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Synthesis of 2,3-Substituted β-N -Glycosyl Indoles through C-H Activation/Annulation Process under Rh(III)-Catalysis.

Guangkuan Zhao, a Mingxiang Zhu, a Olivier Provot, a Mouad Alami, a and Samir Messaoudi a* a BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France ABSTRACT: An efficient and selective C-H activation/annulation of readily available β-N-aryl glycosides with various alkynes has been established. Using [Cp*RhCl 2 ] 2 as a catalyst and AgSbF 6 in DCE, this protocol proved to be general to prepare a variety of 2,3-substituted N-glycosyl indoles in good yields with exclusive β-selectivity. β-N-glycosyl indoles are of high importance in medicinal chemistry and commonly found in many compounds of practical importance, ranging from natural compounds to pharmaceutical agents 1 (Figure 1). While these derivatives clearly hold a great potential in medicinal chemistry, relatively little attention has been devoted to their syntheses (Figure 1-B), since the stereoselective induction of a nitrogen indole scaffold at the anomeric position remains as a particularly difficult task. From a synthetic point-of-view, 2,3-substituted β-N-glycosyl indoles 3 (Figure 1) were prepared through multi-steps syntheses by treating indoline derivatives with sugars lactols 1i,2 followed by (i) oxidation of the indoline into indole and (ii) functionalization of the C-2 and C-3 positions (Figure 2, Path A). The synthesis of 2,3-substituted β-N-glycosyl indoles is also possible via a β-glycosylation of indoles through a SN 2 Mitsunobu reaction 1k, 1l, 3 followed by the functionalization of the indole nucleus (Figure 2, Path B). However, the reaction necessitate the use of a well-defined α-sugar lactols which are difficult to synthesize through multisteps sequences. [START_REF] Bayle | A Stable Blocking Group Removable by Ozonolysis[END_REF] Moreover, a mixture of α-and β-anomers was obtained in most cases. Another way to prepare stereoselectively β-N-glycosyl indoles is the use of Danishefsky α-1,2-anhydro sugars (Figure 2, Path C). [START_REF] Gallant | A Stereoselective Synthesis of Indole-β-N-glycosides: An Application to the Synthesis of Rebeccamycin[END_REF] While this method is efficient, beside the necessary of C2-and C3 functionalization, Indeed, their synthesis from epoxidation of the corresponding glycals is inherently relies on the use of the Murray's reagent [START_REF] Murray | Chemistry of Dioxiranes. 12[END_REF] (DMDO) which is an instable volatile peroxide not easy to prepare and manipulate. Despite these advances, the absence of a general and predictable Figure 2 Strategies to access to 2,3-substituted β-N-glycosyl indoles method for the direct synthesis of 2,3-substituted β-N-glycosyl indoles with a minimum of steps remains a major gap in glycochemistry preventing greater investigation of the biology and applications of these compounds.

Recently, our group reported an efficient protocol for the synthesis of β-N-aryl glycosides via a copper-catalyzed Chan-Lam-Evans N-arylation of aryl boronic acids. [START_REF] Bruneau | Stereoselective Copper-catalyzed Chan-Lam-Evans N-arylation of Glucosamines with Arylboronic Acids at Room Temperature[END_REF] As part of our continued efforts to functionalize sugars under transition-metal catalysis to access complex glycosides, [START_REF] Brachet | Palladium-Catalyzed Cross-Coupling Reaction of Thioglycosides with (Hetero) aryl Halides[END_REF] we envisioned whether β-N-aryl glycosides could be utilized as building blocks in the synthesis of β-N-glycosyl indoles through a transition-metalcatalyzed activation/annulation reaction in the presence of various alkynes (Figure 1-C). This modular strategy is conceptually attractive in terms of diversifying the N-glycosyl indoles frameworks with the aim to identify novel scaffolds of biological interest. In this work, we showed for the first time, that β-Naryl glycosides and alkynes successfuly joined together through a C-H activation/annulation process 9 to afford in a single step stereoselectively, a variety of substituted β-Nglycosyl indoles (Figure 1-C). To achieve successfully our goal, initial investigations focused on identifying optimal conditions for coupling of β-Nphenyl glucopyranoside 1a with 1,2-diphenylethyne 2a as models study (Table 1). In preliminary experiments, the C-H activation/annulation reaction was examined under various conditions in the presence of different catalysts such as Ru, [START_REF] Ackermann | Cationic Ruthenium (II) Catalysts for Oxidative C-H/N-H Bond Functionalizations of Anilines with Removable Directing Group: Synthesis of Indoles in Water[END_REF] Rh, [START_REF] Stuart | Indole Synthesis via Rhodium Catalyzed Oxidative Coupling of Acetanilides and Internal Alkynes[END_REF] Ni, [START_REF] Song | Nickel-catalyzed Alkyne Annulation by Anilines: Versatile Indole Synthesis by C-H/N-H Functionalization[END_REF] and Pd, [START_REF] Dupont | Reactivity of Cyclopalladated Compounds. Part 18. Compared Reactivity of the Pd-C Bonds of Two Closely Related Six-membered Palladocyclic Rings with Substituted Alkynes. X-Ray and Molecular Structures of [Pd{C(Ph)=C(R)C(Ph)=C(R)(o-C6H4N=CMeNHPh)}Cl[END_REF] but unfortunately, β-N-glycosyl indole 3a was not detected under these conditions.

Further, inspired by the recent work described by Zhu 14a and Fan 14b whose reported the cyclization of N-nitrosoanilines under Rh(III)-catalysis, we evaluated the influence of a nitrososubstituent on the phenyl glucopyranoside nitrogen atom (compound 1b). When we used β-N-nitrosophenyl glucopyranoside 1b with [(Cp*RhCl 2 ) 2 ] (5 mol%), AgSbF 6 (20 mol%), and diphenylacetylene (2a, 2 equiv.) in 1,2-dichloroethane (DCE) at 100 °C for 3 h, we obtained β-N-glucosyl indole 3a (J 1,2 = 9.3 Hz) in 38% yield (entry 18). After screening several parameters, we finally found that the C-H annulation between 1b and 2a occured smoothly with 70% yield in the presence of [(Cp*RhCl2)2] (5 mol%), AgSbF 6 (20 mol%), in DCE at 90 °C for 5 h without adding any external oxidant (Table 1, entry 23). It should be noted that the Rh-catalyst and AgSbF 6 were necessary to achieve this transformation since no reaction occur when the coupling was conducted in the absence of [(Cp*RhCl 2 ) 2 ] or AgSbF 6 (entries 24 and 25).

Motivated by these results, we next explored the scope of the coupling reaction of 1b with a variety of internal alkynes and we are gratifyingly pleased with the generality of this method. Various internal alkynes reacted smoothly to afford the desired 2,3-disubstituted N-glucosyl indoles 3a-i in satisfactory yields. A variety of symmetric diaryl alkynes were efficiently converted into the corresponding products and electron-donating substituents on the aromatic rings had a positive electronic effect on yield than electron-withdrawing substituents (Table 2, 3a-d). The coupling reaction with 1,2-di(thiophen-2-yl)ethyne was also efficient to afford 3e in a moderate yield. Moreover, unsymmetrically substituted alkynes 2f-i were converted with variable yields and moderate regioselectivities (3f-i).

In a further set of experiments, we investigated the scope and generality of the method with respect to β-N-aryl glycosides 1jr. As depicted in Table 3, the protocol tolerated different β-Naryl glucosides and a multitude of 5-and

Scheme 1 Scope of alkynes coupling with tetraacetyl β-Nnitrosophenyl glucopyranoside 1b

Reaction conditions: reactions were performed in a flame dried resealable Schlenk tube using 1b (0.30 mmol), alkynes 2 (2 equiv), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), in 1,2-DCE (0.1 M) at 90 °C for 5 h. b Yield of isolated product 3.

6-substituted indoles 3j-o were readily prepared using this reaction. 5-Substituted β-N-aryl glycosides bearing elec trondonating or electron-withdrawing groups afforded the corresponding 5-substituted β-N glucosyl indoles 3j-m in acceptable yields. In addition, meta-substitution was tolerated furnishing 6-disubstituted β-N-glucosyl indoles 3n and 3o in 58% and 37% yields, respectively. Interestingly, this cross-coupling tolerated the presence of C-halogen bonds (e.g., F, Cl, Br) which offers a platform for further metal-catalyzed cross coupling reactions (compounds 3l, 3m and 3n). Moreover, the C-H activation/annulation process is not limited to β-N-aryl glucosides but also works successfully with β-N-aryl galactosides 1p,q and the peracetylated β-D-disaccharide 1r derived from D-β-cellobiose octaacetate, however only 25% isolated yield of the disaccharide 3r was obtained probably due to its intrinsic instability of 3r. Of note, the stereochemistry of the 1→4' glycosidic bond remained intact. It is noteworthy that the coupling of unprotected β-N-nitrosophenyl glucoside with 1,2diphenylethyne 2a under the above experimental conditions failed, as only starting materials were recovered unchanged. With substantial amounts of 3l in hand (Table 2), we focused our attention on demonstrating whether our method could be employed for molecular diversity. As shown in Scheme 1, β-Nglucosyl indole 4, which is an analogue of compound A, a highly promising cytotoxic and antitubulin agent developed in our group, [START_REF] Soussi | Discovery of Azaisoerianin Derivatives as Potential Antitumors Agents[END_REF] was easily Scheme 2 Scope of β-N-nitroso-aryl glycosides 1j-r coupling with 2a

Reaction conditions: reaction were performed in a flame dried resealable Schlenk tube using 1j-r (0.30 mmol), alkyne 2a (2 equiv), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), in 1,2-DCE (0.1 M) at 90 °C for 5 h. b Yield of isolated product 3. c The reaction was achieved at 80 °C prepared via a Pd-catalyzed coupling reaction of 3l with 3,4,5trimethoxy-N-methylaniline. Compound 5 was obtained from 4 by deprotection of the acetates groups under Zemplen's conditions using a catalytic amount of potassium carbonate in methanol. [START_REF] Zemplén | Studien über Amygdalin, IV: Synthese des Natürlichen l-Amygdalins[END_REF] Scheme 1 Application of this methodology the synthesis of bioactive compounds 4 and 5

The in vitro activity of derivatives 4 and 5 was evaluated by their growth-inhibitory potency against HCT-116 cancer cells (human colon carcinoma) at the concentration of 10 -6 M. The quantification of cells survival in this cell line was established by using MTT assays after 72 h of exposure. We found that analogues 4 and 5 displayed a moderate effect in the growth of HCT-116 (81% and 70% survival, respectively) compared to the reference compound A (IC 50 = 7 nM) (Scheme 1).

In conclusion, we successfully developed an efficient and practical method based on Rh(III)-catalyzed C-H activation/annulation process of various β-N-nitroso-aryl glycosides with alkynes. The protocol exhibited a broad substrate scope with respect to the coupling partners, thus providing an attractive access to a large molecular diversity of 2,3-disubstituted N-glycosyl indoles 3. This protocol developed is stereoretentive, functional-group tolerant, and proceeds in good yields. We believe that this methodology will find broad applications in organic synthetic chemistry as well as in combinatorial and pharmaceutical sciences.
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Figure 1 .

 1 Figure 1. Heteroaryl N-glycoside-based bioactive molecules access to α-1,2-anhydrosugars (epoxides) remain no trivial.Indeed, their synthesis from epoxidation of the corresponding glycals is inherently relies on the use of the Murray's reagent[START_REF] Murray | Chemistry of Dioxiranes. 12[END_REF] (DMDO) which is an instable volatile peroxide not easy to prepare and manipulate. Despite these advances, the absence of a general and predictable

Table 1

 1 Survey of reaction conditions for the C-H activation/annulation of 1a,b with 2a a

	entry	R	Cat.	additive	solvent	Temp	Time	yield
						(°C)	(h)	3a
								(%) b
	1	H	Cat1	AgNO3	t-AmOH	120	12	0
	2	H	Cat1	Ag3PO4	t-AmOH	120	12	0
	3	H	Cat1	MeCO2Ag	t-AmOH	120	12	0
	4	H	Cat1	CF3CO2Ag	t-AmOH	120	12	0
	5	H	Cat1	AgSbF6	t-AmOH	120	12	0
	6	H	Cat1	AgSbF6	dioxane	120	12	0
	7	H	Cat1	AgSbF6	DCE	120	12	0
	8	H	Cat1	AgSbF6	Acetone	120	12	0
	9	H	Cat1	AgSbF6	DMF	120	12	0
	10	H	Cat1	AgSbF6	Toluene	120	12	0
	11	H	Cat2	AgSbF6	t-AmOH	120	12	0
	12	H	Cat3	AgSbF6	t-AmOH	120	12	0
	13	H	Cat4	AgSbF6	t-AmOH	120	12	0
	14	H	Cat5	AgSbF6	t-AmOH	120	12	0
	18	NO	Cat3	AgSbF6	DCE	100	3	38
	19	NO	Cat3	AgSbF6	DCE	120	3	25
	20	NO	Cat3	AgSbF6	DCE	rt	15	trace
	21	NO	Cat3	AgSbF6	DCE	60	15	31
	22	NO	Cat3	AgSbF6	DCE	100	5	55 c
	23	NO	Cat3	AgSbF6	DCE	90	5	70
	24	NO	Cat3	--	DCE	90	5	0
	25	NO	--	AgSbF6	DCE	90	5	0
	26	NO	Cat3	AgSbF6	DCE	90	5	72 d

a Reactions were conducted with substrate 1a or 1b (0.10 mmol), alkyne (0.2 mmol), catalyst, additive, and solvent (1.0 mL). b Yield of isolated product 3a. c 1b was completely consumed. d 0.4 mmol of 2a were used.
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