

Regio- and diastereoselective Pd-catalyzed synthesis of C2-aryl glycosides

Juba Ghouilem, Rémi Franco, Pascal Retailleau, Vincent Gandon, Samir

Messaoudi

► To cite this version:

Juba Ghouilem, Rémi Franco, Pascal Retailleau, Vincent Gandon, Samir Messaoudi. Regio- and diastereoselective Pd-catalyzed synthesis of C2-aryl glycosides. Chemical Communications, 2020, 56 (52), pp.7175-7178. 10.1039/D0CC02175J. hal-03036431

HAL Id: hal-03036431 https://hal.science/hal-03036431

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ARTICLE TYPE

Regio- and Diastereoselective Pd-catalyzed Synthesis of C2-Aryl Glycosides

Juba Ghouilem,^a Rémy Franco,^a Pascal Retailleau,^b Mouad Alami,^a Vincent Gandon^{c,d}* and Samir Messaoudi^a*

An efficient regio- and diastereoselective arylation method of readily available 2,3-glycals with various aryl iodides has been established. Using the Pd(OAc)₂/AsPh₃ precatalytic ¹⁰ system, this protocol proved to be general to prepare a variety of substituted C2-aryl glycosides in good yields with complete diastereoselectivity.

5

C-aryl glycosides are key motifs in medicinal chemistry and drug discovery including antibiotics, antitumors, as well as antidiabetic

- ¹⁵ agents (Figure 1).¹ These common motifs are also found in many natural bioactive compounds.¹ C-aryl glycosides are considered as glycomimetics of biologically relevant *O/N*-glycosides and usually show enhanced resilience to enzymatic and hydrolytic cleavage under biological conditions.² Thus, C-aryl glycosides
- ²⁰ have emerged as a privileged class of saccharides with diverse potential applications. In this context, a plethora of methods³ related to the synthesis of C1-aryl glycosides has been reported, in which the aryl nucleus is linked to the sugar unit through the C-glycosidic bond. In contrast to this well-developed series, there
- ²⁵ are still only few reports on the preparation of C2-aryl glycosides (Scheme 1). C–C bond formation of C(sp³)-hybridized glycosides suffers from a difficult installation of a reactive function at the C2 position of the sugar that could be further elaborated to furnish the targeted C2-aryl glycoside. Adding to this the difficulty to
- ³⁰ control the stereoselectivity, C2-arylation is actually a very challenging synthetic endeavor.

Davis and co-workers reported a Suzuki cross-coupling approach⁴ of 2-iodoglycals to furnish $C2(sp^2)$ -aryl glycosides in excellent yields (Scheme 1a). While this method highlights an

³⁵ important achievement in this underdeveloped area, the narrow scope of only *O*-benzylated glycals and poor functional group tolerance limits its utilization. Recently, Mukherjee group

Figure 1. C-aryl glycosides-based bioactive molecules reported an elegant method for the diarylation of glycals and pseudoglycals with aryl boronic acids under Pd-catalysis (Scheme 1b).⁵ Selectivity was C1–C2(α,α) in the case of glycals 55 but C2–C3(β , β) for pseudoglycals. However, this method is limited to acetylated glycals and only leads to symmetrical diarylated C-glycosides. Another way to prepare C2-aryl glycosides reported by Tenaglia et al.,6 consists in the transformation of o-iodoaryl branched hex-2-enopyranosides 60 through an intramolecular Heck reaction to *cis*-fused aryl pyranosides (Scheme 1c). Based on these few literature reports to access to C2-aryl glycosides, we became interested in developing a direct approach. In this context, we reported recently an efficient protocol for the synthesis of functionalized C2-aryl 65 glycosides *via* a Pd(II)-catalyzed diastereoselective $C(sp^3)$ -H activation approach using a proximity-driven metalation strategy (Figure 1d).⁷ This method exhibits a 2,3-trans-arylation selectivity and tolerates a wide range of functional groups. Despite the substantial improvement of this approach, the 70 stoichiometric installation and removal of the directing group is time consuming and generates wastes, which limits its efficiency and applicability. To avoid these additional steps, we decided to pursue our investigations in developing direct and diastereoselective methods for the synthesis of C2-aryl 75 glycosides. In this context, we became interested in the reactivity of 2,3-pseudoglucals. Although these substrates are easily accessible in a single step from commercially available glycals,

^a Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France, Tel: + (33) 0146835887; E-mail: <u>samir.messaoudi@universite-paris-saclay.fr</u>

⁴⁰ Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France ^c Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay cedex, France

E-mail: vincent.gandon@universite-paris-saclay,fr ^d Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole

Laboratorie de Chimie Molecularie (ECM), CIVIS OMN 9105, Ecole 48 Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France

[†] Electronic Supplementary Information (ESI) available: General, experimental procedures for starting materials and ¹H and ¹³C spectra for all new compounds. SeeDOI: 10.1039/b000000x/

Scheme 1. Strategies to access C2-aryl glycosides.

only few studies report their functionalization. We envisaged that the C2-diastereoselective introduction of an aryl moiety on these substrates could be accomplished through a Mizoroki-Heck reaction (Scheme 1e). We hypothesized at this stage that the arylpalladium^(II) complex will approach the double bond of pseudoglucal at the opposite face of the C₃–OR bond (Figure 2). This pathway will lead to complex (**B**), which possesses H4 as

- ¹⁰ the only hydrogen that may be involved in a *syn*- β -elimination process. We anticipated that the stereochemistry at the C2 position of the coupling product would be dictated by the stereochemistry at the C4 position of the pseudoglucal through a chirality transfer mechanism. Thus, through this work, we show
- 15 for the first time, that pseudoglucals can be successfully arylated

Figure 2. Proposed mechanism for the Mizoroki-Heck C2-arylation of pseudoglucals.

by a Mizoroki-Heck process to afford in a single step a variety of ²⁰ substituted C2-aryl glycosides in a diastereoselective fashion (Figure 1e). Interestingly, we evidenced during this study the crucial directing effect of the C_4 -OR substituent to control the regio- and the stereoselectivity.

To initiate this study, we conducted the coupling of acetylated 25 2,3-pseudoglucal 1a with 4-iodomethylbenzoate 2a under various reaction conditions. Representative results are summarized in Table 1 (see the ESI for the full optimization). In preliminary experiments, the Heck reaction was first examined in the presence of Pd(OAc)₂ as a pre-catalyst (10 mol%), PPh₃ (20 30 mol%) as ligand and Ag₂CO₃ as a base in acetonitrile at 120 °C for 36 h. Under these conditions, we observed 63% conversion of the starting pseudoglucal and only 37% of isolated yield of the desired product, as a single diastereoisomer (entry 2). 1D and 2D NMR analyses clearly showed the 2,5-cis configuration and 35 demonstrated the high diastereoselectivity of this reaction. After screening several parameters (Table 1 or ESI), we finally found that the C2-arylation occurred smoothly with 76% yield when using Pd(OAc)₂ as a pre-catalyst (10 mol%), AsPh₃ (10 mol%) as ligand and AgTFA as a base in dioxane at 120 °C for 1h. ⁴⁰ Interestingly, in all conditions examined during this optimization step, only one diastereoisomer 3a was isolated. It should be noted that the Pd(OAc)₂ and AsPh₃ were necessary to achieve this transformation since 3a was not observed when the coupling was

AcO ^{***} AcO ^{***} 1a , 1 equ	$\begin{array}{c} O \\ + \\ & \begin{array}{c} Pd(OAc)_2 (10 \text{ mol}\%) \\ \hline AsPh_3 (10 \text{ mol}\%) \\ \hline CO_2Me \\ AgTFA (1.5 \text{ equiv}) \\ \text{dioxane } 0.2 \text{ M} \\ \text{as} \\ AcO \\ \hline Scherological \\ \hline Scherolo$	CO ₂ Me
Entry	Deviation from the standard conditions	Yield $(\%)^{b}$
1	none	76
2	PPh3 (20 mol%), Ag2CO3 in MeCN for 36 h	37
3	2.5 equiv of AgTFA	80
4	5 mol% of Pd cat. and 7.5 mol% of $AsPh_3$	70
5	DMF instead of dioxane	33
6	CPME instead of dioxane	27
7	Toluene instead of dioxane	32

45 Table 1 Survey of the conditions for the C2-arylation of 1a with 2a^a

conducted in their absence.

Reactions were conducted with substrate 1a (0.4 mmol), 2a (0.4 mmol), Pd(OAc)₂ (0.04 mmol), additive, and solvent (2.0 mL).^b Yield of isolated product 3a.

⁵⁰ Motivated by these results, we next explored the scope of the direct C2-arylation of various pseudoglycals **1a-h** with aryl iodides. At first, we were pleased to see that various aryl iodides bearing diverse functions (-CO₂Me,-CHO, -COMe, -CI, -F, - Br, -I, -CF₃, -CN, -NO₂, -OAc and -OMe) reacted smoothly
⁵⁵ with **1a** to afford the desired C2-aryl glycosides **3a-w** in moderate to good yields and high diasteroselectivity (Scheme 2). The exact structure of **3n**, including its relative 2,5-*cis* geometry, was unambiguously confirmed by crystal structure analysis. Of note, the presence of an *ortho* substituent at the aromatic ring of the ⁶⁰ coupling partner did not affect the reaction process, as compounds **3k**, **3l**, **3s** and **3t** were obtained in satisfactory yields. Finally, the synthetic utility of this methodology was

Scheme 2. Scope of the coupling of 1a-h with various aryl iodides 2^a

^a Reactions were performed in a flame dried re-sealable Schlenk tube using pseudoglucals 1a-h (0.4 mmol), ArI (0.4 mmol), Pd(OAc)₂ (0.04
 ⁵ mmol), AsPh₃ (0.04 mmol), AgTFA (0.6 mmol) in dioxane (2.0 mL) at 120 °C. ^b Yield of isolated product.

demonstrated by the synthesis of the C-glycosyl amino acid analogue 3v through the coupling of *p*-iodo phenylalanine with **1a.** This finding holds major potential for the preparation of C-10 aryl glycosyl amino acid building blocks for their subsequent use in glycopeptide assembly. In addition, C-glycoside 3w, an analogue of the dapagliflozin drug (FORXIGAs)⁸ used to treat type 2 diabetes (Figure 1) was successfully synthesized in 43% yield by this methodology. Next, we moved on to investigate the 15 reactivity of a series of pseudoglycals 1b-h. As depicted in Table 2, this coupling reaction tolerates different substituents at the C1 position of pseudoglucals such as -OMe (product 4a) or -Ph (compounds 4b-c). Noteworthy, in the case of C-glycosides 4b and 4c, a mixture of separated regioisomers was obtained in a 3:1 20 ratio. In addition, this methodology tolerates other protecting groups such -OTBS (compounds 4d-e) and -PMB (compound 4f). Interestingly, the reaction tolerates unprotected pseudoglucals such as the C-glycoside 4g. One can note that when the benzylated pseudoglucal 1g bearing a formyl group at the C2-25 position was used, inverted reactivity was observed in favor the C3-aryl glycoside 4h, which was obtained in 60% yield as a Finally, single stereoisomer. to confirm that the diastereoselectivity of this coupling was driven by the configuration at the C4-position, we performed the reaction with 30 pseudogalactal 1h instead of 1a. Interestingly, the expected product 4i, in which the C2-configuration was inverted (2,5trans), was obtained. However, the yield did not exceed 20%.

DFT computations were performed to rationalize the regio- and the diastereoselectivity observed, focusing on the insertion step ³⁵ (Figure 3). Pseudoglucal **1a** was used as substrate. Two possible pathways were envisioned for the *syn* arylpalladation of this compound (Figure 3): *i*) a cationic mechanism involving [Ph– Pd(AsPh₃)]⁺; *ii*) a neutral mechanism involving [Ph– Pd(TFA)(AsPh₃)]. Coordination of palladium to the substrate ⁴⁰ leads to intermediates of type **Int**-*cis* or **Int**-*trans*, in which the metal fragment is in a *cis*- or *trans*-relationship with the substituent at C5. **Int**-C2-*cis* has been taken as reference complex for the free energies (0.0 kcal/mol). From **Int**-*cis* and **Int**-*trans* intermediates, arylation at C2 and C3 has been computed.

Figure 3. Free energy profile of the syn-insertion pathways.

Of note, only C2-*cis* can lead to the experimentally observed product after *syn* β -H elimination and reductive elimination. The free energies related to Figure 3 were calculated and are reported ⁵⁰ in Table 2 (see also Figures S2 and S3 in the ESI). Complexes of type C2-*trans* cannot give rise to a β -H elimination and should

therefore be considered as unproductive. They were included nonetheless for comparison. On the basis of the free energy of activations, it seems clear that the fastest reaction is the one corresponding to the formation of C2-cis. In the cationic series,

- 5 the barrier of 15.3 kcal/mol is markedly lower than those leading to the other isomers (22.6-24.3 kcal/mol). In the neutral series, the barrier of 15.0 kcal/mol is 1.2 kcal/mol lower than the one leading to C3-cis (16.2 kcal/mol). The formation of the trans isomers is significantly more demanding in free energy of
- 10 activation (18.1 and 17.4 kcal/mol). In the two series, the formation of C2-cis is also more exergonic (-10.4 and -6.5 kcal/mol for the cationic and neutral pathways respectively). Although it is difficult to make a clear cut between the cationic and the neutral pathways, any of the two favors the arylation at
- 15 C2 and place the aryl group in the cis-relationship with the CH₂OAc substituent at C5.

Table 2. Free energies (ΔG_{393} , kcal/mol) of the computed intermediates and transition states referenced to Int-C2-cis

$[Pd] = [Pd(AsPh_3)]^+$						
TS _{C2-cis}	C2-cis	Int-C3-cis	TS _{C3-cis}	C3-cis	Int-C2-trans	
15.3	-10.4	-1.8	24.0	-9.9	-2.6	
TS _{C2-trans}	C2-trans	Int-C3-trans	TS _{C3-trans}	C3-trans	65	
24.3	5.2	-1.5	22.6	-2.4		
$[Pd] = [Pd(TFA)(AsPh_3)]$						
TS _{C2-cis}	C2-cis	Int-C3-cis	TS _{C3-cis}	C3-cis	Int-C2-trans	
15.0	-6.5	3.0	16.2	-1.8	0.3 70	
TS _{C2-trans}	C2-trans	Int-C3-trans	TS _{C3-trans}	C3-trans		
18.1	-3.5	4.7	17.4	-3.5	2	

The geometries corresponding to the C2-cis series are collected

20 in Figure S1 of the ESI. With the cationic catalyst, a strong interaction between the acetate at C4 and palladium is clearly revealed. It leads to a η^1 -coordination of Pd to the C=C bond of the substrate and engage the metal into a 6-membered ring system. This Pd-O interaction is still present in the transition state

- 25 (Figure 4) and in the product (ESI). Interestingly, this type of control is reminiscent to DG-arylation, with the acetates thus being crucial to control the regio- and the stereoselectivity. Such an electronic directing effect is in principle also possible from Int-C3-trans. However, in this case, it does not involve the
- ³⁰ carbonyl oxygen but the one directly connected to the glucal ring. It is therefore less efficient as the resulting metallacycle is a 4membered ring instead of a 6-membered one. On the other hand, the rationalization of the regio- and diastereochemistry of the neutral pathway can be made on the basis of steric effects. The
- ³⁵ metal fragment prefers the most accessible side of the C=C bond, i.e. anti to the OAc group at C4. The Ph group is oriented towards C2, which is a CH₂, rather than C3, to limit the steric demand imposed by C4, which is trisubstituted.

Figure 4. Geometries of TS_{C2-cis} (selected distances in Å).

40 In conclusion, we successfully developed an efficient and diastereoselective method for the synthesis of C2-aryl glycosides

by coupling 2,3-pseudoglucals with aryl iodides under palladium catalysis. The protocol exhibits a broad substrate scope with respect to the coupling partners, thus providing an attractive ⁴⁵ access to a large molecular diversity of C2-substituted glycosides. Moreover, DFT calculations were performed to elucidate the

unexpected 2,5-cis diastereoselectivity of this reaction.

Acknowledgements

Authors acknowledge support of this project by CNRS, Universite Paris-50 Saclay, ANR (SelFSuCHi, ANR-18-CE07-0012), Ecole Polytechnique, la Ligue Contre le Cancer through an Equipe Labellisée 2014 grant. Our laboratory is a member of the Laboratory of Excellence LERMIT supported by a grant (ANR-10-LABX-33).

Notes and references

60

85

- For review, see: a) A. Dondoni and A. Marra, Chem. Rev., 2000, 55 1. 100, 4395; b) É. Bokor, S. Kun, D. Goyard, M. Toth, J.-P. Praly, S. Vidal and L. Somsak, Chem. Rev., 2017, 117, 1687; c) Y. Yang and B. Yu, Chem. Rev., 2017, 117, 12281; d) D. C. Koester, A. Holkenbrink and D. B. Werz, Synthesis, 2010, 19, 3217; e) Z. Wei, Curr. Top. Med. Chem., 2005, 5, 1363; For selected publications, see: f) G. Yang, J. Schmieg, M. Tsuji and R. W. Franck, Angew. Chem. Int. Ed., 2004, 43, 3818; g) R. W. Franck and M. Tsuji, Acc. Chem. Res., 2006, 39, 692; h) H. Liao, J. Ma, H. Yao and X.-W. Liu, Org. Biomol. Chem., 2018, 16, 1791; i) K. Krohn, A. Agocs and C. Bäuerlein, J. Carbohydr. Chem., 2003, 22, 579; j) D. Y. W. Lee, W. Y. Zhang and V. V. R. Karnati, Tetrahedron Lett., 2003, 44, 6857; k) M. A. Ali and L. Haynes, J. Chem. Soc., 1959, 1033; 1) T. Cañeque, F. Gomes, T. Mai, G. Maestri, M. Malacria and R. Rodriguez, Nature Chem., 2015, 7, 744; m) Y. Yan, J. Yang, L. Wang, D. Xu, Z. Yu, X. Guo, G. P. Horsman, S. Lin, M. Tao, and S.-X. Huang, Chem. Sci., 2020, 11, 3959.
 - a) E. C. Chao and R. R. Henry, Nat. Rev. Drug Discovery, 2010, 9, 551; b) X. J. Wang, L. Zhang, D. Byrne, L. Nummy, D. Weber, D. Krishnamurthy, N. Yee, C. H. Senanayake, Org. Lett., 2014, 16, 4090; c) J. P. Henschke, C. W. Lin, P. Y. Wu, W. S.Tsao, J. H. Liao and P. C. Chiang, J. Org. Chem., 2015, 80, 5189; d) C. Guo, M. Hu, R. J. Deorazio, A. Usyatinsky and K. Fitzpatrick, Z. Zhang, J. H. Maeng, D. B. Kitchen, S. Tom, M. Luche, Bioorg. Med. Chem., 2014, 22, 3414.
- a) X. Li and J. Zhu, Eur. J. Org. Chem., 2016, 2016, 4724; b) Y. 80 3. Dai, B. Tian, H. Chen and Q. Zhang, ACS Catal., 2019, 9, 2909; c) J. Liu and H. Gong, Org. Lett., 2018, 20, 7991; e) F. Zhu, J. Rodriguez, S. O'Neill and M. A. Walczak, ACS Cent. Sci., 2018, 4, 1652; d) F. Zhu, J. Rodriguez, T. Yang, I. Kevlishvili, E. Miller, D. Yi, S. O'Neill, M. J. Rourke, P. Liu and M. A. Walczak, J. Am. Chem. Soc., 2017, 139, 17908; e) L. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya, A. Orita, H. C. Li, T. K. M. Shing and M. Nakamura, J. Am. Chem. Soc., 2017, 139, 10693; f) F. Zhu, M. J. Rourke, T. Yang, J. Rodriguez and M. A. Walczak, J. Am. Chem. Soc., 2016, 138, 12049; g) J. Zeng, J. Ma, S. Xiang, S. Cai and X.-W. Liu, Angew. Chem. Int. Ed., 2013, 52, 5134; h) L. Nicolas, P. Angibaud, I. Stansfield, P. Bonnet, L. Meerpoel, S. Reymond and J. Cossy, Angew. Chem. Int. Ed., 2012, 51, 11101; i) H. Gong and M. R. Gagné, J. Am. Chem. Soc., 2008, 130, 12177; j) M. Liu, Y. Niu, Y.-F. Wu and X.-S. Ye, Org. Lett., 2016, 18, 1836; 1) X. Li and J. Zhu. Eur. J. Org. Chem., 2016, 4, 724; 1) T. Mabit, A. Siard, F. Legros, S. Guillarme, A. Martel, J. Lebreton, F. Carreaux, G. Dujardin and S. Collet, Chem. Eur. J., 2018, 24, 14069; m) Q. Wang, S. An, Z. Deng, W. Zhu, Z. Huang, G. He and G. Chen, Nat. Catal., 2019, 2, 793.
 - 4. I. Cobo, M. Matheu, S. Castillón, O. Boutureira, and B. G. Davis, Org. Lett., 2012, 14, 7, 1728.
 - 5. A. Kusunuru, C. Jaladanki, M. Tatina, P. Bharatam and D. Mukherjee. Org. Lett., 2015, 17, 15, 3742.
- 105 6. A. Tenaglia and F. Karl. Synlett., 1996, 4, 327.
 - N. Probst, G. Grelier, S. Dahaoui, M. Alami, V. Gandon and S. 7. Messaoudi, ACS Catal., 2018, 8, 9, 7781.
 - 8. W. Cai, L. Jiang, Y. Xie, Y. Liu, W. Liu and G. Zhao, Med. Chem., 2015, 11, 317.