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Enhancing light absorption in a nanovolume with a nanoantenna: theory and gure of merit
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We study light absorption by a dipolar absorber in a given environment, which can be a nanoantenna or any complex inhomogeneous medium. From rst-principle calculations, we derive an upper bound for the absorption, which decouples the impact of the environment from the one of the absorber. Since it is an intrinsic characteristic of the environment regardless of the absorber, it provides a good gure of merit to compare the ability of dierent systems to enhance absorption. We show that, in the scalar approximation, the relevant parameter is not the eld enhancement but the ratio between the eld enhancement and the local density of states. Consequently, a plasmonic structure supporting hot spots is not necessarily the best choice to enhance absorption. We also show that our theoretical results can be applied beyond the scalar approximation and the plane-wave illumination.

Absorption inside subwavelength objects is weak but dierent strategies can be used to circumvent this limitation. The absorber properties, the illumination, or the environment can be engineered. Many works have been dedicated to the optimization of the absorption by a single nanoparticle 1521 . For an absorber in a homogeneous medium, the physical bounds of the problem are known; they depend on the multipolar character of the particle. The maximum absorption cross-section of a molecule or a nanoparticle that behaves like a pure electric dipole (dipolar approximation), is 3λ 2 /(8πn 2 ), with λ the wavelength and n the surrounding refractive index [START_REF] Tretyakov | Maximizing Absorption and Scattering by Dipole Particles[END_REF][START_REF] Grigoriev | Optimizing Nanoparticle Designs for Ideal Absorption of Light[END_REF] . This upper bound can only be reached if the absorber polarizability α matches a precise value, α opt = i3λ 3 /(8π 2 n). Subwavelength particles that go beyond the dipolar approximation oer additional degrees of freedom and are governed by dierent physical bound 1621 . Absorption by an ensemble of particles in a homogeneous medium is yet another related problem with a dierent upper limit [START_REF] Hugonin | Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions[END_REF] .

Plunging the absorber in a complex medium or modifying the illumination oers additional possibilities to tailor the absorption 10,23,24 . In this work, we consider a subwavelength absorber in a complex environment (inhomogeneous or not) as depicted in Fig. 1. We focus on the absorption inside the absorber and do not discuss dissipation in the surroundings, if any. To fully exploit the control possibilities oered by the environment, it is crucial to know what is the relevant gure of merit. The absorption density is proportional to the local electric-eld intensity |E(r)| 2 25 , which results from the environment and the absorber. It is highly desirable to decouple both contributions to provide a gure of merit that is intrinsic to the environment. Only then can we properly compare the ability of dierent structures to modify absorption.

Let us draw a parallel with spontaneous emission. In a complex medium, it is modied by a factor proportional to the photonic local density of states (LDOS) and the situation is more complex: the eld enhancement is not the only electromagnetic property of the environment that drives the absorption. For instance, it has been recently

shown that, in a scalar quasi-static case, the absorption cross-section is inversely proportional to the square of the LDOS 23 . The work in Ref.

23 considers absorption in a given system absorber + environment but does not decouple the contribution of the absorber from the impact of the environment. It does not study the physical bounds of the problem. Until now, no upper bound kind of Purcell factor analogue has been derived for the problem of an absorber in a complex environment.

Antenna theory provides a solution in one specic case.

For an antenna receiving a signal from the direction (θ, φ), the maximum absorption cross-section of the load is G a (θ, φ)λ 2 /(4πn 2 ), with G a the antenna gain 3234 . This upper bound is reached if the load is impedance-matched with the antenna. The gain is dened for an emitting antenna as the fraction of the wall-plug power radiated in the direction (θ, φ). Unfortunately, the G a λ 2 /(4πn 2 ) limit only applies to plane-wave illumination and to antennas working in the scalar approximation when one component of the electromagnetic eld is dominant. In cases where the vectorial nature of the electromagnetic eld cannot be neglected, the problem remains open. Moreover, the antenna point of view highlights the gain, whereas other derivations underline the eld enhancement and the LDOS 23 . It is thus important to generalize existing results, while enlightening the link between them.

In this work, we derive a general upper bound for the power dissipated in a subwavelength absorber surrounded by any complex inhomogeneous environment. Owing to its subwavelength dimensions, the absorber is treated in the electric-dipole approximation. On the other hand, the electromagnetic properties of the environment are treated rigorously without any approximation. The upper bound is independent of the absorber; it entirely depends on the environment and the illumination. Thus, it provides a relevant gure of merit for comparing the ability of dierent systems to enhance absorption. This gure of merit results from the interplay between two electromagnetic properties of the environment, the eld enhancement and the Green tensor. We show under which assumptions the gain is a relevant parameter. We nally discuss under which conditions the system can reach the upper bound.

We apply the theory to a few emblematic examples of nanophotonics: a plasmonic dimer nanoresonator, dielectric nanoantennas, and a silicon-on-insulator (SOI) ridge waveguide.

We evidence that a plasmonic system providing extremely large eld enhancements is not necessarily an optimal choice to increase absorption.

We consider the problem illustrated in Fig. 1(a). An absorbing subwavelength particle (in red) is placed in a complex absorbing or non-absorbing environment (in gray) and illuminated by an incident eld E inc . We focus on the absorption inside the particle. We consider passive materials and use the exp(-iωt) convention for time-harmonic elds, with ω = 2πc/λ. The following derivations apply to any incident eld and any environment geometry. We refer to the environment as the antenna, but no particular assumption is made on its geometry.

The total electric eld can be written as

E(r) ≡ E b (r) + E s (r)
, where E b is the eld in the absence of the absorber, see Fig. 1(b), and E s is the eld scattered by the absorber. It is the eld radiated by the current source induced inside the absorber by the exciting eld.

We now make the sole assumption of our derivation. We assume that the subwavelength particle scatters light like an electric dipole p located at r = r 0 . The scattered eld is then E s (r) = µ 0 ω 2 G(r, r 0 )p, with G the Green tensor of the antenna alone.

The power dissipated in the particle is the dierence between extinction and scattering, P a = P e -P s 25 . Within the dipole approximation, P e = -1 2 ωIm(p † E b ) and P s = ωp † gp, with g ≡ 1 2 µ 0 ω 2 Im[G(r 0 , r 0 )] (see Supporting Information). It follows

P a = - 1 2 ωIm(p † E b ) -ωp † gp , (1) 
where E b ≡ E b (r 0 ) and p † is the conjugate transpose of p. The induced dipole is p =

ε 0 α(ω)[E b (r 0 ) + µ 0 ω 2 S(r 0 , r 0 )p],
with α(ω) the polarizability tensor of the particle and S = G -G 0 , G 0 being the Green tensor of the homogeneous medium of refractive index n that surrounds the particle.

In order to derive an upper bound that is independent of the absorber, we calculate the maximum of P a = f (p). In a complex medium composed of passive materials, the quantity ωu † gu gives the total electromagnetic power emitted by the electric-dipole source u (see Supporting Information). Therefore, u † gu 0 whatever the vector u and g is a semi-denite positive matrix. We now use this important property to derive the maximum of P a = f (p). For that purpose, we have to rewrite the dissipated power under the form P a = -ωu † gu + A, where A is independent of p. A few algebraic manipulations of Eq. ( 1) lead to (details can be found in (see Supporting Information))

P a = -ω p † + i 4 E † b g -1 g p - i 4 g -1 E b + ω 16 E † b g -1 E b . (2) 
Now the dissipated power takes the form P a = -ωu

† gu + A, with u = p -i 4 g -1 E b and A = ω 16 E † b g -1 E b . Since g is a semi-denite positive matrix, we know that -ω(p † + i 4 E † b g -1 )g(p -i 4 g -1 E b ) 0.
This readily leads to an upper bound for the absorption, which is independent of the absorber and depends only on the environment and the illumination,

P a P max a , with P max a = ω 16 E † b g -1 E b . (3) 
According to Eq. ( 2), the upper bound is reached for an optimal dipole p opt = i 4 g -1 E b .

The optimal polarizability that yields the maximum absorption is then (see Supporting

Information) α opt (ω) = c 2 ω 2 S * (r 0 , r 0 ) -i ωn 3πc I -1 . ( 4 
)
with S * the conjugate of S. Any other polarizability in the same environment necessarily absorbs less light. Equation ( 4) can be seen as a vectorial generalization of the usual scalar impedance-matching concept [START_REF] Balanis | Antenna theory: Analysis and design[END_REF][START_REF] Greet | Impedance of a Nanoantenna and a Single Quantum Emitter[END_REF] .

We dene the absorption eciency η a = P a /P inc as the fraction of the incident power that is absorbed inside the particle. The maximum absorption eciency is

η max a = ω 16 
E † b g -1 E b P inc . (5) 
If the incident eld is a plane wave, we rather dene a maximum absorption cross-section by normalizing P max a with the incident Poynting vector 1

2 ε 0 cn|E inc | 2 , σ max a = 3λ 2 8πn 2 g 0 E † b g -1 E b |E inc | 2 , (6) 
where g 0 I ≡ 1 2 µ 0 ω 2 Im[G 0 (r 0 , r 0 )] = ω 3 n/(12πε 0 c 3 )I. Note that, in a homogeneous environment, g = g 0 I, E b = E inc , and we recover the usual result σ max a = 3λ 2 /(8πn 2 ).

Equations ( 3)-( 6) form the central result of this article. They deserve a few comments before we illustrate their consequences on a couple of examples. The upper bound is independent of the absorber; it solely depends on the antenna and the incident eld. Thus, Eqs. ( 5) and ( 6) provide meaningful gures of merit for comparing the ability of dierent systems to enhance absorption. These novel gures of merit result from an interplay between the local eld E b provided by the sole antenna and the imaginary part of its Green tensor g.

In the case where the vectorial nature of the electromagnetic eld can be neglected, the general upper bound can be replaced by an approximate form. Let us assume that the eld E b and the Green tensor g are dominated by a single component, the z component. Within this scalar approximation, Eq. ( 6) reduces to

σ max a ≈ 3λ 2 8πn 2 |E bz | 2 |E inc | 2 g 0 g zz = 3λ 2 8πn 2
Intensity enh. LDOS enh. .

The upper bound appears to be the ratio between the intensity enhancement

|E bz | 2 /|E inc | 2
and the LDOS enhancement g zz /g 0 . The fact that a LDOS enhancement is detrimental can be intuitively understood as follows: a larger LDOS increases the radiation of the induced dipole, i.e., it increases the scattering at the expense of absorption.

It can be shown using reciprocity that Eq. ( 7) is equivalent to

σ max a = G a (θ, φ)λ 2 /(4πn 2 ),
with G a the antenna gain (see Supporting Information). The upper bound derived with antenna theory is thus a particular (scalar) case of the general result in Eq. ( 6). Two equivalent points of view can be adopted. They provide dierent conclusions and it is interesting to consider both of them. Equation ( 7) evidences that antennas supporting hot spots are a good choice if, and only if, the formation of hot spots is not concomitant with a large LDOS. On the other hand, the antenna gain is the product of the radiative eciency and the directivity, G a (θ, φ) = η r D(θ, φ) 32 . This second point of view underlines that (i) directional structures perform better and (ii) dielectric objects (η r = 1) are better choices than plasmonic structures with η r < 1.

Let us illustrate the theory with a few examples. First, we study a plasmonic dimer nanoresonator and a Yagi-Uda antenna made of silicon nanospheres. Both can be treated in the scalar approximation. Secondly, we consider structures that can only be studied with a fully vectorial formalism: silicon nanospheres in a L-shape conguration and a SOI ridge waveguide.

In the case of a single-mode antenna, LDOS and eld enhancement are not independent since both are driven by the excitation of an eigenmode 36 . Both are resonant with the same spectral prole and increasing one necessarily enhances the other. Thus, quite counterintuitively, the value of the upper bound in Eq. ( 7) is not correlated to the presence of hot spots. To illustrate this conclusion, let us consider a dimer made of two gold nanorods illuminated by a plane wave. Only the dipole mode at λ = 3 µm is excited. Figure 2(a) displays the spectra of the maximum absorption cross-section and the intensity enhancement at the gap center: The antenna is embedded in a medium of refractive index n = 1.5.

|E b | 2 /|E inc | 2 is resonant whereas σ max a is not.
Since the upper bound in the scalar case is proportional to the radiative eciency η r and the directivity, we switch to a Yagi-Uda antenna made of silicon nanospheres, which is known to be directional 38 . We keep a plane-wave illumination and a wavelength of λ = 3 µm. Thus, silicon is transparent and η r = 1. The maximum absorption cross-section σ max a is represented on Fig. 3(a) as a function of the incident angle θ for r 0 located in between the reector and the rst director. The incident plane wave is either TM (black curve) or TE (red curve) polarized.

For θ = 0 • , σ max a is one order of magnitude larger than 3λ 2 /(8πn 2 ). This evidences that a dielectric directional antenna can provide larger absorption enhancements than a plasmonic antenna supporting hot spots. Note that, for a xed geometry, the upper bound changes with the incident angle, whereas the optimal polarizability given by Eq. ( 4) is constant.

Once the polarizability has been chosen, one is sure to reach the upper bound whatever the incident eld.

Before considering fully vectorial examples, we discuss the possibility to reach the upper bound on the Yagi-Uda example. The optimal polarizability corresponds for instance to a sphere of radius 176 nm lled with a material of relative permittivity ε opt = -6.46+1.22i; the relation between the electric-dipole polarizability, the sphere radius, and the permittivity has been rigorously calculated with Mie theory. Such a permittivity at λ = 3 µm can be obtained with highly-doped semiconductor nanocrystals [START_REF] Mendelsberg | Extracting reliable electronic properties from transmission spectra of indium tin oxide thin lms and nanocrystal lms by careful application of the Drude theory[END_REF][START_REF] Mendelsberg | Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals[END_REF] . We have checked with a rigorous numer- ical method that inserting this nanosphere in the Yagi-Uda antenna yields an absorption that is indeed equal to the upper bound (see Supporting Information). We have also tested the robustness of the optimal polarizability. Figure 3 Such a structure cannot be described in the scalar approximation, especially for positions r 0 outside the symmetry planes. In that case, Eq. ( 7) is not valid. The system can only be Calculations are performed with a rigorous multipole method 38,39 . characterized by the vectorial upper bound of Eq. ( 6). The latter depends on the absorber position and it is important, for a given nanoantenna, to evaluate where the particle could reach the best absorption. Let us study a last example where the incident eld is not a plane wave. It allows us to evidence the generality of the absorption upper bound that can be used in a variety of photonic structures. We consider an absorber located above a SOI ridge waveguide. In this integrated conguration, the incident eld is a guided mode. By applying Eq. ( 5), we have calculated the maximum absorption eciency above the waveguide, see Fig. 5. The absorber is moved along the horizontal white line located 20 nm above the waveguide; the incident eld is either the fundamental quasi-TE mode (solid black curve) or the quasi-TM mode (dashed red curve). The latter provides an absorption eciency of almost 50%, even for an absorber located outside the waveguide core.

In conclusion, we derived an upper bound for the problem of absorption by a dipolar absorber in a complex environment, homogeneous or not. The derivation relies on a vectorial formalism and is valid for any environment and any illumination. Since it decouples the environment from the absorber, the upper bound provides a meaningful gure of merit for comparing the intrinsic ability of dierent structures to enhance absorption in a nanovolume. Moreover, it allows seeking, for one given structure, the optimal position for the absorber.

In the scalar approximation, the relevant parameter is not the eld enhancement but the ratio between eld enhancement and LDOS. Thus, although placing an absorber in a hotspot of a plasmonic structure can increase the absorption 10 , plasmonic antennas supporting hot spots are not necessarily the best candidates to reach high absorption enhancements. Larger enhancements can be achieved with dielectric directional antennas. In cases where the scalar approximation is not valid or the illumination is not a plane wave, the situation is more complex and our general upper bound is the good gure of merit to characterize the problem.

Since it relies on electromagnetic calculations (eld enhancement and Green tensor) that are nowadays performed routinely, we think that this work opens new avenues for understanding and optimizing absorption in subwavelength volumes inserted in complex media. Thanks to

tion 1 , 2 .

 12 Absorption converts electromagnetic energy carried by photons to internal energy of matter carried by electrons or phonons. Controlling the absorption in small volumes is a major issue for numerous applications, such as photovoltaics 35 , sensing by surface-enhanced infrared absorption (SEIRA) 68 or enhanced infrared photoexpansion nanospectroscopy 9 , thermal emission 10,11 , photothermal eects at the nanoscale for enhanced photocatalysis and nano-chemistry 1214 .
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 291 FIG. 1: (a) Subwavelength absorber (in red) in an arbitrary environment (in gray, referred to as "nanoantenna") illuminated by an incident eld E inc . We focus on the absorption inside the particle. (b) Same problem without the absorber. The eld E b is the eld scattered by the environment alone.

Figure 2 ( 4 FIG. 2 :

 242 FIG. 2: Nanoantennas in the scalar approximation. Dimer composed of two gold cylinders illuminated by a normal-incident plane wave polarized along the cylinder axis. The point M (r 0 ) is the gap center. (a) Spectra of the maximum absorption cross-section σ max a (left axis, black curve) and the intensity enhancement (right axis, dashed red curve) for L = 414 nm, R = 15 nm, and w = 20 nm. (b) Maximum absorption cross-section and intensity enhancement as a function of the gap width w (the cylinder length is tuned to keep the resonance xed at λ = 3 µm). Calculations are performed with an aperiodic Fourier modal method dedicated to body-of-revolution objects 37 . The gold permittivity is given in (see Supporting Information).

FIG. 3 :

 3 FIG. 3: Nanoantennas in the scalar approximation. Yagi-Uda antenna composed of silicon spheres (refractive index 3.436). The reector (radius 498 nm) is separated from the rst director by 700 nm. The four directors (radius 382 nm) are equally spaced by 250 nm. The point M (r 0 ) is the center between the reector and the rst director. (a) Maximum absorption cross-section σ max a

  (b) shows the absorption cross-section at normal incidence in TM polarization obtained by varying the absorber permittivity around the optimum. Since the cross-section varies smoothly around the maximum, we have a good exibility on the choice of the permittivity.Let us now consider a L-shape antenna made of three silicon spheres, see Figs. 4(a)-(b).

2 FIG. 4 :

 24 FIG. 4: Beyond scalar approximation. L-shape antenna made of three silicon spheres (radius 430 nm) equally spaced by 1.54 µm and embedded in a medium of index n = 1.5 at λ = 3 µm.

( a )

 a Intensity enhancement and (b) maximum absorption cross-section as a function of the position r 0 in the (x, y) plane for z = 232 nm. The map of the intensity enhancement is clearly dierent from the spatial distribution of the maximum absorption cross-section.

  Figures 4(a)-(b) show respectively the spatial distributions of the intensity enhancement and the maximum absorption cross-section in the (x, y) plane for z = 232 nm. The antenna is illuminated from the bottom by a plane wave propagating along the z axis and polarized linearly along the white arrow. The blue cross in Fig. 4(b) marks the position where the upper bound is maximum. It does not correspond to the maximum of |E b | 2 /|E inc | 2 , which evidences, once again, that seeking hot spots is not sucient to maximize the absorption.

WaveguideFIG. 5 :

 5 FIG. 5: Beyond scalar approximation and plane-wave illumination. SOI ridge waveguide at λ = 1.5 µm. The silicon ridge (n = 3.5, width 500 nm, thickness 250 nm) lies over a silica substrate (n = 1.44). Maximum absorption eciency as a function of the position along the dashed white line located 20 nm above the waveguide for the fundamental quasi-TE mode (solid black curve) and the quasi-TM mode (dashed red curve). The insets give the electric-eld intensity distributions of both modes.

  . For an emitter coupled to a resonant cavity, the emission enhancement has a well-known upper bound, the Purcell factor, which is intrinsic to the resonator and independent of the emitter

2729 . The

upper bound is reached if emitter and resonator fulll a few matching conditions spectral, spatial, and in polarization
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