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SHAPE DECOMPOSITION BY TOPOLOGY

Y. KENMOCHI, A. IMIYA

Dept. of Information and Computer Sciences, Chiba University
1-33 Yayoi-cho, Inage-ku, Chiba 263, JAPAN

Shape decomposition is a fundamental method of extracting geometric features of
objects. The decomposition of objects using geometric features is not sufficient for
image representation with subpixel accuracy. This is because not only geometric
structures but also topological structures of objects are variable and depend on the
resolution of an image. In this paper, we define “dimensionalities” as new topolog-
ical features. The term “dimensionality” comes from the dimensions of simplexes
which are fundamental properties in classical combinatorial topology. First, we in-
troduce a combinatorial shape description in 3-dimensional discrete space. Second,
a method of shape decomposition using “dimensionalities” is presented.

1 Introduction

Shape decomposition is a fundamental method of extracting geometric features
of objects [1]. A given object is divided into a collection of parts; the collec-
tion enables us to describe the given object as a collection of models which are
precreated as fundamental shapes for the description of objects. The decom-
position of objects into a collection of geometric parts is, however, insufficient
for image representation with subpixel accuracy [2, 3]. This is because not
only geometric properties but also topological properties of objects are vari-
able and depend on the resolution of images. These topological properties
are called “dimensionalities” in this paper. The term “dimensionality” comes
from the dimensions of simplexes which are the basic properties in classical
combinatorial topology [4].

In the first part of this paper, we introduce a combinatorial shape descrip-
tion in a 3-dimensional (3D) discrete space. We call the shape description a
discrete complex which is taken from a term in combinatorial topology. We
also show an algorithm for constructing a discrete complex from a given set
of points in the 3D discrete space. A similar approach for discrete shape rep-
resentation, which is called finite topology [5], exists. Since finite topology
assumes that objects which are treated in a 3D discrete space are only 3D, di-
mensionalities of objects are only 3, whereas our shape description can include
from 0 to 3 dimensionalities depending on the parts of represented objects. In
the second part of this paper, a method of shape decomposition into nD parts
of objects is presented using dimensionalities of each point. Each point has
at least one kind of dimensionality, which can be from 0 to 3 in a 3D discrete



space. A simple example of decomposing an object in the 3D discrete space is
also illustrated.

2 Combinatorial Shape Description

This section gives an overview of a 3D shape description in a 3D discrete space
using combinatorial topology. The details of combinatorial topology in a 3D
discrete space are described in reference [6]. Setting R3 to be a 3D Euclidean
space, a 3D discrete space Z3 is defined as a set of all points in R3 having
integer coordinates. Denoting the Euclidean distance between two points, x
and y, by ∥x− y∥, two types of neighborhoods of a point x in Z3 are defined
as

Nm(x) = {y | ∥x− y∥ ≤ p, y ∈ Z3}, (1)

where m = 6 or 26 corresponding to p which is 1 or
√
3. They are called 6-

and 26-neighborhoods, respectively. One of the two neighborhoods must be
assumed in Z3.

An nD discrete simplex is defined as a topological element which has an
nD region in Z3, depending on each neighborhood. A discrete simplex consists
of several points in Z3. If we embed these points of a discrete simplex in
R3, then we can create the convex hull of these points in R3; the convex
hull is called the embedded simplex. The dimension of a discrete simplex
depends on the dimension of the region of its embedded simplex. Note that
embedded simplexes do not include their boundary; in topological terms, they
are relatively open in R3. The dimension can be from 0 to 3 in Z3. For
each neighborhood, 0D discrete simplexes are regarded as isolated points in
Z3. Discrete simplexes whose dimensions are more than 0 are obtained by the
following recursive definition.

Definition 1 An nD discrete simplex is defined as a set of points in Z3, such
that the embedded simplex becomes one of nD minimum nonzero regions in R3

which are bounded by (n− 1)D embedded simplexes.

We abbreviate nD discrete simplexes as n-simplexes. An n-simplex which
consists of k points, x1,x2, . . . ,xk, is represented by [x1,x2, . . . ,xk].

For each of the 6- and 26-neighborhoods, n-simplexes are defined as shown
in Fig. 1, where n is from 0 to 3. Let us consider discrete simplexes in
the case of the 6-neighborhood. Embedded 1-simplexes in R3 are unit line
segments because 1D regions in R3 are in lines; 1-simplexes become sets of
two neighboring points which are regarded as endpoints of the line segments.
Embedded 2-simplexes are unit squares bounded by four unit line segments
which are 1-simplexes embedded in R3; 2-simplexes become sets of four points,



26N6N

0D

1D

2D

3D

Figure 1: All possible discrete simplexes in Z3, whose shapes depend on the 6- or 26-
neighborhood. We ignore congruent ones that differ from the discrete simplexes in this figure
by translation and/or rotation.

each of which neighbors two other points. Embedded 3-simplexes are unit
cubes bounded by unit squares which are 2-simplexes embedded in R3; 3-
simplexes consist of sets of 8 points in Z3. Note that discrete simplexes shown
in Fig. 1 are only counted if we ignore the congruent simplexes that differ from
those in Fig. 1 by translation and rotation.

For an n-simplex, [x1,x2, . . . ,xk], a function, face([x1,x2, . . . ,xk]), can
be defined as a set of all discrete simplexes included in the n-simplex, whose
dimensions are less than n. For instance, the faces of a 2-simplex are 0- and
1-simplexes. Using this function, discrete complexes, which are combinations
of discrete simplexes, are defined in Z3.

Definition 2 A discrete complex is defined by a finite set C of discrete sim-
plexes satisfying the following two conditions.

1. If [a] ∈ C, face([a]) ⊆ C.

2. If [a1], [a2] ∈ C and |a1| ∩ |a2| ̸= ∅, [a1] = [a2],

where [a] and |a| represent a discrete simplex and its embedded simplex, respec-
tively.

The dimension of a discrete complex is equivalent to the maximum dimension
of its associated set of discrete simplexes. We abbreviate nD discrete complexes
as n-complexes.

If every discrete simplex [a] in C whose dimension is less than n satisfies

[a] ∈ face([b]), (2)



where [b] is one of the n-simplexes in C, C is called pure. In addition to the
pureness of complexes, C is called connected if, for any two elements [a] and
[b] in C, there exists a path between them:

[a1] = [a], [a2], . . . , [an] = [b], (3)

where [ai] ∈ C for i = 1, 2, . . . , n and [ai] ∩ [ai+1] ̸= ∅ for i = 1, 2, . . . , n− 1.
If we embed all discrete simplexes included in a discrete complex into R3,

a complex embedded in R3, which we call a body, can be obtained.
Definition 3 The body of a discrete complex C is defined as

B = ∪
[a]∈C

|a|. (4)

Obviously, bodies are sets in R3, not in Z3.

3 Construction of Discrete Complex

We assume that a subset V in Z3 is given. Every point in V is assigned a
value of 1 while every point in the complement of V is assigned a value of 0.
We call points whose values are 1 and 0 1-points and 0-points, respectively.
This section presents a method of constructing a discrete complex from V.

First, we create a discrete complex for each unit cube whose eight vertices
are points in Z3 and side lengths are one. A discrete complex for each unit
cube is created so that all points in the discrete complex are 1-points and that
the region occupied by the discrete complex becomes maximum. The number
of all possible patterns of 1- and 0-points in a unit cube is 23 if we ignore the
congruent patterns that differ from them by rotation of the center of the unit
cube. Tables 1 and 2 give discrete complexes for the 23 1-point patterns in a
unit cube. Note that there can be several combinations of discrete simplexes
for a 1-point pattern in a unit cube, even if the bodies of the discrete complexes
for the 1-point pattern in a unit cube are equivalent, as shown in Fig. 2.

Next, we combine the discrete complexes for all unit cubes into a discrete
complex without contradictions at the joints of two discrete complexes in ad-
jacent unit cubes. According to reference [7], no contradiction occurs at any
joint if we consider the 6-neighborhood. If we consider the 26-neighborhood,
we join discrete complexes for all 1-point patterns, except for P4a, P5a, P6a,
P6b and P7 in Table 2, first. Then, for each of these five patterns, we choose
a discrete complex such that it can be joined to discrete complexes in adja-
cent unit cubes without contradictions among several candidates of discrete
complexes whose combinations of discrete simplexes are different.



Figure 2: An example of two discrete complexes for a pattern, P6a, whose combinations of
simplexes are not the same but whose bodies are equivalent.

Table 1: Discrete complexes in a unit cube corresponding to all 1- and 0-point patterns. The
6-neighborhood is assumed.

1-point
number

discrete complex 
in a unit cube

0

1

2

a unit 
cube

a 1-point

P0

P1

P2a P2b

1-point
number

discrete complex
in a unit cube

3

4

5

6

7

8

P3a P3b

P4a

P4e P4f P4g

P5a

P7

P8

P6cP6bP6a

P5cP5b

P2c

P3c

P4b P4c P4d

Table 2: Discrete complexes in a unit cube corresponding to all 1- and 0-point patterns. The
26-neighborhood is assumed.

1-point
number

discrete complex 
in a unit cube

0

1

2

a unit 
cube

a 1-point

P0

P1

P2a P2b

1-point
number

discrete complex
in a unit cube

3

4

5

6

7

8

P3a P3b

P4a

P4e P4f P4g

P5a

P7

P8

P6cP6bP6a

P5cP5b

P2c

P3c

P4b P4c P4d



The following two theorems are proved in reference [7].

Theorem 1 For the 6-neighborhood, a discrete complex can be uniquely ob-
tained from V.

Theorem 2 For the 26-neighborhood, a discrete complex can be obtained from
V. Even if there exist several discrete complexes for V, their bodies are always
equivalent.

Note that discrete complexes created fromV may not be pure, because, for
some 1-point patterns in a unit cube, any discrete simplexes whose dimensions
can be from 0 to 3 are created according to Tables 1 and 2. In other words,
there can exist 0-, 1- and 2-simplexes which are not included in any 3-simplex
in a created 3-complex. Figure 3 illustrates examples of 3-complexes for the 6-
and 26-neighborhoods.

(a) (b)

(c) (d)
Figure 3: Examples of 3-complexes, (a) and (b) for the 6-neighborhood, and (c) and (d) for
the 26-neighborhood. (a) and (c) are obtained from V1, and (b) and (d) are obtained from
V2; V2 can be obatined from V1, such that the resolution of V2 is half that of V1.



4 Shape Decomposition

If a discrete complex C is obtained from a given subset V in Z3, we can divide
C into four sets as

C = C0 ∪C1 ∪C2 ∪C3, (5)

where Cn is a set of all n-simplexes in C. Obviously, Cn can be obtained
from C without any calculations. Using these Cns, we can calculate Pn where
n = 0, 1, . . . , 3 consecutively as

P3 = C3 ∪ ( ∪
[a]∈C3

face([a])), (6)

P2 = C′
2 ∪ ( ∪

[a]∈C′
2

face([a])) where C′
2 = C2 \ ( ∪

[a]∈C3

face([a])), (7)

P1 = C′
1 ∪ ( ∪

[a]∈C′
1

face([a])) where C′
1 = C1 \ ( ∪

[a]∈C2

face([a])), (8)

P0 = C0 \ ( ∪
[a]∈C1

face([a])), (9)

and we can decompose C to

C = P0 ∪P1 ∪P2 ∪P3. (10)

The next theorem concerning Pn is derived from equations (6) to (9).
Theorem 3 Pn is a pure n-complex included in C where n = 0, 1, 2, 3.
(Proof) It is obvious that Pn is an n-complex because the maximum dimen-
sion of discrete simplexes in Pn is n, and that Pn is included in C, according
to equations (6) to (9). In addition, every discrete simplex in Pn, whose di-
mension is less than n, is included in at least one n-simplex in Pn. Thus, Pn

is a pure n-complex. (Q.E.D.)
Note that Pn can be empty. For instance, if C is a pure 3-complex, P0, P1 and
P2 are empty because all discrete simplexes in C0, C1 and C2 are included in
C3 as faces of 3-simplexes in C3. In other words, if C is a pure 3-complex,

P3 = C. (11)

Let Bn be the body of Pn where n = 0, 1, 2, 3; the body of C, B, is
decomposed in a similar way to (10) as follows:

B = B0 ∪B1 ∪B2 ∪B3. (12)

According to Theorems 1 and 2, B is directly created from V and does not
depend on C. Thus, the next theorem is derived.



Theorem 4 Bn is uniquely extracted from B depending on the given subset
V in Z3, where n = 0, 1, 2, 3.
(Proof) If we are concerned with the 6-neighborhood, a discrete complex C
is uniquely constructed from V according to Theorem 1. Because every Cn

is uniquely determined from C, every Pn is also uniquely calculated following
the equations. Thus, Bn is uniquely obtained. If we are concerned with the 26-
neighborhood, B is uniquely obtained fromV even if several discrete complexes
can be constructed from V according to Theorem 2. If B has isolated points,
these points must be included in B0, and B0 must not include any points
other than these isolated points; B0 is obtained uniquely. If B has a series of
line segments, these line segments must be included in B1, and B1 must not
include any points other than the points on these line segments; B1 is also
obtained uniquely. Similarly, if B has thin-wall-like parts, these parts must be
included in B2, and B2 must not include any points other than points in the
thin-wall-like parts; B2 is also obtained uniquely. The remaining parts of B,
which are not included in either B0, B1 or B2, are also uniquely obtained and
the closure of the remaining parts becomes B3. (Q.E.D.)

Let Vn be a subset of V, whose points are included in Bn; V is also
decomposed in a similar way to (10) as follows:

V = V0 ∪V1 ∪V2 ∪V3. (13)

Obviously, Vn can be determined from either Bn or Pn where n = 0, 1, 2, 3.
Because Bn and Pn are uniquely extracted from V according to Theorem 4,
Vn is also uniquely determined from V.

5 Algorithm of Shape Decomposition

The previous section shows that we can decompose a given subset V in Z3

into the nD parts Vn where n = 0, 1, 2, 3 if a discrete complex C is already
constructed from V. In this section we demonstrate an algorithm for obtaining
each Vn from V directly without converting C from V.

Let C(x) be an n-complex constructed in the union of eight unit cubes,
all of which include the point x; C(x) can be decomposed into pure discrete
complexes such as (10). Assuming that Pm(x) is a set of nonempty pure
m-complexes in C(x) and that every m-simplex in Pm(x) includes x as one
of the vertices of the m-simplex, it is said that x has the dimensionality m,
where m ≤ n. If x is included both in a 2-simplex in P2(x) and in a 3-simplex
in P3(x), the dimensionalities of x are 2 and 3. Using the dimensionalities of
points, objects of interest, which are given as subsets of Z3, can be decomposed
following Algorithm 1.



Algorithm 1

input: Finite nonempty subset V in Z3.

output: Decomposed objects V0, V1, . . ., V3.

begin

1. Set Vm = ∅ where m = 0, 1, 2, 3.

2. For each point x in V,

2.1 For each of eight unit cubes which include x, look up the discrete
complex in Table 1 or 2.

2.2 Combine eight discrete complexes in the eight unit cubes into a
discrete complex, C(x).

2.3 Decompose C(x) into Pm(x)s where m = 0, 1, 2, . . . , 3.

2.4 For m = 0, 1, 2, 3, if x ∈ Pm(x), then add x to Vm

end

According to Tables 1 and 2, the number of possible patterns of discrete
complexes in a unit cube is 23 both for the 6-neighborhood and for the 26-
neighborhood, if we ignore discrete complexes which differ from those in the
tables by rotation and/or translation. However, in Algorithm 1, we can precal-
culate discrete complexes for all 256 patterns of 1- and 0-points in a unit cube.
This preprocessing for all 1- and 0-point patterns accelerates the computation
of Step 2.1 in Algorithm 1.

Using Algorithm 1, we can decompose the 3-complex in Fig. 3 (d) into
1D and 3D parts. Every point in the 1D and 3D parts has dimensionality 1
and 3 respectively, and thus the joining point of the 1D and 3D parts has both
dimensionalities, 1 and 3. Since every point in Fig. 3 (c) has dimensionality 3,
the 3-complex cannot be decomposed into more than one part and contains no
part except for the 3D part. The different results of decomposition between (c)
and (d) in Fig. 3 is caused by the different resolutions of their object images.

If we compare Fig. 3 (a) with (c) and similarly (b) with (d), the results of
shape decomposition are different, even if both are obtained from the same V1

and V2. This is caused by the different neighborhoods. According to Fig. 1,
there are several shapes of discrete simplexes for the 26-neighborhood, whereas
there is only one discrete simplex in each dimension for the 6-neighborhood.
This implies that we can combine discrete simplexes for the 26-neighborhood
more flexibly than for the 6-neighborhood and leads to the relation:

V3[6] ⊆ V3[26], (14)



where V3[m] is the 3D parts of V if we adopt the m-neighborhood. In Fig. 3,
the relation (14) holds between (a) and (c), and between (b) and (d), respec-
tively.

6 Conclusions

In this paper we introduced a combinatorial shape description in Z3 called a
discrete complex which comes from a term in classical combinatorial topology.
An algorithm for constructing a discrete complex from a given subset in Z3 was
also presented. If a discrete complex is constructed from a given subset in Z3,
the given subset is automatically decomposed into nD parts using topological
structures of the discrete complex. We also showed an algorithm that directly
extracts nD parts of the given finite subset in Z3 from the given subset, using
the dimensionalities of each point. These nD parts are uniquely obtained.
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