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ON COMBINATORIAL PROPERTIES OF DISCRETE

PLANAR SURFACES

Yukiko Kenmohi and Atsushi Imiya

Abstrat. The simplest free boundary in a 3-dimensional spae is a moving plane. For

the numerial analyses of suh simple free boundary problems, it is neessary to express

moving planes is a grid spae. A simple example of 3-dimensional grid spaes is a set of

3-dimensional lattie points whose oordinates are all integers. In this paper, therefore,

we study geometri and topologial properties of planes in suh a 3-dimensional integer

lattie spae.

1 Introdution

The simplest free boundary in a 3-dimensional spae is a moving plane. For the numerial

analyses of suh simple free boundary problems, it is neessary to express moving planes is

a grid spae. A simple example of 3-dimensional grid spaes is a set of 3-dimensional lattie

points whose oordinates are all integers. In this paper, therefore, we study geometri

and topologial properties of planes in suh a 3-dimensional integer lattie spae.

In the ontext of digital geometry for omputer imagery, Frenh researh group has

proposed the theory of naive planes using algebrai properties of a lattie spae and

examined the algebrai properties of naive planes [1,2,3,4℄. Their treatment of digital

objets de�ned in an integer lattie spae is based on the theory of the geometry of

numbers, whih has the long history from H. Minkowski (1864-1909) [5℄.

On the other hand, we have proposed a ombinatorial approah for expression and

extration of boundaries of digital objets [6℄. In this paper, we apply our boundary

extration algorithm for digitization of planes, and onstrut disrete planar surfaes

whih are planes in an integer lattie spae. Beause of the equivalene between our



disrete planar surfaes and naive planes, we derive the ombinatorial properties of our

disrete planar surfaes from the geometri properties of naive planes.

2 De�nition of Disrete Combinatorial Surfaes

In this setion, we introdue the de�nition of surfaes in a 3-dimensional integer lattie

spae based on the approah of ombinatorial topology [7℄. Let Z be the set of all integers;

Z

3

denotes the set of lattie points, whose oordinates are all integers. In Z

3

we de�ne

three di�erent neighborhoods of a lattie point x = (i; j; k) as follows:

N

m

(x) = f(p; q; r) 2 Z

3

: (i� p)

2

+ (j � q)

2

+ (k � r)

2

� tg; (1)

where m = 6; 18; 26 orresponding to t = 1; 2; 3. They are alled 6-, 18- and 26-

neighborhoods, respetively. Depending on eah neighborhood, we de�ne elements of

1-dimensional urves and 2-dimensional surfaes in Z

3

. These elements are alled 1- and

2-dimensional disrete simplexes and abbreviated as 1- and 2-simplexes, respetively. Sup-

pose we de�ne 0-dimensional disrete simplexes, whih are alled 0-simplexes, as isolated

points in Z

3

. Let R be the set of real numbers; R

3

denotes the 3-dimensional Eulidean

spae. Then 1- and 2-simplexes are de�ned reursively as follows.

De�nition 1 An n-simplex for n = 1; 2 is de�ned as a set of k points in Z

3

,

[x

1

;x

2

; : : : ;x

k

℄ = fx

1

;x

2

; : : : ;x

k

g; (2)

so that the losed onvex hull of x

1

;x

2

; : : : ;x

k

is one of n-dimensional minimum nonzero

regions in R

3

whih are bounded by the losed onvex hulls of (n� 1)-simplexes.

Aording to De�nition 1, a 1-simplex is de�ned as a set of two points in Z

3

, so that

those two points are the endpoints of a line segment whih has a minimumnonzero length

in R

3

. In other words, a 1-simplex onsists of two neighboring points in Z

3

. The on�g-

urations of those two neighboring points depend on the neighborhood systems. The �rst

line of Table 1 shows that there are one, two and three di�erent 1-simplexes for the 6-, 18-

and 26-neighborhood systems, respetively. Similarly, a 2-simplex is de�ned as a set of

points whose losed onvex hull is bound by a set of the losed onvex hulls of 1-simplexes.

In addition, the losed onvex hull of a 2-simplex holds a 2-dimensional minimumnonzero

area. Consequently, one four-point 2-simplex is de�ned for the 6-neighborhood system,

two three-point and one four-point 2-simplexes are de�ned for the 18-neighborhood sys-

tem, and three three-point 2-simplexes are de�ned for the 26-neighborhood system as

shown in the seond line of Table 1. Note that the ongruent 1- and 2-simplexes that
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Table 1: 1- and 2-simplexes whih are respetively regarded as 1- and 2-dimensional elements

in Z

3

for the 6-, 18- and 26-neighborhood systems. All disrete simplexes in Z

3

are obtained by

rotation and translation of those in the table.

di�er from those in Table 1 by rotation and translation are omitted in the table. The

onstrutive de�nitions of 1- and 2-simplexes are presented in [6℄.

If an n

1

-simplex is a subset of an n

2

-simplex where n

1

< n

2

, the n

1

-simplex is alled a

fae of the n

2

-simplex; it is also alled an n

1

-fae beause of the dimension. For instane,

a 2-simplex for the 26-neighborhood system has three 0-faes and three 1-faes. A set of

all faes inluded in a disrete simplex [a℄ = [x

1

;x

2

; : : : ;x

k

℄ is denoted by fae([a℄). Let

the losed onvex hull of k points, x

1

;x

2

; : : : ;x

k

, be denoted by CH([x

1

;x

2

; : : : ;x

k

℄).

The embedded disrete simplex is de�ned as

kak = CH([a℄) n ( [

[b℄2fae([a℄)

CH([b℄)) (3)

for any n-simplex [a℄. If [a℄ is an n-simplex, kak is alled the embedded n-simplex of

[a℄. An n-simplex and the embedded n-simplex are learly di�erent sine [a℄ and kak are

de�ned as sets of points in Z

3

and R

3

, respetively.

De�nition 2 A �nite set K of disrete simplexes is alled a disrete omplex if the fol-

lowing onditions are satis�ed;

1. if [a℄ 2 K, fae([a℄) � K;

2. if [a℄; [b℄ 2 K and kak \ kbk 6= ;, then [a℄ = [b℄.

The dimension of K is equal to the maximum dimension of disrete simplexes whih

belong toK. Hereafter, we abbreviate n-dimensional disrete omplexes to n-omplexes as

well as n-simplexes. Suppose that K is an n-omplex. If there exist at least one n-simplex

[a℄ 2 K for every s-simplex [b℄ 2 K suh that [b℄ 2 fae([a℄) and s < n, K is alled pure.

In addition, if we an �nd a hain of disrete simplexes between two arbitrary elements

[℄; [d℄ 2 K, [

1

℄ = [℄; [

2

℄; : : : ; [

k

℄ = [d℄, suh that [

i

℄ and [

i+1

℄, i = 1; 2; : : : ; k� 1, has a

ommon fae in K, K is alled onneted.



De�nition 3 If a 2-omplex K is pure and onneted, K is a disrete ombinatorial

surfae.

More disussion on disrete ombinatorial surfaes in the sense of ombinatorial topol-

ogy is given in [6℄.

3 Constrution of Disrete Planar Surfaes

Let X be a losed subset of R

3

of the form

X = f(x; y; z) 2 R

3

: l

1

� x � l

2

;m

1

� y � m

2

; n

1

� z � n

2

g ; (4)

where l

i

, m

i

and n

i

are integers for i = 1; 2. Let P be a plane in X suh as

P = f(x; y; z) 2 X : ax+ by + z + d = 0g ; (5)

where a; b; ; d are real numbers. Then the following two regions are separated by P:

H

�

= f(x; y; z) 2 X : ax+ by + z + d � 0g ; (6)

H

+

= f(x; y; z) 2 X : ax+ by + z + d � 0g : (7)

Obviously, we have

H

�

\H

+

= P : (8)

Now we put

Y = X \ Z

3

: (9)

From (4),

Y = f(x; y; z) 2 Z

3

: l

1

� x � l

2

;m

1

� y � m

2

; n

1

� z � n

2

g : (10)

We an onsider that Y is a spae of a 3-dimensional digital image whose size is [l

1

; l

2

℄�

[m

1

;m

2

℄ � [n

1

; n

2

℄. Just as H

�

and H

+

in X, there are two regions in Y, whih are

separated by P as follows:

I

�

= f(x; y; z) 2 Y : ax+ by + z + d � 0g ; (11)

I

+

= f(x; y; z) 2 Y : ax+ by + z + d � 0g : (12)

We say that I

�

and I

+

are the digitization of H

�

and H

+

, respetively. Clearly we have

I

�

\ I

+

= P \Y: (13)

If there is no lattie point on P, P \Y is empty, and hene I

�

\ I

+

is also empty.



# of black 
points

configurations of black and white 
points and an example of P

1

2
a unit 
cube

a black point
in 

3

4

5

6

7

a white point
in 

P1

P2

P3

P4a P4b

P5

P6

P7

an example
of P

# of black 
points

configurations of black and white 
points and an example of P

I   
-

(I  )’-

Table 2: Eight possible on�gurations of blak and white points in a C

Y

(i; j; k) suh that

both blak and white points exist in C

Y

(i; j; k). An example of P is also illustrated for

eah on�guration. Note that we ignore the ongruent on�gurations that di�er from

those eight on�gurations by rotation and translation.

For both I

�

and I

+

, we an onstrut the boundaries whih are disrete ombinatorial

surfaes with the m-neighborhood system for m = 6; 18; 26, denoted by �I

�

m

and �I

+

m

,

using the similar algorithm for boundary extration [6℄. Both �I

�

m

and �I

+

m

are onsidered

to be the digitization of P and alled disrete planar surfaes with respet to P. In this

setion, we heneforth present how to generate �I

�

m

from I

�

. The same proedure an

be applied to generate �I

+

m

if I

�

and �I

�

m

are replaed by I

+

and �I

+

m

, respetively. A

disrete ombinatorial surfae �I

�

m

is obtained in the following two stages:

1. for eah ubi region of eight points in Y suh as

C

Y

(i; j; k) = f(x; y; z) 2 Y : i � x � i+ 1; j � y � j + 1; k � z � k + 1g ; (14)

�I

�

m

(i; j; k) is obtained as a set of 2-simplexes and their faes by referring to a table;



# of black 
points

3

4

5

6

7

N6 N18 N26

P4a P4b P4a

P5

P6

P7

P5

P3

P4b

P7

P6

P5

P3

2
P2

P1
1

Table 3: A set �I

�

m

(i; j; k) for eah on�guration of blak and white points in C

Y

(i; j; k)

orresponding to the on�gurations in Table 2, m = 6; 18; 26. The on�gurations within

parentheses are ignored for the onstrution of �I

�

m

beause blak points in suhC

Y

(i; j; k)

are regarded as 0- or 1-faes of 2-simplexes in the adjaent ubes of C

Y

(i; j; k).

2. then, we obtain

�I

�

m

= [

(i;j;k)2Y

�I

�

m

(i; j; k) (15)

as a disrete ombinatorial surfae.

In the �rst stage, we assign every point in Y either a blak point or a white point. In

this ase, all points in I

�

and the omplement (I

�

)

0

= YnI

�

are assigned blak and white

points, respetively. In any C

Y

(i; j; k) suh that C

Y

(i; j; k) \ I

�

6= ; and C

Y

(i; j; k) \

(I

�

)

0

6= ;, the blak and white points has either of eight di�erent on�gurations as shown

in Table 2, if 0 � a � b �  and  > 0. For eah of these eight on�gurations, an

example of possible P is also illustrated in Table 2. For eah on�guration of C

Y

(i; j; k)

in Table 2, �I

�

m

(i; j; k) is determined so that all 0-simplexes in �I

�

m

(i; j; k) are blak points



an example 
of P

N N186 N26
configuration 

of black points 

PJ1

PJ2

PJ3

and

C  (i  , j  , k  )Y 2 2 2C  (i  , j  , k  )Y 1 1 1

C  (i  , j  , k  )Y 1 1 1

U

C  (i  , j  , k  )Y 2 2 2

Table 4: The on�gurations of blak points at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) suh that

C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) onsists of four lattie points. We ignore the ongruent

on�gurations that di�er from those three on�gurations by rotation and translation.

and every embedded 2-simplexes in �I

�

m

(i; j; k) is loated as lose as possible to P in

X, as shown in Table 3; for more details of how to generate Table 3, see in [6℄. If no

2-simplex exists in C

Y

(i; j; k), we simply set �I

�

m

(i; j; k) = ;. For instane, on�gurations

P1 and P2 in Table 2 have no 2-simplex sine there are only one and two blak points in

C

Y

(i; j; k), respetively; these blak points onstitute 0- and 1-faes of 2-simplexes in the

adjaent ubes of C

Y

(i; j; k). Similarly, on�gurations P3 and P4b are ignored for the

6-neighborhood system sine blak points onstitute two and three 1-faes of 2-simplexes

in the adjaent ubes of C

Y

(i; j; k), respetively.

In the seond stage, we make a union �I

�

m

of all �I

�

m

(i; j; k) whih are obtained by

referring to Table 3. In order to prove that �I

�

m

is a disrete ombinatorial surfae, we

onsider two adjaent unit ubes C

Y

(i

1

; j

1

; k

1

) and C

Y

(i

2

; j

2

; k

2

) suh that C

Y

(i

1

; j

1

; k

1

)\

C

Y

(i

2

; j

2

; k

2

) onsists of four lattie points, and �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

). Eah

of four lattie points at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) is either a blak or white point.

Table 4 shows that there are three di�erent on�gurations of blak and white points

at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) suh that C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) \ I

�

6= ;. It

is also illustrated, in Table 4, that blak points at suh C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

)

onstitutes the ommon faes of 2-simplexes of �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

). For

instane, a blak point of on�guration PJ1 in Table 4 is a 0-fae and a pair of blak

points of on�guration PJ2 is a 1-fae. For on�guration PJ3, a set of three blak points

at C

Y

(i

1

; j

1

; k

1

) \ C

Y

(i

2

; j

2

; k

2

) is regarded di�erently depending on the neighborhood

systems and the loation of P. For the 6-neighborhood system two 1-faes are seen at

C

Y

(i

1

; j

1

; k

1

)\C

Y

(i

2

; j

2

; k

2

) in PJ3 of Table 4. For the 18- and 26-neighborhood systems

either a 1-fae or a 2-simplex is seen depending on the loation of P. Thus, given a P



and an neighborhood system, we an make a union of �I

�

m

(i

1

; j

1

; k

1

) and �I

�

m

(i

2

; j

2

; k

2

)

satisfying the onditions in De�nition 2. Therefore, we an obtain �I

�

m

as a disrete

ombinatorial surfae, and �I

+

m

as well. Sine P is a plane in X and �I

�

m

(resp. �I

+

m

)

is a disrete ombinatorial surfae as digitization of P in Y, �I

�

m

(resp. �I

+

m

) is alled a

disrete planar surfae of P.

4 Topologial Properties of Disrete Planar Surfaes

For �I

�

m

and �I

+

m

, the following proposition is derived from their digitization sheme in

setion 3; the proof is given in [6℄.

Proposition 1 For any plane P in X, �I

�

m

and �I

+

m

are uniquely determined in Y for

eah m = 6; 18; 26.

Now, embedding disrete simplexes whih are inluded in �I

�

m

and �I

+

m

into X, we

respetively obtain

P

�

m

= [

[a℄2�I

�

m

kak (16)

and

P

+

m

= [

[a℄2�I

+

m

kak : (17)

For any set A, we denote by A

0

the omplement of A and by A the losure of A. Then,

just as H

�

and H

+

are determined by P, two regions H

�

m

and H

+

m

in X are determined

by P

�

m

and P

+

m

, respetively, suh that

H

�

m

�H

�

; (18)

H

+

m

�H

+

; (19)

H

�

m

\ (H

�

m

)

0

= P

�

m

; (20)

H

+

m

\ (H

+

m

)

0

= P

+

m

(21)

for eah m = 6; 18; 26. Figure 1 illustrates the relation between H

�

and H

+

and that

between H

�

m

and H

+

m

. The following proposition gives the relations between a triplet of

H

�

m

(resp. H

+

m

), m = 6; 18; 26, and H

�

(resp. H

+

); the proof is given in [6℄.

Proposition 2 For any plane P, the inlusion relations

H

�

6

�H

�

18

�H

�

26

� H

�

(22)

and

H

+

6

�H

+

18

�H

+

26

� H

+

(23)

hold.



m

(a) (b)

P

H
+

H
-

H
-

mH
+

mP
+

mP
-

P

Figure 1: The relation between H

�

and H

+

in X (a), and the relation of H

�

m

and H

+

m

in

X (b). In the �gure (b), we assume m = 6.

Aording to Table 3, H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are di�erent only if on�g-

uration P5 appears in Y. In other words, H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are nearly

equivalent; if on�guration P5 does not appear in the digitization proess of P, then H

�

18

and H

�

26

(resp. H

+

18

and H

+

26

) are ompletely equivalent. From Proposition 2, we see that

�I

�

26

is the outermost boundary of I

�

in Y and and P

�

26

is the losest to P in X.

Let B

�

m

and B

+

m

be the sets of all lattie points inluded in �I

�

m

and �I

+

m

for m =

6; 18; 26, respetively, suh that

B

�

m

= [

[a℄2�I

�

m

[a℄ (24)

and

B

+

m

= [

[a℄2�I

+

m

[a℄: (25)

Then, the following theorem is derived.

Theorem 1 For any plane P, the inlusion and equality relations

B

�

6

� B

�

18

= B

�

26

(26)

and

B

+

6

� B

+

18

= B

+

26

(27)

hold.

Proof. Using C

Y

(i; j; k) of (14), for eah m, we de�ne

B

�

m

(i; j; k) = B

�

m

\C

Y

(i; j; k) (28)

whih is a subset of B

�

m

. Let us ompare a triplet of B

�

m

(i; j; k), m = 6; 18; 26 for every

C

Y

(i; j; k) in Y. If we make a omparison between B

�

6

(i; j; k) and B

�

18

(i; j; k) in Table 3,

we see

B

�

6

(i; j; k) � B

�

18

(i; j; k) (29)



for on�gurations P4b, P5, P6 and P7, otherwise we obtain

B

�

6

(i; j; k) = B

�

18

(i; j; k): (30)

Between B

�

18

(i; j; k) and B

�

26

(i; j; k), we see that there is no di�erene for any on�gu-

ration in Table 3; even if �I

�

18

(i; j; k) and �I

�

26

(i; j; k) are di�erent for P5, B

�

18

(i; j; k) =

B

�

26

(i; j; k). Thus, we obtain

B

�

18

(i; j; k) = B

�

26

(i; j; k) (31)

for any (i; j; k) 2 Y. From (29), (30) and (31), we see that (26) always hold. Similarly,

(27) is also derived.

5 Naive Planes as Disrete Planar Surfaes

The naive plane [1℄ is de�ned with respet to P of (5) by

NP = f(x; y; z) 2 Z

3

: 0 � ax+ by + z + d < !g (32)

where ! = maxfjaj; jbj; jjg. The properties of loal on�gurations of points in NP have

been already obtained in [1,2,3,4℄. In this setion, we �rst show the equivalene between

NP and B

+

26

, and derive ombinatorial properties of disrete simplexes in �I

+

26

from the

properties of NP. In order to prove the next theorem, we refer to Lemma 1 in Appendix

A.

Theorem 2 For any P,

NP = B

+

26

(33)

holds.

Proof. Let us onsider P suh that 0 � a � b � ,  > 0. In this ase ! = . From

(32) we obtain

NP = f(x; y; z) 2 Z

3

: �

a



x�

b



y �

d



� z < �

a



x�

b



y �

d



+ 1g : (34)

For every point x = (x; y; z) in NP, if we de�ne a point  2 P suh that

 = (x; y;�

a



x�

b



y �

d



) ; (35)

then we see that

0 � jx� j < 1 (36)



from (34). Thus, to prove this theorem, we will show that every x 2 B

+

26

satis�es (36).

Let us onsider a ubi region C

Y

(i; j; k) of (14). Table 2 gives all on�gurations of points

in I

�

and (I

�

)

0

for a C

Y

(i; j; k). Sine we fous on B

+

26

instead of B

�

26

in the theorem, we

need to onsider that blak and white points in Table 2 are points in I

+

and (I

+

)

0

instead

of I

�

and (I

�

)

0

, respetively. Any blak point x in Table 2 whih satis�es (36) is olored

blak or gray in Table 5; blak points in Table 2 whih do not satisfy (36) are olored

white in Table 5. All blak points in Table 5 apparently satisfy (36). For eah gray point

g = (s; t; u), if we onsider two points in P suh as

b

g

= (s;�

a

b

s�



b

u�

d

b

; u) (37)

and



g

= (s; t;�

a



s�

b



t�

d



) ; (38)

we obtain

jg � b

g

j � jg � 

g

j (39)

sine jg � b

g

j : jg � 

g

j = 1=b : 1= from Lemma 1 and 0 < b � . Let us onsider

C

Y

(i; j; k+1) suh that at least one gray point g exists in C

Y

(i; j; k+1). If the on�gu-

ration of C

Y

(i; j; k) is P4b or P5 in Table 5, then the on�guration of C

Y

(i; j; k+1) will be

P1. Similarly, if the on�guration of C

Y

(i; j; k) is P6, the on�guration of C

Y

(i; j; k+1)

will be P2. We then see that all g satisfy (36). Sine white points in Table 5 do not

satisfy (36) obviously, from a omparison between a set of blak and gray points in Table

5 and a set of points of B

+

26

in Table 3, we have (33).

If we de�ne a naive plane suh that

NP

�

= f(x; y; z) 2 Z

3

: �! < ax+ by + z + d � 0g (40)

instead of NP, then the following orollary is derived.

Corollary 1 For any P,

NP

�

= B

�

26

(41)

holds.

In the rest of this setion, we disuss the loal on�gurations of disrete simplexes

in �I

+

26

(resp. �I

�

26

). First, the following proposition is automatially derived from the

de�nition of �I

+

26

(resp. �I

�

26

).

Proposition 3 Any 2-simplex inluded in �I

+

26

(resp. �I

�

26

) is lassi�ed into either of

three types illustrated in Table 1.



# of points
in     

configuration of points in 
and an example of P

1

2
a unit 

cube

3

4

5

6

7

points in

P1

P2

P3

P4a P4b

P5

P6

P7

an example
of P

I   
+

points in B+
26

B
+
26but not in

I   
+

I   
+

# of points
in     I   

+
configuration of points in 

and an example of P
I   
+

Table 5: The lassi�ation of all points in I

+

into two types with respet to eah on�g-

uration of Table 2: points of B

+

26

and other.

From Theorem 2 and the properties of NP [1,2,3,4℄, we an derive the following

ombinatorial properties of �I

+

26

(resp. �I

�

26

) whih are summarized in Propositions 4 to

8. Let us onsider the on�gurations of disrete simplexes in the parts of �I

+

26

(resp. �I

�

26

)

whih projet on the oordinate plane z = 0 as a retangle whose sizes are �� �.

Proposition 4 In the ase of � = � = 2, there exist �ve di�erent on�gurations of

disrete simplexes as shown in Figure 2 for �I

+

26

(resp. �I

�

26

) with respet to any P suh

that 0 � a � b � ,  > 0.

Proposition 5 At most four di�erent on�gurations of disrete simplexes for � = � = 2

are ontained in a �I

+

26

(resp. �I

�

26

).

Proposition 6 In the ase of � = � = 3, there exist 40 di�erent on�gurations of

disrete simplexes as shown in Figure 3 for �I

+

26

(resp. �I

�

26

) with respet to any P suh

that 0 � a � b � ,  > 0.



x
y

z

Figure 2: All �ve on�gurations of disrete simplexes in �I

+

26

(resp. �I

�

26

) whose projetions

on plane z = 0 lie on the 2� 2 square grids.

Proposition 7 At most nine di�erent on�gurations of disrete simplexes for � = � = 3

are ontained in a �I

+

26

(resp. �I

�

26

).

Propositions 4 and 5 give the oexistene of two adjaent 2-simplexes in a �I

+

26

(resp.

�I

�

26

). For eah 0-simplex [x℄ 2 �I

+

26

or �I

�

26

, we an de�ne the star suh that

�([x℄ : �I

+

26

) = f[a℄ 2 �I

+

26

: [x℄ 2 fae([a℄)g (42)

or

�([x℄ : �I

�

26

) = f[a℄ 2 �I

�

26

: [x℄ 2 fae([a℄)g : (43)

The projetion of �([x℄ : �I

+

26

) (resp. �([x℄ : �I

�

26

)) on the oordinate plane z = 0 is in a

square whose size is 3 � 3 if 0 � a � b �  and  > 0. From this fat, we also derive the

following proposition.

Proposition 8 Any �I

+

26

(resp. �I

�

26

) is a disrete ombinatorial surfae with the bound-

ary whih onsists of 2-simplexes and their faes, suh that every 0-simplex [x℄ 2 �I

+

26

(resp. �I

�

26

) has one of the stars whose on�gurations are illustrated in Figure 3 for

x = (x; y; z) where l

1

< x < l

2

, m

1

< y < m

2

, n

1

< z < n

2

.

We see that the equivalent simpliial on�gurations of a star an appear in di�erent

simpliial on�gurations eah of whih projets on the oordinate plane z = 0 as a 3� 3

square in Figure 3. Thus, the total number of di�erent on�gurations of disrete simplexes

of a star will be less than 40.

Finally, we examine the on�gurations of disrete simplexes in a �I

+

26

(resp. �I

�

26

). Let

us onsider P of (5) whih has the oeÆients suh that a, b and  are all positive integers

and P \Y 6= ;. Let L be the least ommon multiple of a, b and , and

A =

L

a

; (44)

B =

L

b

(45)

and

C =

L



: (46)



x
y

z

Figure 3: All 40 on�gurations of disrete simplexes in �I

+

26

(resp. �I

�

26

) whose projetions

on plane z = 0 lie on the 3 � 3 square grids. The star of eah white point is also shown

as disrete simplexes with diagonal lines in the �gure.



(p,q,r)
P

(p+A,q,r-C)

(p,q+B,r-C)

(p+A,q+B,r-2C)

α

β
β

α

Figure 4: If a lattie point (p; q; r) 2 P \ Y exists, a plane P suh that a, b and  are

positive integers an be deomposed into two types of the triangles � and �.

Theorem 3 For any P suh that a, b and  are positive integers and there exist (p; q; r) 2

P \ Y, �I

+

26

(resp. �I

�

26

) is deomposed into triangular piees of disrete ombinatorial

surfaes, whih are lassi�ed into two types.

Proof. From Lemma 1 in Appendix A, we obtain (51) as illustrated in Figure 5 and

then we have

1

a

:

1

b

:

1



= A : B : C (47)

from (44), (45) and (46). Sine A, B and C are relative primes, there is no triangular

piee on P whose verties are all in Z

3

and whih is smaller than the triangle of type �

or �;

� type �: a triangle whose verties are (p; q; r), (p+A; q; r�C) and (p; q+B; r�C);

� type �: a triangle whose verties are (p + A; q; r � C), (p; q + B; r � C) and (p +

A; q +B; r � 2C).

In Figure 4 we see that P is deomposed into two types of triangles � and �. For eah

triangular region of P, we an uniquely obtain a disrete planar surfae from Proposition

1.

6 Conlusions

This paper is devoted for the study of topologial and geometri properties of �I

�

26

and

�I

+

26

. Sine we onstruted disrete planar surfaes from a set of lattie points, we de-

sribed the ombinatorial properties by using the on�gurations of disrete simplexes

instead of those of lattie points. In this paper, we have proven the equivalene between

B

+

26

(resp. B

�

26

) and NP (resp. NP

�

) whih are de�ned by using algebrai approah.

From the equivalene, we obtained the ombinatorial properties of �I

�

26

(resp. �I

+

26

), suh

as the oexistene of adjaent 2-simplexes and the on�guration of disrete simplexes of



a star in a �I

+

26

(resp. �I

�

26

). Similar results for �I

+

18

and �I

+

6

(resp. �I

�

18

and �I

�

6

) are in

preparation.
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A Lemma 1

Let us onsider P of (5) suh that a; b;  > 0. For eah point p 2 I

+

n P suh that

p = (s; t; u), we set three planes suh as

S = f(x; y; z) 2 R

3

: x = sg ; (48)



p

a
b

c
P

x

y

z

Figure 5: Three points a, b and  de�ned for a plane P and a point p whih is not in P.

T = f(x; y; z) 2 R

3

: y = tg (49)

and

U = f(x; y; z) 2 R

3

: z = ug : (50)

Let a, b and  be the intersetion points of P, T and U, P, S and U, and P, S and T,

respetively, as illustrated in Figure 5. Then the next lemma is derived.

Lemma 1 For any p 2 I

+

nP, we obtain

jp� aj : jp� bj : jp� j =

1

a

:

1

b

:

1



(51)

where a; b;  > 0.

Proof. The equation of the line whih is the intersetion of P and U is given by

ax+ by + u+ d = 0 : (52)

Thus, the slope of the line in U is given by

jp� bj

jp� aj

=

a

b

: (53)

Similarly, the slopes of the intersetion lines between P and T, and P and S, are respe-

tively given by

jp� j

jp� bj

=

b



(54)

and

jp� aj

jp� j

=



a

: (55)

Thus, we obtain (51).



Yukiko Kenmohi

Shool of Information Siene

Japan Advaned Institute of Siene and Tehnology

1-1 Asahidai Tatsunokuhi, Ishikawa 923-1292 Japan

E-mail: kenmohi�jaist.a.jp

Atsushi Imiya

Department of Information and Image Sienes

Chiba University

1-33 Yayoi-ho Inage-ku, Chiba 263-8522 Japan

E-mail: imiya�is.tj.hiba-u.a.jp


