culture. 

43.3.2.3 Verification of Mathematical Correctness 

Even if computer simulations work properly at the hardware and software level, they 
may be unsatisfactory because they compute solutions that are not close enough to 
the unknown solutions of the target models or equations. In the frequent absence of 
mathematical theorems to guarantee that this is so, assessing whether this is the case 
is difficult. I will not develop this point here, as it has already been discussed in the 
literature (see e.g., Winsberg 2010, Chap. 2, Frigg and Reiss 2009, 603). 

43.3.2.4 Reproducibility 

Scientists can be willing to replicate or reproduce simulations and their results. 
Replication is costly and not all scientific results or simulations are replicated. Nev- 
ertheless, the possibility of replication is a cornerstone of science and the validation 
of scientific results. In principle, it is possible for entities that can be defined or pre- 
sented unambiguously by linguistic means. By contrast, replicating experiments or 
thought-experiments can be controversial, which may feed epistemological problems 
like that of the experimenter’s regress (Collins 1985). 

Over the past decade, there has been a growing awareness that present scientific 
practices and publication rules often do not match replicability standards (Baker 



 

2016). This is referred to as the replication, replicability, or reproducibility crisis in 
science. Until recently, it was seen as touching almost exclusively experimental sci- 
ence. As it turns out, computational activities are also concerned. Failure to reproduce 
computational results or to replicate a computation can stem from various sources: 
the authors may not share their code; the representation of real numbers may vary; 
the order of associative operations such as addition and multiplication may make 
a difference in floating point representations; programming languages, compilers, 
operating systems, and finally computational architectures may make a difference 
(Hill 2015), etc. How serious is the problem for computer science and computer sim- 
ulations in particular? Some researchers like Claerbout have struggled over the years 
to create a reproducible research environment and have reported how difficult this 
has been (Fomel and Claerbout 2009). More recently, Collberg and Proebsting tried 
to replicate computer science research presented in 601 papers from the respectable 
Association for Machinery conferences and journals (Collberg and Proebsting 2016). 
They defined different degrees of repeatability based on how difficult they found it 
to repeat the research. In spite of their efforts, 47% of the 601 target papers turned 
out to present non-repeatable research. It is unlikely that computer scientists are 
more careless concerning reproducibility than researchers who simply use computer 
simulations for their research. Accordingly, epistemologists should not indulge in 
wishful thinking concerning the replicability of computer simulations, and, arguably, 
computer simulations also raise a specific reproducibility problem. 

43.3.2.5 Trust 

Overall, the impact of computational results depends on how much and when the 
results of computer simulations are trusted, and whether this trust is misplaced or not. 
If one takes a general, abstract, bird’s eye view of this problem, it looks familiar and 
seems to boil down to the issue of how and when scientists accept being epistemically 
dependent on their peers and using their results (Hardwig 1985). The answer can 
be described in terms of networks of trust or trust indicators such as the scientific 
reputation of journals, scientists, or institutions. However, at a more fine-grained 
level, how much trust toward computational results is distributed and how these 
trust indicators are fed depends on the details of practices across fields. Here again, 
computer simulations may require specific scrutiny. 

43.3.2.6 Publication Procedures and the Setting of Appropriate 
Standards 

Publication procedures contribute to the production, assessment, and diffusion of 
good results. Tuning them appropriately for computational inquiries can be specif- 
ically beneficial with respect to some of the problems described above. I shall give 
brief examples here. 



 

Because access to relevant information is crucial for replication or validation by 
peers, but also for novel inquiries that use existing data (e.g., those generated by big 
simulations such as the Millenium Run), editorial rules, or requests concerning what 
information authors must provide, as well as openness and proprietary issues, can 
influence the epistemic impact of computer simulations. 

Editorial rules can also be used to keep “educating” members of scientific com- 
munities about what can spoil simulations (e.g., if authors are requested to provide 
detailed information about the (P)RNG they use). This is particularly true since 
computational science evolves at a brisk pace and communal practices need to keep 
adapting to guide individuals. 

Beneficial results can also be achieved through appropriate authorship practices. 
Collaborative science is now widespread, which may undermine epistemic account- 
ability and feed a decrease of reliability (Andersen 2014, Imbert 2014). In this context, 
major journals, like Nature or JAMA, have started adopting policies to make authors 
list their respective contributions, and what they endorse responsibility for (Rennie 
2001), as well as who the guarantors are (Rennie 1997). In the context of computer 
simulations, adapted versions of these policies may be adapted to indicate the crucial 
scientific roles that must be endorsed to carry out and validate simulations properly. 
This may put virtuous pressure on practitioners, e.g., concerning the interpretation 
of agent-based models by computer scientists with no object-specific expertise, or 
the internal validity of simulations carried out by researchers with little expertise in 
computational methods. 

43.4 Should Epistemologists of Science Bother, After All? 

As seen above, belief-generating processes involving computer simulations can fail 
in various places, spoiling their epistemic impact. Can epistemologists ignore these 
issues? Epistemologists of science have a strong tradition of focusing on scientific 
representations. So far, the issue of the validation of simulations has mostly been 
tackled through the lens of the epistemology of models and question such as whether 
partial misrepresentations (e.g., due to idealizations, approximations or abstractions) 
threaten the conclusions that can be drawn from models (Frigg and Hartmann 2017). I 
now provide general arguments to the effect that an adequate epistemological analysis 
of computer simulations should extend beyond these questions. 

43.4.1 Target Models, Actually Investigated Models, 
and Failure 

When a simulation is carried out, a computational model is always exactly explored, 
even if it differs from the model targeted for investigation. So the validity of a 



 

simulation always boils down to that of this computed model. Therefore, why extend- 
ing investigations beyond those of models? 

Unfortunately, such a position begs the question. First, the model that is actually 
computed can be unknown, e.g., because unnoted errors spoil the investigation, so 
the above position makes scientific failure more difficult to analyze. Second, the 
exact description of these actually computed models should include hosts of gory 
mathematical and computational details as well as information about the software 
and hardware, i.e., much more than philosophers analyzing models usually discuss. 
Thus, at the very least, one must distinguish between the target models that one 
would like to investigate and those that are actually investigated, knowingly or not. 
Third, focusing on the content of target models also remains unsatisfactory. From 
an epistemological point of view, what matters is less the potential of target models 
than what is actually extracted from them by practitioners. Typically, if some Monte 
Carlo practitioners use low-quality random numbers, their results may be incorrect, 
whether or not the target average quantity in the model represents the target system 
property correctly. Overall, analyses about models and mathematical–computational 
practices are complementary. Just as investigations about the death toll on roads 
cannot be reduced to analyses of the driving code and road maps, discussions about 
the epistemology of models and scientific representations cannot save us the effort 
of epistemological investigations about mathematical–computational practices. 

43.4.2 The Valuable Redundancy Argument 

Let us assume for the sake of the argument that the epistemological analysis of 
computational models could exhaust that of computer simulations. Even so, much 
independent epistemological work would be needed to describe how other aspects 
of simulations, such as coding, mathematical practices, verification procedures, etc., 
favor the production of reliable results. This can be understood with an analogy 
to classical mechanics. Even if one knows exactly the trajectory of a deterministic 
system, there remain hosts of regularities to be discovered between other variables 
describing the system. These regularities are somewhat redundant, since anything 
about the system’s behavior can be derived from the knowledge of its trajectory. 
Nevertheless, discovering such regularities remains epistemically valuable. Simi- 
larly, investigations into the reliability of computational practices and their epistemic 
impact are valuable, even if the validity of computer simulations is determined by 
the very content of the models that are investigated. 

43.4.3 The Procrustean Objection 

Finally, one might argue that many of the questions described above are novel 
but belong to formal or empirical science. As such, they might be discarded from 



 

epistemology, leaving nothing substantially novel in the epistemology of simulations. 
For example, Frigg and Reiss emphasize that questions, e.g., about the relationships 
between numerical and actual solutions or the impact of truncation errors are “purely 
mathematical problems” (Frigg and Reiss 2009, 592, 602). 

This type of answer is perplexing. Once one has provided clear-cut and consensual 
notions of what counts as logical, mathematical, epistemological, etc., inquiries, one 
can analyze which questions fall within the scope of these inquiries. This is what 
I have done above with the consequentialist epistemological framework used by 
Goldman for social epistemology. In this perspective, nothing precludes that some 
problems or sub-problems belong to several disciplines—or one should explain why, 
whereas disciplines are historical and partly conventional constructs, there cannot 
be a partial overlap between them. The sub-problems that need to be tackled to 
pursue epistemological inquiries can also be considered to be epistemological ones, 
although perhaps derivatively. It would be implausible to claim that (the solutions of) 
philosophical or epistemological questions cannot involve (those of) mathematical 
or scientific questions. 

Let us take an example. Suppose that one pursues epistemological investigations 
about journalistic practices and how much they promote the diffusion of true beliefs 
(see e.g., Goldman 1999, Chap. 6). Then, the solutions of various cognitive, techno- 
logical, sociological, or economical questions about journalism and communication 
systems are relevant to these investigations and overlap with them. Further, these 
investigations coincide with those pursued by “theoretical journalists”, who search 
for demonstrably reliable journalistic practices. However, epistemologists of journal- 
ism do not assess either the reliability of particular pieces of information or whether 
journalistic rules are applied correctly. 

The case of science is analogous. Scientists try to develop safe practices to extend 
scientific knowledge. Thus, proving results about the reliability of particular methods, 
applying sound practices, and assessing the validity of particular inquiries is directly 
their task, even if it may provide indirectly relevant information for epistemological 
inquiries. Epistemologists analyze science and the reliability of its practices in order 
to present a faithful picture of science, given the epistemic, technological, sociolog- 
ical, etc., conditions in which it is practiced. Then, the assessment of the general 

reliability of scientific practices or possibility or impossibility results about these 
practices is common concerns for both inquiries. Emphasizing this overlap does not 
amount to confusing the goals and tasks of scientists with those of epistemologists. 

Overall, if it deals with the epistemic analysis of natural belief-generating pro- 
cesses, epistemology inevitably intersects the fields that investigate specifically these 
processes, what they are and what they can be like. Accordingly, impossibility and 
complexity results in mathematics, logic, and computer science, results in cognitive 
and social psychology about reasoning and biases, results about the aggregation of 
individual judgments and preferences, or sociological analyses of how scientific com- 
munities work intersect epistemological inquiries. In the present case, mathematical 
questions about the complexity of verifying programs or psychological and socio- 
logical questions about how computational communities are organized epistemically 

and how scientists behave within them overlap with epistemological inquiries about 



 

the validation of computer simulations. Discarding the epistemological dimension 
of these intersectional questions for the purpose of a non-novelty argument amounts 
to elaborating an inadequate Procrustean version of epistemology. 

43.4.4 The Absence of Data Argument and the Ostrich 
Strategy 

Pointing at problems that can spoil the validity of computational inquiries is one 
thing, nevertheless, some may be already solved or may have a minor impact. Thus, 
one would need to know which of these problems frequently generate errors that 
threaten the validity of simulations, and which can be idealized away. 

Unfortunately, it is extremely difficult to provide data about how often and why 
computer simulations fail since correct results are usually unknown and cannot be 
used as an external standard. However, the absence of accessible evidence about 
something in no way disproves its existence. There are many reasons why failures 
of computer simulations are not likely to be detected or publicized when they occur. 
First, simulations are not self-certifying activities in the sense that simulating a 
system does not produce direct evidence by itself that the simulation is successful. 
By contrast, juggling is self-certifying: when one juggles correctly, one immediately 
knows about it. Second, when computational inquiries unknowingly fail, usually 
some data are still produced. Once criteria of syntactic correctness are met, computer 
simulations always yield numbers, and practitioners need to deploy specific vigilance 
to track potential troubles. Third, not all robustness tests (e.g., by using different 
computational architectures, codes, libraries, etc.) can be carried out. Fourth, external 
detection of failure is often difficult because the details of computational activities 
are usually not public, replication is difficult, and incentives for replications are 
low. Fifth, because problems can be potentially ascribed to various tasks in the 
process, localizing failures means facing a specific version of the Duhem–Quine 
problem (Winsberg 2010, 24, Frigg and Reiss 2009, 604). This undermines scientific 
accountability and may encourage sloppier practices. Finally, even when failures are 
detected or suspected, nothing may happen, unless something major is at stake. 
Scientific life is short, resources are scarce, publicly localizing others’ errors is time- 
consuming, and pay-offs for doing so are usually low. Accordingly, scientists may 
simply do nothing and let the results that seem fishy feed the gray zone of science. 
Overall, it is difficult to assess computational failure satisfactorily. Direct methods, 
e.g., by counting public detections of errors or retractions, are likely to grossly
underestimate it and computational science runs the risk of the invisibleness of its
failures.

It is often sound policy to leave aside issues that one cannot treat correctly. Never- 
theless, the difficulty of directly observing some phenomena and the unavailability of 
objective standards for evaluation purposes are frequent in science, and they do not 
discourage scientists. The epistemological analysis of adjudication systems raises 



 

similar problems, because one never knows what the right verdict should be (Gold- 
man 1999). Yet indirect ways out of the deadlock can be found out. For example, 
when a lay jury and a jury involving judges, or a real jury and a mock one give 
different verdicts, the two cannot be correct. This was used to investigate the effects 
of jury size and decision rules (Kalven and Zeisel 1966, Hastie et al. 1983). Here, 
the inability to replicate computer simulation results may, for example, be used as 
a general indicator of their invalidity. If some authors do not manage to replicate 
some computational results, this could mean that these results are sensitive to the 
method used, and their supposed scope is usurped. Alternatively, the method could 
have been badly implemented, or there may be some initial vagueness concerning the 
target model, which often surfaces when codes need to be effectively written. Over- 
all, dropping the case of the epistemological assessment of computational practices 
on the ground of armchair arguments or, because it is difficult, would be tantamount 
to behaving like ostriches, which according to rumor bury their heads in the sand in 
the face of danger. Further, given the evidence that computational practices can fail in 
various specific ways, the burden of proof lies on the shoulders of the epistemologists 
of science who claim that sources of failure for simulations can be idealized away or 
ignored, except when it comes to their pet research topic (typically misrepresentation 
for philosophers of scientific models). 

At the end of the day, I have no optimistic or pessimistic general conclusion to 
make about the present validity of computational inquiries. The point is rather that, 
given the type of activity that they are, and all the factors that can spoil them, it is not 
difficult to figure out states or domains of science in which simulations are sloppy or 
unreliable methods. Thus, it is worth investigating what is the case, why, and whether 
things can be improved epistemically. 

43.5 Conclusion and Moral 

Computer simulations have changed science. Over the past decades, it has been 
claimed that they also needed a novel, if not revolutionary, epistemology. Some such 
claims were over-stretched and the criticisms they raised were legitimate. However, 
one should be careful not to throw away the baby with the bathtub water. I have 
tried to present a sober version of the thesis of the epistemological novelty of simu- 
lations. I have adopted for clarification purposes a conceptual framework borrowed 
from Alvin Goldman and used it to emphasize that the computational, mathematical, 
representational, social, and potentially psychological dimensions of computational 
inquiries and their reception within scientific communities require specific epistemo- 
logical investigations if one is to understand their validity and their epistemic impact. 
These investigations often raise novel questions, especially with respect to objects 
of novel types, like hardware and software, or call for novel and context-specific 
answers to traditional questions. I have not discussed the cognitive dimension of 
inquiries based on computer simulations, even if it is potentially an important one. 
For example, how we cognitively handle code or complex computational models, 



 

control computational activities, interact with computers, analyze and grasp compu- 
tational data, which specific skills are required for these activities, and which type of 

biases are more frequent in this context are questions worth investigating. I have not 
discussed either how much the epistemology of activities like theorizing, predicting, 
evaluating, corroborating, explaining, or understanding, is altered when it is carried 
out by means of computer simulations (see Imbert 2017 for the last two questions). 

Are these conclusions about the epistemological specificity of simulations so 
surprising? Over the past three decades, epistemologists and philosophers of sci- 
ence have provided analyses that Kitcher characterizes as belonging to the return 
of naturalists (Kitcher 1992). Against epistemological investigations that are almost 
exclusively centered on the content of representations, such approaches emphasize 
the epistemological importance of studying the various aspects of belief-generating 
processes, in particular, their psychological and social dimension (see Kitcher 1993, 
Solomon 1994, Goldman 1999, and Kitcher 2002 for an insightful overview). The 
above analyses fit within this naturalistic perspective and show the need to include 
a computational dimension, broadly construed, to epistemological analyses when 

computers are part and parcel of scientific belief-generating processes, which is an 
increasing majority of cases. 

Overall, such a naturalistic epistemology is bound to be demanding for students of 
science. Philosophers of empirical science usually have a cognitively costly educa- 
tion, both in philosophy and empirical science. This makes the study of scientific rep- 
resentations a natural level of inquiry and an ecological niche for them, after decades 
of logic-oriented analyses of science. However, if the epistemology of science and 
computer simulations, in particular, requires delving deep into psychological, social, 
or computational aspects of scientific processes, an unfortunate combination of dif- 
ferent types of expertise is needed to develop it. Furthermore, one cannot expect these 
epistemological questions about the uses of computers in the empirical science to be 
disciplinary central for philosophers of mathematics and computer science, sociol- 
ogists, or psychologists. Naturally, analytically minded epistemologists should hail 
results showing that aspects or dimensions of computer-based belief-generating pro- 
cesses can be ignored or treated independently. Also, searching where it is easier can 
be methodologically sound and rational up to a certain point. Nevertheless, episte- 
mologists should guard against the streetlight effect and unjustified simplifications 
for fear of producing an incomplete and distorted picture of the epistemology of 
computer simulations. 

Attempts to refute extreme or early versions of claims do not provide solid evi- 
dence for considering that their moderate versions are totally false. Using such refu- 
tations to discard incipient and burgeoning analyses about a novel issue looks like 
falling prey to confirmation bias. Frigg and Reiss, after rejecting the idea that aspects 
of the epistemology of simulations are novel, defend a conservative normative stance 
about which scientific orientations should be adopted. They recommend considering 
analyses about simulations as merely feeding existing debates, in particular, those 
about scientific models. Although synergies are needed and overlaps are worth inves- 



 

tigating, such a perspective is unduly narrow. Its blind adoption as a communal view 
may have a chilling effect and distract from important questions that deserve atten- 
tion, at least if one wants to understand how scientific knowledge is developing at 
the current time. 
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