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ON COMBINATORIAL PROPERTIES OF DISCRETE

PLANAR SURFACES

Yukiko Kenmo
hi and Atsushi Imiya

Abstra
t. The simplest free boundary in a 3-dimensional spa
e is a moving plane. For

the numeri
al analyses of su
h simple free boundary problems, it is ne
essary to express

moving planes is a grid spa
e. A simple example of 3-dimensional grid spa
es is a set of

3-dimensional latti
e points whose 
oordinates are all integers. In this paper, therefore,

we study geometri
 and topologi
al properties of planes in su
h a 3-dimensional integer

latti
e spa
e.

1 Introdu
tion

The simplest free boundary in a 3-dimensional spa
e is a moving plane. For the numeri
al

analyses of su
h simple free boundary problems, it is ne
essary to express moving planes is

a grid spa
e. A simple example of 3-dimensional grid spa
es is a set of 3-dimensional latti
e

points whose 
oordinates are all integers. In this paper, therefore, we study geometri


and topologi
al properties of planes in su
h a 3-dimensional integer latti
e spa
e.

In the 
ontext of digital geometry for 
omputer imagery, Fren
h resear
h group has

proposed the theory of naive planes using algebrai
 properties of a latti
e spa
e and

examined the algebrai
 properties of naive planes [1,2,3,4℄. Their treatment of digital

obje
ts de�ned in an integer latti
e spa
e is based on the theory of the geometry of

numbers, whi
h has the long history from H. Minkowski (1864-1909) [5℄.

On the other hand, we have proposed a 
ombinatorial approa
h for expression and

extra
tion of boundaries of digital obje
ts [6℄. In this paper, we apply our boundary

extra
tion algorithm for digitization of planes, and 
onstru
t dis
rete planar surfa
es

whi
h are planes in an integer latti
e spa
e. Be
ause of the equivalen
e between our



dis
rete planar surfa
es and naive planes, we derive the 
ombinatorial properties of our

dis
rete planar surfa
es from the geometri
 properties of naive planes.

2 De�nition of Dis
rete Combinatorial Surfa
es

In this se
tion, we introdu
e the de�nition of surfa
es in a 3-dimensional integer latti
e

spa
e based on the approa
h of 
ombinatorial topology [7℄. Let Z be the set of all integers;

Z

3

denotes the set of latti
e points, whose 
oordinates are all integers. In Z

3

we de�ne

three di�erent neighborhoods of a latti
e point x = (i; j; k) as follows:

N

m

(x) = f(p; q; r) 2 Z

3

: (i� p)

2

+ (j � q)

2

+ (k � r)

2

� tg; (1)

where m = 6; 18; 26 
orresponding to t = 1; 2; 3. They are 
alled 6-, 18- and 26-

neighborhoods, respe
tively. Depending on ea
h neighborhood, we de�ne elements of

1-dimensional 
urves and 2-dimensional surfa
es in Z

3

. These elements are 
alled 1- and

2-dimensional dis
rete simplexes and abbreviated as 1- and 2-simplexes, respe
tively. Sup-

pose we de�ne 0-dimensional dis
rete simplexes, whi
h are 
alled 0-simplexes, as isolated

points in Z

3

. Let R be the set of real numbers; R

3

denotes the 3-dimensional Eu
lidean

spa
e. Then 1- and 2-simplexes are de�ned re
ursively as follows.

De�nition 1 An n-simplex for n = 1; 2 is de�ned as a set of k points in Z

3

,

[x

1

;x

2

; : : : ;x

k

℄ = fx

1

;x

2

; : : : ;x

k

g; (2)

so that the 
losed 
onvex hull of x

1

;x

2

; : : : ;x

k

is one of n-dimensional minimum nonzero

regions in R

3

whi
h are bounded by the 
losed 
onvex hulls of (n� 1)-simplexes.

A

ording to De�nition 1, a 1-simplex is de�ned as a set of two points in Z

3

, so that

those two points are the endpoints of a line segment whi
h has a minimumnonzero length

in R

3

. In other words, a 1-simplex 
onsists of two neighboring points in Z

3

. The 
on�g-

urations of those two neighboring points depend on the neighborhood systems. The �rst

line of Table 1 shows that there are one, two and three di�erent 1-simplexes for the 6-, 18-

and 26-neighborhood systems, respe
tively. Similarly, a 2-simplex is de�ned as a set of

points whose 
losed 
onvex hull is bound by a set of the 
losed 
onvex hulls of 1-simplexes.

In addition, the 
losed 
onvex hull of a 2-simplex holds a 2-dimensional minimumnonzero

area. Consequently, one four-point 2-simplex is de�ned for the 6-neighborhood system,

two three-point and one four-point 2-simplexes are de�ned for the 18-neighborhood sys-

tem, and three three-point 2-simplexes are de�ned for the 26-neighborhood system as

shown in the se
ond line of Table 1. Note that the 
ongruent 1- and 2-simplexes that



N

1D
2D

6 N26N18

Table 1: 1- and 2-simplexes whi
h are respe
tively regarded as 1- and 2-dimensional elements

in Z

3

for the 6-, 18- and 26-neighborhood systems. All dis
rete simplexes in Z

3

are obtained by

rotation and translation of those in the table.

di�er from those in Table 1 by rotation and translation are omitted in the table. The


onstru
tive de�nitions of 1- and 2-simplexes are presented in [6℄.

If an n

1

-simplex is a subset of an n

2

-simplex where n

1

< n

2

, the n

1

-simplex is 
alled a

fa
e of the n

2

-simplex; it is also 
alled an n

1

-fa
e be
ause of the dimension. For instan
e,

a 2-simplex for the 26-neighborhood system has three 0-fa
es and three 1-fa
es. A set of

all fa
es in
luded in a dis
rete simplex [a℄ = [x

1

;x

2

; : : : ;x

k

℄ is denoted by fa
e([a℄). Let

the 
losed 
onvex hull of k points, x

1

;x

2

; : : : ;x

k

, be denoted by CH([x

1

;x

2

; : : : ;x

k

℄).

The embedded dis
rete simplex is de�ned as

kak = CH([a℄) n ( [

[b℄2fa
e([a℄)

CH([b℄)) (3)

for any n-simplex [a℄. If [a℄ is an n-simplex, kak is 
alled the embedded n-simplex of

[a℄. An n-simplex and the embedded n-simplex are 
learly di�erent sin
e [a℄ and kak are

de�ned as sets of points in Z

3

and R

3

, respe
tively.

De�nition 2 A �nite set K of dis
rete simplexes is 
alled a dis
rete 
omplex if the fol-

lowing 
onditions are satis�ed;

1. if [a℄ 2 K, fa
e([a℄) � K;

2. if [a℄; [b℄ 2 K and kak \ kbk 6= ;, then [a℄ = [b℄.

The dimension of K is equal to the maximum dimension of dis
rete simplexes whi
h

belong toK. Hereafter, we abbreviate n-dimensional dis
rete 
omplexes to n-
omplexes as

well as n-simplexes. Suppose that K is an n-
omplex. If there exist at least one n-simplex

[a℄ 2 K for every s-simplex [b℄ 2 K su
h that [b℄ 2 fa
e([a℄) and s < n, K is 
alled pure.

In addition, if we 
an �nd a 
hain of dis
rete simplexes between two arbitrary elements

[
℄; [d℄ 2 K, [


1

℄ = [
℄; [


2

℄; : : : ; [


k

℄ = [d℄, su
h that [


i

℄ and [


i+1

℄, i = 1; 2; : : : ; k� 1, has a


ommon fa
e in K, K is 
alled 
onne
ted.



De�nition 3 If a 2-
omplex K is pure and 
onne
ted, K is a dis
rete 
ombinatorial

surfa
e.

More dis
ussion on dis
rete 
ombinatorial surfa
es in the sense of 
ombinatorial topol-

ogy is given in [6℄.

3 Constru
tion of Dis
rete Planar Surfa
es

Let X be a 
losed subset of R

3

of the form

X = f(x; y; z) 2 R

3

: l

1

� x � l

2

;m

1

� y � m

2

; n

1

� z � n

2

g ; (4)

where l

i

, m

i

and n

i

are integers for i = 1; 2. Let P be a plane in X su
h as

P = f(x; y; z) 2 X : ax+ by + 
z + d = 0g ; (5)

where a; b; 
; d are real numbers. Then the following two regions are separated by P:

H

�

= f(x; y; z) 2 X : ax+ by + 
z + d � 0g ; (6)

H

+

= f(x; y; z) 2 X : ax+ by + 
z + d � 0g : (7)

Obviously, we have

H

�

\H

+

= P : (8)

Now we put

Y = X \ Z

3

: (9)

From (4),

Y = f(x; y; z) 2 Z

3

: l

1

� x � l

2

;m

1

� y � m

2

; n

1

� z � n

2

g : (10)

We 
an 
onsider that Y is a spa
e of a 3-dimensional digital image whose size is [l

1

; l

2

℄�

[m

1

;m

2

℄ � [n

1

; n

2

℄. Just as H

�

and H

+

in X, there are two regions in Y, whi
h are

separated by P as follows:

I

�

= f(x; y; z) 2 Y : ax+ by + 
z + d � 0g ; (11)

I

+

= f(x; y; z) 2 Y : ax+ by + 
z + d � 0g : (12)

We say that I

�

and I

+

are the digitization of H

�

and H

+

, respe
tively. Clearly we have

I

�

\ I

+

= P \Y: (13)

If there is no latti
e point on P, P \Y is empty, and hen
e I

�

\ I

+

is also empty.



# of black 
points

configurations of black and white 
points and an example of P

1

2
a unit 
cube

a black point
in 

3

4

5

6

7

a white point
in 

P1

P2

P3

P4a P4b

P5

P6

P7

an example
of P

# of black 
points

configurations of black and white 
points and an example of P

I   
-

(I  )’-

Table 2: Eight possible 
on�gurations of bla
k and white points in a C

Y

(i; j; k) su
h that

both bla
k and white points exist in C

Y

(i; j; k). An example of P is also illustrated for

ea
h 
on�guration. Note that we ignore the 
ongruent 
on�gurations that di�er from

those eight 
on�gurations by rotation and translation.

For both I

�

and I

+

, we 
an 
onstru
t the boundaries whi
h are dis
rete 
ombinatorial

surfa
es with the m-neighborhood system for m = 6; 18; 26, denoted by �I

�

m

and �I

+

m

,

using the similar algorithm for boundary extra
tion [6℄. Both �I

�

m

and �I

+

m

are 
onsidered

to be the digitization of P and 
alled dis
rete planar surfa
es with respe
t to P. In this

se
tion, we hen
eforth present how to generate �I

�

m

from I

�

. The same pro
edure 
an

be applied to generate �I

+

m

if I

�

and �I

�

m

are repla
ed by I

+

and �I

+

m

, respe
tively. A

dis
rete 
ombinatorial surfa
e �I

�

m

is obtained in the following two stages:

1. for ea
h 
ubi
 region of eight points in Y su
h as

C

Y

(i; j; k) = f(x; y; z) 2 Y : i � x � i+ 1; j � y � j + 1; k � z � k + 1g ; (14)

�I

�

m

(i; j; k) is obtained as a set of 2-simplexes and their fa
es by referring to a table;



# of black 
points

3

4

5

6

7

N6 N18 N26

P4a P4b P4a

P5

P6

P7

P5

P3

P4b

P7

P6

P5

P3

2
P2

P1
1

Table 3: A set �I

�

m

(i; j; k) for ea
h 
on�guration of bla
k and white points in C

Y

(i; j; k)


orresponding to the 
on�gurations in Table 2, m = 6; 18; 26. The 
on�gurations within

parentheses are ignored for the 
onstru
tion of �I

�

m

be
ause bla
k points in su
hC

Y

(i; j; k)

are regarded as 0- or 1-fa
es of 2-simplexes in the adja
ent 
ubes of C

Y

(i; j; k).

2. then, we obtain

�I

�

m

= [

(i;j;k)2Y

�I

�

m

(i; j; k) (15)

as a dis
rete 
ombinatorial surfa
e.

In the �rst stage, we assign every point in Y either a bla
k point or a white point. In

this 
ase, all points in I

�

and the 
omplement (I

�

)

0

= YnI

�

are assigned bla
k and white

points, respe
tively. In any C

Y

(i; j; k) su
h that C

Y

(i; j; k) \ I

�

6= ; and C

Y

(i; j; k) \

(I

�

)

0

6= ;, the bla
k and white points has either of eight di�erent 
on�gurations as shown

in Table 2, if 0 � a � b � 
 and 
 > 0. For ea
h of these eight 
on�gurations, an

example of possible P is also illustrated in Table 2. For ea
h 
on�guration of C

Y

(i; j; k)

in Table 2, �I

�

m

(i; j; k) is determined so that all 0-simplexes in �I

�

m

(i; j; k) are bla
k points



an example 
of P

N N186 N26
configuration 

of black points 

PJ1

PJ2

PJ3

and

C  (i  , j  , k  )Y 2 2 2C  (i  , j  , k  )Y 1 1 1

C  (i  , j  , k  )Y 1 1 1

U

C  (i  , j  , k  )Y 2 2 2

Table 4: The 
on�gurations of bla
k points at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) su
h that

C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) 
onsists of four latti
e points. We ignore the 
ongruent


on�gurations that di�er from those three 
on�gurations by rotation and translation.

and every embedded 2-simplexes in �I

�

m

(i; j; k) is lo
ated as 
lose as possible to P in

X, as shown in Table 3; for more details of how to generate Table 3, see in [6℄. If no

2-simplex exists in C

Y

(i; j; k), we simply set �I

�

m

(i; j; k) = ;. For instan
e, 
on�gurations

P1 and P2 in Table 2 have no 2-simplex sin
e there are only one and two bla
k points in

C

Y

(i; j; k), respe
tively; these bla
k points 
onstitute 0- and 1-fa
es of 2-simplexes in the

adja
ent 
ubes of C

Y

(i; j; k). Similarly, 
on�gurations P3 and P4b are ignored for the

6-neighborhood system sin
e bla
k points 
onstitute two and three 1-fa
es of 2-simplexes

in the adja
ent 
ubes of C

Y

(i; j; k), respe
tively.

In the se
ond stage, we make a union �I

�

m

of all �I

�

m

(i; j; k) whi
h are obtained by

referring to Table 3. In order to prove that �I

�

m

is a dis
rete 
ombinatorial surfa
e, we


onsider two adja
ent unit 
ubes C

Y

(i

1

; j

1

; k

1

) and C

Y

(i

2

; j

2

; k

2

) su
h that C

Y

(i

1

; j

1

; k

1

)\

C

Y

(i

2

; j

2

; k

2

) 
onsists of four latti
e points, and �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

). Ea
h

of four latti
e points at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) is either a bla
k or white point.

Table 4 shows that there are three di�erent 
on�gurations of bla
k and white points

at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) su
h that C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) \ I

�

6= ;. It

is also illustrated, in Table 4, that bla
k points at su
h C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

)


onstitutes the 
ommon fa
es of 2-simplexes of �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

). For

instan
e, a bla
k point of 
on�guration PJ1 in Table 4 is a 0-fa
e and a pair of bla
k

points of 
on�guration PJ2 is a 1-fa
e. For 
on�guration PJ3, a set of three bla
k points

at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) is regarded di�erently depending on the neighborhood

systems and the lo
ation of P. For the 6-neighborhood system two 1-fa
es are seen at

C

Y

(i

1

; j

1

; k

1

)\C

Y

(i

2

; j

2

; k

2

) in PJ3 of Table 4. For the 18- and 26-neighborhood systems

either a 1-fa
e or a 2-simplex is seen depending on the lo
ation of P. Thus, given a P



and an neighborhood system, we 
an make a union of �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

)

satisfying the 
onditions in De�nition 2. Therefore, we 
an obtain �I

�

m

as a dis
rete


ombinatorial surfa
e, and �I

+

m

as well. Sin
e P is a plane in X and �I

�

m

(resp. �I

+

m

)

is a dis
rete 
ombinatorial surfa
e as digitization of P in Y, �I

�

m

(resp. �I

+

m

) is 
alled a

dis
rete planar surfa
e of P.

4 Topologi
al Properties of Dis
rete Planar Surfa
es

For �I

�

m

and �I

+

m

, the following proposition is derived from their digitization s
heme in

se
tion 3; the proof is given in [6℄.

Proposition 1 For any plane P in X, �I

�

m

and �I

+

m

are uniquely determined in Y for

ea
h m = 6; 18; 26.

Now, embedding dis
rete simplexes whi
h are in
luded in �I

�

m

and �I

+

m

into X, we

respe
tively obtain

P

�

m

= [

[a℄2�I

�

m

kak (16)

and

P

+

m

= [

[a℄2�I

+

m

kak : (17)

For any set A, we denote by A

0

the 
omplement of A and by A the 
losure of A. Then,

just as H

�

and H

+

are determined by P, two regions H

�

m

and H

+

m

in X are determined

by P

�

m

and P

+

m

, respe
tively, su
h that

H

�

m

�H

�

; (18)

H

+

m

�H

+

; (19)

H

�

m

\ (H

�

m

)

0

= P

�

m

; (20)

H

+

m

\ (H

+

m

)

0

= P

+

m

(21)

for ea
h m = 6; 18; 26. Figure 1 illustrates the relation between H

�

and H

+

and that

between H

�

m

and H

+

m

. The following proposition gives the relations between a triplet of

H

�

m

(resp. H

+

m

), m = 6; 18; 26, and H

�

(resp. H

+

); the proof is given in [6℄.

Proposition 2 For any plane P, the in
lusion relations

H

�

6

�H

�

18

�H

�

26

� H

�

(22)

and

H

+

6

�H

+

18

�H

+

26

� H

+

(23)

hold.



m

(a) (b)

P

H
+

H
-

H
-

mH
+

mP
+

mP
-

P

Figure 1: The relation between H

�

and H

+

in X (a), and the relation of H

�

m

and H

+

m

in

X (b). In the �gure (b), we assume m = 6.

A

ording to Table 3, H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are di�erent only if 
on�g-

uration P5 appears in Y. In other words, H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are nearly

equivalent; if 
on�guration P5 does not appear in the digitization pro
ess of P, then H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are 
ompletely equivalent. From Proposition 2, we see that

�I

�

26

is the outermost boundary of I

�

in Y and and P

�

26

is the 
losest to P in X.

Let B

�

m

and B

+

m

be the sets of all latti
e points in
luded in �I

�

m

and �I

+

m

for m =

6; 18; 26, respe
tively, su
h that

B

�

m

= [

[a℄2�I

�

m

[a℄ (24)

and

B

+

m

= [

[a℄2�I

+

m

[a℄: (25)

Then, the following theorem is derived.

Theorem 1 For any plane P, the in
lusion and equality relations

B

�

6

� B

�

18

= B

�

26

(26)

and

B

+

6

� B

+

18

= B

+

26

(27)

hold.

Proof. Using C

Y

(i; j; k) of (14), for ea
h m, we de�ne

B

�

m

(i; j; k) = B

�

m

\C

Y

(i; j; k) (28)

whi
h is a subset of B

�

m

. Let us 
ompare a triplet of B

�

m

(i; j; k), m = 6; 18; 26 for every

C

Y

(i; j; k) in Y. If we make a 
omparison between B

�

6

(i; j; k) and B

�

18

(i; j; k) in Table 3,

we see

B

�

6

(i; j; k) � B

�

18

(i; j; k) (29)



for 
on�gurations P4b, P5, P6 and P7, otherwise we obtain

B

�

6

(i; j; k) = B

�

18

(i; j; k): (30)

Between B

�

18

(i; j; k) and B

�

26

(i; j; k), we see that there is no di�eren
e for any 
on�gu-

ration in Table 3; even if �I

�

18

(i; j; k) and �I

�

26

(i; j; k) are di�erent for P5, B

�

18

(i; j; k) =

B

�

26

(i; j; k). Thus, we obtain

B

�

18

(i; j; k) = B

�

26

(i; j; k) (31)

for any (i; j; k) 2 Y. From (29), (30) and (31), we see that (26) always hold. Similarly,

(27) is also derived.

5 Naive Planes as Dis
rete Planar Surfa
es

The naive plane [1℄ is de�ned with respe
t to P of (5) by

NP = f(x; y; z) 2 Z

3

: 0 � ax+ by + 
z + d < !g (32)

where ! = maxfjaj; jbj; j
jg. The properties of lo
al 
on�gurations of points in NP have

been already obtained in [1,2,3,4℄. In this se
tion, we �rst show the equivalen
e between

NP and B

+

26

, and derive 
ombinatorial properties of dis
rete simplexes in �I

+

26

from the

properties of NP. In order to prove the next theorem, we refer to Lemma 1 in Appendix

A.

Theorem 2 For any P,

NP = B

+

26

(33)

holds.

Proof. Let us 
onsider P su
h that 0 � a � b � 
, 
 > 0. In this 
ase ! = 
. From

(32) we obtain

NP = f(x; y; z) 2 Z

3

: �

a




x�

b




y �

d




� z < �

a




x�

b




y �

d




+ 1g : (34)

For every point x = (x; y; z) in NP, if we de�ne a point 
 2 P su
h that


 = (x; y;�

a




x�

b




y �

d




) ; (35)

then we see that

0 � jx� 
j < 1 (36)



from (34). Thus, to prove this theorem, we will show that every x 2 B

+

26

satis�es (36).

Let us 
onsider a 
ubi
 region C

Y

(i; j; k) of (14). Table 2 gives all 
on�gurations of points

in I

�

and (I

�

)

0

for a C

Y

(i; j; k). Sin
e we fo
us on B

+

26

instead of B

�

26

in the theorem, we

need to 
onsider that bla
k and white points in Table 2 are points in I

+

and (I

+

)

0

instead

of I

�

and (I

�

)

0

, respe
tively. Any bla
k point x in Table 2 whi
h satis�es (36) is 
olored

bla
k or gray in Table 5; bla
k points in Table 2 whi
h do not satisfy (36) are 
olored

white in Table 5. All bla
k points in Table 5 apparently satisfy (36). For ea
h gray point

g = (s; t; u), if we 
onsider two points in P su
h as

b

g

= (s;�

a

b

s�




b

u�

d

b

; u) (37)

and




g

= (s; t;�

a




s�

b




t�

d




) ; (38)

we obtain

jg � b

g

j � jg � 


g

j (39)

sin
e jg � b

g

j : jg � 


g

j = 1=b : 1=
 from Lemma 1 and 0 < b � 
. Let us 
onsider

C

Y

(i; j; k+1) su
h that at least one gray point g exists in C

Y

(i; j; k+1). If the 
on�gu-

ration of C

Y

(i; j; k) is P4b or P5 in Table 5, then the 
on�guration of C

Y

(i; j; k+1) will be

P1. Similarly, if the 
on�guration of C

Y

(i; j; k) is P6, the 
on�guration of C

Y

(i; j; k+1)

will be P2. We then see that all g satisfy (36). Sin
e white points in Table 5 do not

satisfy (36) obviously, from a 
omparison between a set of bla
k and gray points in Table

5 and a set of points of B

+

26

in Table 3, we have (33).

If we de�ne a naive plane su
h that

NP

�

= f(x; y; z) 2 Z

3

: �! < ax+ by + 
z + d � 0g (40)

instead of NP, then the following 
orollary is derived.

Corollary 1 For any P,

NP

�

= B

�

26

(41)

holds.

In the rest of this se
tion, we dis
uss the lo
al 
on�gurations of dis
rete simplexes

in �I

+

26

(resp. �I

�

26

). First, the following proposition is automati
ally derived from the

de�nition of �I

+

26

(resp. �I

�

26

).

Proposition 3 Any 2-simplex in
luded in �I

+

26

(resp. �I

�

26

) is 
lassi�ed into either of

three types illustrated in Table 1.



# of points
in     

configuration of points in 
and an example of P

1

2
a unit 

cube

3

4

5

6

7

points in

P1

P2

P3

P4a P4b

P5

P6

P7

an example
of P

I   
+

points in B+
26

B
+
26but not in

I   
+

I   
+

# of points
in     I   

+
configuration of points in 

and an example of P
I   
+

Table 5: The 
lassi�
ation of all points in I

+

into two types with respe
t to ea
h 
on�g-

uration of Table 2: points of B

+

26

and other.

From Theorem 2 and the properties of NP [1,2,3,4℄, we 
an derive the following


ombinatorial properties of �I

+

26

(resp. �I

�

26

) whi
h are summarized in Propositions 4 to

8. Let us 
onsider the 
on�gurations of dis
rete simplexes in the parts of �I

+

26

(resp. �I

�

26

)

whi
h proje
t on the 
oordinate plane z = 0 as a re
tangle whose sizes are �� �.

Proposition 4 In the 
ase of � = � = 2, there exist �ve di�erent 
on�gurations of

dis
rete simplexes as shown in Figure 2 for �I

+

26

(resp. �I

�

26

) with respe
t to any P su
h

that 0 � a � b � 
, 
 > 0.

Proposition 5 At most four di�erent 
on�gurations of dis
rete simplexes for � = � = 2

are 
ontained in a �I

+

26

(resp. �I

�

26

).

Proposition 6 In the 
ase of � = � = 3, there exist 40 di�erent 
on�gurations of

dis
rete simplexes as shown in Figure 3 for �I

+

26

(resp. �I

�

26

) with respe
t to any P su
h

that 0 � a � b � 
, 
 > 0.



x
y

z

Figure 2: All �ve 
on�gurations of dis
rete simplexes in �I

+

26

(resp. �I

�

26

) whose proje
tions

on plane z = 0 lie on the 2� 2 square grids.

Proposition 7 At most nine di�erent 
on�gurations of dis
rete simplexes for � = � = 3

are 
ontained in a �I

+

26

(resp. �I

�

26

).

Propositions 4 and 5 give the 
oexisten
e of two adja
ent 2-simplexes in a �I

+

26

(resp.

�I

�

26

). For ea
h 0-simplex [x℄ 2 �I

+

26

or �I

�

26

, we 
an de�ne the star su
h that

�([x℄ : �I

+

26

) = f[a℄ 2 �I

+

26

: [x℄ 2 fa
e([a℄)g (42)

or

�([x℄ : �I

�

26

) = f[a℄ 2 �I

�

26

: [x℄ 2 fa
e([a℄)g : (43)

The proje
tion of �([x℄ : �I

+

26

) (resp. �([x℄ : �I

�

26

)) on the 
oordinate plane z = 0 is in a

square whose size is 3 � 3 if 0 � a � b � 
 and 
 > 0. From this fa
t, we also derive the

following proposition.

Proposition 8 Any �I

+

26

(resp. �I

�

26

) is a dis
rete 
ombinatorial surfa
e with the bound-

ary whi
h 
onsists of 2-simplexes and their fa
es, su
h that every 0-simplex [x℄ 2 �I

+

26

(resp. �I

�

26

) has one of the stars whose 
on�gurations are illustrated in Figure 3 for

x = (x; y; z) where l

1

< x < l

2

, m

1

< y < m

2

, n

1

< z < n

2

.

We see that the equivalent simpli
ial 
on�gurations of a star 
an appear in di�erent

simpli
ial 
on�gurations ea
h of whi
h proje
ts on the 
oordinate plane z = 0 as a 3� 3

square in Figure 3. Thus, the total number of di�erent 
on�gurations of dis
rete simplexes

of a star will be less than 40.

Finally, we examine the 
on�gurations of dis
rete simplexes in a �I

+

26

(resp. �I

�

26

). Let

us 
onsider P of (5) whi
h has the 
oeÆ
ients su
h that a, b and 
 are all positive integers

and P \Y 6= ;. Let L be the least 
ommon multiple of a, b and 
, and

A =

L

a

; (44)

B =

L

b

(45)

and

C =

L




: (46)



x
y

z

Figure 3: All 40 
on�gurations of dis
rete simplexes in �I

+

26

(resp. �I

�

26

) whose proje
tions

on plane z = 0 lie on the 3 � 3 square grids. The star of ea
h white point is also shown

as dis
rete simplexes with diagonal lines in the �gure.



(p,q,r)
P

(p+A,q,r-C)

(p,q+B,r-C)

(p+A,q+B,r-2C)

α

β
β

α

Figure 4: If a latti
e point (p; q; r) 2 P \ Y exists, a plane P su
h that a, b and 
 are

positive integers 
an be de
omposed into two types of the triangles � and �.

Theorem 3 For any P su
h that a, b and 
 are positive integers and there exist (p; q; r) 2

P \ Y, �I

+

26

(resp. �I

�

26

) is de
omposed into triangular pie
es of dis
rete 
ombinatorial

surfa
es, whi
h are 
lassi�ed into two types.

Proof. From Lemma 1 in Appendix A, we obtain (51) as illustrated in Figure 5 and

then we have

1

a

:

1

b

:

1




= A : B : C (47)

from (44), (45) and (46). Sin
e A, B and C are relative primes, there is no triangular

pie
e on P whose verti
es are all in Z

3

and whi
h is smaller than the triangle of type �

or �;

� type �: a triangle whose verti
es are (p; q; r), (p+A; q; r�C) and (p; q+B; r�C);

� type �: a triangle whose verti
es are (p + A; q; r � C), (p; q + B; r � C) and (p +

A; q +B; r � 2C).

In Figure 4 we see that P is de
omposed into two types of triangles � and �. For ea
h

triangular region of P, we 
an uniquely obtain a dis
rete planar surfa
e from Proposition

1.

6 Con
lusions

This paper is devoted for the study of topologi
al and geometri
 properties of �I

�

26

and

�I

+

26

. Sin
e we 
onstru
ted dis
rete planar surfa
es from a set of latti
e points, we de-

s
ribed the 
ombinatorial properties by using the 
on�gurations of dis
rete simplexes

instead of those of latti
e points. In this paper, we have proven the equivalen
e between

B

+

26

(resp. B

�

26

) and NP (resp. NP

�

) whi
h are de�ned by using algebrai
 approa
h.

From the equivalen
e, we obtained the 
ombinatorial properties of �I

�

26

(resp. �I

+

26

), su
h

as the 
oexisten
e of adja
ent 2-simplexes and the 
on�guration of dis
rete simplexes of



a star in a �I

+

26

(resp. �I

�

26

). Similar results for �I

+

18

and �I

+

6

(resp. �I

�

18

and �I

�

6

) are in

preparation.
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A Lemma 1

Let us 
onsider P of (5) su
h that a; b; 
 > 0. For ea
h point p 2 I

+

n P su
h that

p = (s; t; u), we set three planes su
h as

S = f(x; y; z) 2 R

3

: x = sg ; (48)



p

a
b

c
P

x

y

z

Figure 5: Three points a, b and 
 de�ned for a plane P and a point p whi
h is not in P.

T = f(x; y; z) 2 R

3

: y = tg (49)

and

U = f(x; y; z) 2 R

3

: z = ug : (50)

Let a, b and 
 be the interse
tion points of P, T and U, P, S and U, and P, S and T,

respe
tively, as illustrated in Figure 5. Then the next lemma is derived.

Lemma 1 For any p 2 I

+

nP, we obtain

jp� aj : jp� bj : jp� 
j =

1

a

:

1

b

:

1




(51)

where a; b; 
 > 0.

Proof. The equation of the line whi
h is the interse
tion of P and U is given by

ax+ by + 
u+ d = 0 : (52)

Thus, the slope of the line in U is given by

jp� bj

jp� aj

=

a

b

: (53)

Similarly, the slopes of the interse
tion lines between P and T, and P and S, are respe
-

tively given by

jp� 
j

jp� bj

=

b




(54)

and

jp� aj

jp� 
j

=




a

: (55)

Thus, we obtain (51).
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