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Marching Cubes Method with Connectivity

Y. Kenmochi and K. Kotani

School of Information Science, JAIST
1-1 Asahidai Tatsunokuchi
Ishikawa 923-1292, Japan

Abstract

In this paper, we solve the topological problem of
isosurfaces generated by the marching cubes method
using the approach of combinatorial topology. For
each marching cube, we examine the connectivity of
polyhedral configuration in the sense of combinatorial
topology. For the cubes where the connectivities are
not considered, we modify the polyhedral configurations
with the connectivity and construct polyhedral isosur-
faces with the correct topologies.

1 Introduction

The marching cubes method proposed by Lorensen
and Cline in 1987 [1] is a powerful technique for vi-
sualization of a 3-dimensional gray-scale digital im-
age. It constructs polyhedral isosurfaces with triangle
patches. Let us consider that voxels of a digital im-
age are lattice points in a 3-dimensional space and
that lattice points are called black points if their gray
values are more than the isovalue and white points,
otherwise. The locations of the vertices of triangles
are decided by linear interpolation of gray values be-
tween black and white points. In a unit cubic region of
2 x 2 x 2 points, the number of possible arrangements
of black and white points is limited to 256. For each
unit cubic region, the local polyhedral configuration
iw predetermined as shown in Table 1.

It has been pointed out, however, that the classical
marching cubes method causes the topological ambi-
guity of isosurfaces. If a set of black points at the
joint of adjacent unit cubes are arranged as illustrated
in Figure 1, two different configurations of triangles’
edges are conceivable such as (a) and (b) of the figure.
If the configurations in two adjacent unit cubes are
not coincident at the joint, the isosurface cracks and
have no topological structure equivalent to a closed
surface [2, 3]. In order to avoid this problem, we need
to consider the connectivity of black (or white) points
at the joints of unit cubes. One of the solutions is
to prepare all polyhedral configurations correspond-
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Table 1: The look-up table for generation of isosurfaces by
the classical marching cubes method. Black points indicate
the points whose gray values are more than the isovalue.
The arrangements of black points which are obtained by
rotations of those in the table are omitted in the table.
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Figure 1: The topological ambiguity problem of the clas-
sical marching cubes method.

ing to all possible cases of point connectivities at the
joint [2] as shown in Table 2. Although this solution
enables us to avoid the ambiguity problem if an ade-
quate configuration of triangles is chosen at each joint,
it is incoherent from the viewpoint of the point con-
nectivity; we consider the connectivity of points only
at the joint of unit cubes, but not in each unit cube.

In order to discuss the connectivity of points in a
polyhedral surface, we use the approach of combinato-
rial topology. We first discretize the marching cubes in
Tables 1 and 2, and then try to obtain discrete march-
ing cubes for generation of discrete polyhedra which
are defined as closed surfaces in a 3-dimensional lattice
space [4, 5]. Discrete polyhedra satisfy the following
conditions;

1. all vertices of a polyhedron are lattice points,

2. any pair of adjacent vertices which are the
endpoints of an edge of a polyhedron are m-
neighboring where m = 6,18,26 [4, 5].

It has been proven that the topological structures of
these discrete polyhedra are equivalent to those of 2-
dimensional manifolds [6]. Therefore, discrete polyhe-
dra are already guaranteed not to cause the topolog-
ical ambiguity. Because of the conditions of discrete
polyhedra, in addition, the normal vector of each poly-
gon is calculated by integer arithmetic and the direc-
tions of all normal vectors are classified into exactly 13
types. Thus, much effect will be produced by postpro-
cessing for visualization such as merging polygons, so
that displaying a polyhedron consumes less time [7].

2 Discrete Polyhedral Surface and Its
Connectivity

Let Z be the set of all integers. Then, Z3 (=

Z x Z x Z) denotes a set of lattice points whose coor-

dinates are all integers. In Z3 we define three different
neighborhoods of a lattice point = (4, 4, k) as follows:

Nm(w) =
{(,q,7) €Z° = (d

where m = 6, 18,26 corresponding to t = 1,2,3. They
are called 6-, 18- and 26-neighborhoods, respectively.
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Table 2: Polyhedral surface configurations which we need
to add to Table 1 for avoiding the topological ambiguities
of isosurfaces.

Depending on each neighborhood, we define elements
of 1-dimensional curves and 2-dimensional surfaces in
Z3. These elements are called 1- and 2-simplexes, re-
spectively [4]. Suppose we define 0-simplexes as iso-
lated points in Z3. Then 1- and 2-simplexes are de-
fined recursively as follows.

Definition 1 An n-simplex for n = 1,2 is defined as
a set of k points in Z3,

[w1;w2a"'awk] = {$1,w2,---,$k},

so that the embedded simplex of [x1,xa,...,xk] is
one of n-dimensional minimum nonzero regions in R3
which are bounded by embedded (n — 1)-simplezes.

Let R be a set of real numbers; R® denotes a 3-
dimensional Euclidean space. In R3, The embedded
simplex of [x1, T2, . .., x| is defined as the convex hull
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Table 3: All possible 2-dimensional discrete simplexes for
the 6-, 18- and 26-neighborhood systems. Note that con-
gruent simplexes which differ from those in this table by
translations and rotations are omitted in the table.

of the k points, and is denoted by |z1, @, ..., zk|. If
[x1, X, ...,2] is an n-simplex, |1, Ta, ..., x| is also
called the embedded n-simplex. According to Defi-
nition 1, a 1-simplex is defined as a set of two m-
neighboring points in Z3, and a 2-simplex is defined
as a set of points whose convex hull is bound by a set
of 1-simplexes. Table 3 shows all 2-simplexes for each
neighborhood system. The constructive definitions of
discrete simplexes are also presented in reference [4].

If an s-simplex is included in an n-simplex where
s < n, the s-simplex is called an s-face of the n-
simplex. Using 0- and 1-faces, we can combine 2-
simplexes so that combined 2-simplexes represent sur-
faces in Z3 which are called discrete surfaces.

Definition 2 Let K be a set of 2-simplexes and [a]
and [b] be any pair of 2-simplexes in K so that [a] N
[b] # 0. If [a] N [b] is the common O- or 1-face of [a]
and [b] and every 1-face in K belongs to exactly two
2-simplexes, K is a discrete surface.

If a discrete surface K consists of only 2-simplexes
with m-neighborhood system and there is a path be-
tween two arbitrary elements [a] and [b] in K such as

[a] = [a], [a2], -, [ax] = [b],

where [a;] € K and [a;]N[a;11] # O fori=1,2,...,k—
1, K is called m-connected.

Discrete surfaces derived by Definition 2 are classi-
fied into the following two classes: a class of polyhedral
surfaces which are closed and a class of surfaces which
are infinitely spread in Z?3 such as planes. In this pa-
per, we focus on discrete surfaces in the first class, and
call such discrete surfaces discrete polyhedral surfaces,
hereafter. The rigorous definition of discrete surfaces
in the sense of combinatorial topology is given in the
reference [4].

3 Discretized Marching Cubes

Discretizing Tables 1 and 2 to obtain discretized
marching cubes, we examine a polyhedral configura-

tion for each cube from the viewpoint of connectivity.
3.1 Discretization of Marching Cubes

We first binarize the gray value of each voxel in a
3-dimensional digital image to be either 1 or 0 using a
threshold v. Each voxel corresponds to a point in Z3,
and points whose values are 1 or 0 are called 1- or 0-
points, respectively. We then interpolate an isosurface
whose isovalue is nearly 1 such as 0.99 by referring to
Tables 1 and 2, and obtain Table 4. Since Table 2
contains more than one polyhedral configurations for
a single arrangement of 1-points, Table 4 also contains
more than one polyhedral configurations for such an
arrangement. Because of the constraints such that
the vertices of generated polyhedra are lattice points,
there are some arrangements for which no oriented
polyhedral face is constructed such as P2b, P3b, P3c,
etc.
3.2 Cube Classification by Connectivity

All polyhedral configurations in Table 4 can be clas-
sified into four types by connectivities. If every pair of
m-neighboring 1-points constitutes an edges of poly-
hedra in a unit cube, such a polyhedral configura-
tion is classified into a type of m-connectivity where
m = 6,18,26. If a polyhedral configuration is clas-
sified into neither of the types of m-connectivity, we
classify it into the fourth type. Table 5 shows the re-
sults of the classification. From Table 5, we conclude
that

1. polyhedral configurations with 6-connectivity are
not always considered for the arrangements of 1-
points in Table 4;

2. a polyhedral configuration with 18-connectivity
is considered for every arrangement of 1-points in
Table 4 except for P3b, P4b, P4c and P4d;

3. a polyhedral configuration with 26-connectivity
is considered for every arrangement of 1-points in
Table 4 except for P2¢ and Pb5a.

4 Discrete Marching Cubes with Con-
nectivity

Table 5 shows that polyhedral configurations with
6-connectivity are not always considered. This is be-
cause 2-simplexes for 6-neighborhood system are only
square as illustrated in Table 3 and they are not suit-
able for the representation of an isosurface interpo-
lated in a unit cube since they are located on the
boundary of a unit cube and not inside a unit cube.
Thus, in this section, we only consider 18- and 26-
connectivities and present discrete marching cubes
with 18- and 26-connectivities.
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Table 4: Discrete marching cubes derived from Tables 1
and 2. Polyhedral configurations which are not used for
the generation of isosurfaces are hatched in the table.

Ne Nisg Noag else
PO PO PO
P1 P1 P1

P2a P2a P2a
P2b-1 | P2b-2 | P2b-2
P2c P2c
P3a P3a
P3b-1 P3b-2
P3c-1 | P3c-4 | P3c-4
P4a P4a P4a
P4b-3 | P4b-1, P4b-2
P4c
P4d
P4de Pde
P4f-1 P4f-3 | P4f-3 | P4f-2

P4g-1 | P4g-8 | P4g-8 | P4g-2, P4g-3, ..., P4g-7

P3c-2, P3c-3

P5a
P5b-1 | P5b-1 | P5b-2
P5c-1 | P5c-1 | Pbc-2, P5c-3, P5c-4
P6a P6a
P6b-1 | P6b-1 | P6b-2
Pé6c Pé6c
P7 P7
P8 P8 P8

Table 5: Classification of all discrete marching cubes in
Table 4 by m-connectivities where m = 6,18, 26.

Since Table 5 shows that polyhedral configurations
with 18-connectivity for P3b, P4b, P4c and P4d are
not prepared in Table 4, we determine them as illus-
trated in Figure 2 (a). Similarly, we determine poly-
hedral configurations with 26-connectivity for P2c and
P5a in Figure 2 (b).

To construct m-connected discrete polyhedral sur-
faces where m = 18,26 from a 3-dimensional digital
image, we only use the polyhedral configurations in
Table 6 since we can ignore discrete simplexes which
are not oriented and less than two dimensions. Table
6 is coincident with the table which is used in the ref-
erences [5, 8], and the following theorem was derived
in the references.

Theorem 1 Referring to Table 6, we can uniquely
construct m-connected discrete polyhedral surfaces
from a finite subset V. C Z3 with the additional proce-
dures as illustrated in Figure 3.

5 Conclusions

In this paper, we discretized marching cubes in Ta-
bles 1 and 2, obtained Table 4, and examined the con-
nectivity of discrete simplexes for each cube in Table
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Figure 2: Polyhedral configurations with 18-connectivity
(a) and 26-connectivity (b), which are not prepared in Ta-
bles 1, 2 and 4. Configurations which are not used for
construction of discrete polyhedral surfaces are hatched in
the figure.
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Figure 3: Two additional procedures for construction of
m-connected discrete polyhedral surfaces; (a) if two adja-
cent unit cubes have a common 2-simplexes, they are ig-
nored; (b) if two adjacent unit cubes have the polyhedral
configurations Pba for 18-connectivity, the 2-simplexes are
replaced such as the illustration.

4 in the sense of combinatorial topology. From the
examination, we clarify that the addition polyhedral
configurations in Figure 2 are necessary for preserving
the correct topological structures of polyhedral isosur-
faces. Consequently, we obtained Table 6 for construc-
tion of m-connected discrete polyhedral surfaces from
a 3-dimensional digital image.
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