

The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests

Jérémy Migliore, Anne-Marie Lézine, Olivier J Hardy

▶ To cite this version:

Jérémy Migliore, Anne-Marie Lézine, Olivier J Hardy. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Annals of Botany, 2020, 126 (1), pp.73-83. 10.1093/aob/mcaa049 . hal-03036193

HAL Id: hal-03036193 https://hal.science/hal-03036193

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests

Jérémy Migliore, Anne-Marie Lézine, Olivier Hardy

▶ To cite this version:

Jérémy Migliore, Anne-Marie Lézine, Olivier Hardy. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Annals of Botany, Oxford University Press (OUP), 2020, 126 (1), pp.73-83. 10.1093/aob/mcaa049 . hal-03036193

HAL Id: hal-03036193 https://hal.archives-ouvertes.fr/hal-03036193

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	01. MANUSCRIPT CATEGORIES:
2	Original Article for Annals of Botany AOB-19699
3	
4	02. TITLE:
5	The recent colonisation history of the most widespread Podocarpus tree species in
6	Afromontane forests
7	
8	03. AUTHORS:
9	Jérémy Migliore ^{1,2,3*} , Anne-Marie Lézine ¹ , Olivier J. Hardy ²
10	
11	04. AUTHORS AFFILIATIONS:
12	¹ Sorbonne Université, Laboratoire d'Océanographie et du Climat : Expérimentations et
13	Approches Numériques (LOCEAN/IPSL), CNRS UMR 7159, Paris, France.
14	² Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et
15	Ecologie, Bruxelles, Belgium.
16	³ Muséum départemental du Var, Toulon, France.
17	
18	05.*CORRESPONDING AUTHOR:
19	Jérémy Migliore - Université Libre de Bruxelles, Faculté des Sciences, Service Evolution
20	Biologique et Ecologie, CP 160/12, 50 avenue F.D. Roosevelt, 1050 Bruxelles, Belgium.
21	Phone: +33 (0)681.112.891
22	Email addresses: jeremy.migliore@ulb.ac.be / jmigliore@var.fr
23	
24	06. RUNNING TITLE:

25 Phylogenomics of Afromontane *Podocarpus*

1 Abstract

Background and Aims Afromontane forests host a unique biodiversity distributed in
isolated high elevation habitats within a matrix of rain forests or savannahs. Yet, they share a
remarkable flora that raises questions about past connectivity between currently isolated
forests. Here, we focused on the *Podocarpus latifolius - P. milanjianus* complex
(Podocarpaceae), the most widely distributed conifers throughout sub-Saharan African
highlands, to infer its demographic history from genetic data.

Methods We sequenced the whole plastid genome, mitochondrial DNA regions, and
nuclear ribosomal DNA of 88 samples from Cameroon to Angola in western Central Africa
and from Kenya to the Cape region in eastern and southern Africa to reconstruct timecalibrated phylogenies and perform demographic inferences.

12 • Key Results We show that P. latifolius and P. milanjianus form a single species, whose lineages diverged during the Pleistocene, mostly between c. 200 and 300 kyrs BP, after which 13 14 they underwent a wide range expansion leading to their current distributions. Confronting 15 phylogenomic and palaeoecological data, we argue that the species originated in East Africa 16 and reached the highlands of the Atlantic side of Africa through two probable latitudinal 17 migration corridors: a northern one towards the Cameroon volcanic line, and a southern one 18 towards Angola. Although the species is now rare in large parts of its range, no demographic 19 decline was detected, probably because it occurred too recently to have left a genetic signature 20 in our DNA sequences.

• **Conclusions** Despite the ancient and highly fluctuating history of podocarps in Africa revealed by palaeobotanical records, the extended distribution of current *P*. *latifolius/milanjianus* lineages is shown to result from a more recent history, mostly during the mid-late Pleistocene, when Afromontane forests were once far more widespread and
 continuous.

Key words: Afromontane forest, genome skimming, molecular dating, palaeoecology,
phylogenomics, phylogeography, plastome sequencing, Podocarpaceae, *Podocarpus latifolius, Podocarpus milanjianus*

1 INTRODUCTION

2 Considered as hotspots of biodiversity (Gehrke and Linder 2014), African high mountains are 3 characterized by a complex dynamics of species diversity linked to their fragmented 4 distribution. They are described as islands, since low-elevation habitats (rain forests or 5 savannahs) act as dispersal barriers, facilitating the divergence of isolated populations 6 (McCormack et al. 2009). However, many species are shared between African mountains, 7 indicating long-distance dispersal between mountains and/or habitat connectivity in the past 8 (Hedberg 1969; Kebede et al. 2007; Gehrke and Linder 2009; Chala et al. 2017). To explain 9 such Afromontane diversity, one emerging hypothesis is the flickering connectivity system, 10 where Plio-Pleistocene climatic changes recurrently affected the distribution of montane 11 vegetation belts, generating new lineages (Flantua et al. 2019). An alternation of population 12 connectivity and fragmentation periods was thus suggested for Prunus africana (Kadu et al. 13 2011, 2013), Hagenia abyssinica (Ayele et al. 2009; Gichira et al. 2017), Rand Flora species 14 (Mairal et al. 2017), and Afroalpine species (Gizaw et al. 2013; Schwery et al. 2015; Chartier 15 et al. 2016). Unfortunately, genetic studies are still lacking for many Afromontane trees and it 16 remains difficult to know how and when populations/species have been able to disperse 17 among Afromontane 'islands'.

In Africa, Podocarpaceae, represented by the genera *Podocarpus* and *Afrocarpus*, are typical montane forest trees. Among them, *Podocarpus latifolius* (Thunb.) R. Br. ex Mirb. is often considered as a synonym of *Podocarpus milanjianus* Rendle (Barker *et al.* 2004) so that we will refer to this taxon as *P. latifolius/milanjianus*. It is the most widespread species, ranging from Cameroon to Angola in western Central Africa and from Kenya to the Cape region in eastern and southern Africa (Fig. 1A). Despite being very extensive, its distribution is extremely fragmented, and the species is nowadays rare and very localised in large parts of its range, such as in western Central Africa. The origin of such an extensive but fragmented distribution range remains unclear but could suggest past large-scale expansions of montane forests through mid- to low elevation areas (White 1993). More specifically, western populations have been postulated to originate from eastern populations following either a northern dispersal corridor (Aubréville 1976) or a southern migratory track through the Zambezi-Congo watershed (Maley *et al.* 1990; White 1993; Adie and Lawes 2011).

7 The most ancient fossil pollen data in Africa reported the sporadic occurrence of 8 podocarps during the (pre-) Cretaceous time (Goldblatt 1978; Salard-Cheboldaeff and Dejax 9 1991) and the late Oligocene (Coetzee 1980). Podocarps expanded during the Miocene in 10 eastern (Retallack 1992; Boaz et al. 1992) and southern Africa (Coetzee 1980; Dupont et al. 11 2011; Hoetzel et al. 2015), probably in response to the global climate change following the 12 setting of the high latitude ice sheets (Zachos et al. 2001) and the uplift of the East African Plateau (Wichura et al. 2010). Podocarps were recorded in East Africa in most of the Plio-13 14 Pleistocene hominid sites (Bonnefille 2010; Owen et al. 2018), and also in western Africa 15 (Morley 2000), where its presence coincides with the onset of northern hemisphere 16 glaciations at 2.7 Myrs (million years) (Knaap 1971; Adeonipekun et al. 2017). During the 17 last million years, the abundance of podocarp pollen underwent large amplitude variations 18 (Fig. 1B), generally increasing during the moist phases of forest development coinciding with 19 interglacial phases (Dupont *et al.* 2001). However, the chronology of palynological records is 20 less reliable for ancient periods, and as pollen grains of P. latifolius/milanjianus cannot be 21 distinguished from those of other Podocarpus or Afrocarpus species, it is difficult to assess 22 how individual podocarp species responded to glacial/interglacial cycles. In this context, 23 studying the genetic diversity of P. latifolius/milanjianus should provide key insights into the demographic scenario associated with colonisation processes and routes, the role of refugia in 24

the preservation of genetic diversity, and the magnitude of gene flow, in such extremely
 fragmented Afromontane forests (Sklenář *et al.* 2014; Wondimu *et al.* 2014; Gizaw,
 Brochmann, *et al.* 2016).

4 Here, to gain insights into the past dynamics of Afromontane forests, we investigate 5 the phylogeography of *P. latifolius/milanjianus* using a genome skimming approach, by 6 sequencing plastid, mitochondrial and ribosomal DNA of a sampling representative of the 7 natural distribution of the species. Phylogenomic patterns from dated gene phylogenies will 8 be discussed against what we know from podocarp palaeorecords to examine the role of 9 Pleistocene climate oscillations on the demographic history of *P. latifolius/milanjianus*. We 10 will test the following hypotheses. (i) P. latifolius (southern Africa) and P. milanjianus 11 (western Central Africa, East Africa) are so closely related that they belong to the same 12 species. (ii) P. latifolius/milanjianus underwent a species range expansion, involving a 13 demographic expansion during the Pleistocene, followed by a demographic decline in parts of 14 its range where it is nowadays rare. (iii) P. latifolius/milanjianus populations from western 15 Central Africa (from Cameroon to Angola) originate from East Africa following a southern 16 and/or northern migration route.

17

18

19

20 MATERIALS AND METHODS

21 Biological model

The Podocarpaceae family is represented in Africa by six *Afrocarpus* species and seven
 Podocarpus species (Barker *et al.* 2004; Adie and Lawes 2011). Species delimitation in
 African *Podocarpus* is not yet completely resolved, since *P. latifolius* and *P. milanjianus* are

considered either as synonymous or as distinct species restricted to South Africa and
 East/Central Africa respectively (Barker *et al.* 2004).

3 Podocarpus latifolius/milanjianus is a medium to large evergreen tree (20-30 m in 4 height) slowly growing in Afromontane forests, usually between 900 and 3,200 m asl, 5 although it sometimes occurs at lower elevation notably in coastal forests of South Africa 6 (Fig. 1A). Its ecology is not well documented, but it is a key component of montane forests, 7 where it dominates old-growth stages, being capable of establishing in relatively high light 8 conditions as well as in a fragmented landscape (Turner and Cernusak 2011). The leaves are 9 strap-shaped, with a bluntly pointed tip. The male cones of this dioecious tree are 10-50 mm 10 long and look like small pinkish catkins inflorescences adapted for wind pollination. The 11 female cones are fleshy, with a single (rarely two) 7-11 mm seed in apical position on an 8-14 12 mm pink, edible and sweet aril. Being animal dispersed (by birds, monkeys, bush pigs and sometimes by humans) and capable of rapid germination after 4-6 weeks in a variety of 13 14 habitats, P. latifolius/milanjianus is an annual seeder fitting the model of a good disperser 15 (Geldenhuys 1993; Adie and Lawes 2011).

16

17 Genomic libraries preparation, sequencing, and bioinformatic treatment

A total of 88 field and herbarium specimens of *P. latifolius/milanjianus* and three outgroup taxa (*Afrocarpus falcatus* from South Africa and Kenya, *A. usambarensis*, and *Podocarpus elongatus*; see Supplementary Data Table S1) were selected for paired-end sequencing (2 × 150 bp) of non-enriched genomic libraries. After CTAB extraction with QIAquick purification, we performed genome skimming, following the NEBNext Ultra II DNA Library Prep Kit for Illumina (details in Supplementary Data Appendix S1).

1 Three reference genomes were reconstructed for the whole plastome (cpDNA, using 2 MIRA 3.4.1.1 - MITOBIM 1.7; Chevreux et al. 1999; Hahn et al. 2013), the nuclear ribosomal 3 DNA (nrDNA, using NOVOplasty; Dierckxsens et al. 2017), and two mitochondrial DNA 4 regions (mtDNA NADH dehydrogenase nad5 gene and the small subunit ribosomal RNA 5 gene SSU-RNA, using ARC 1.1.4; Hunter et al. 2015). Each genomic library was then 6 mapped on these reference genomes, before SNP calling, VCF filtering, and conversion to 7 fasta multi-alignment files after removing indels and heterozygous sites as detailed in 8 Appendix S2.

9

10 Phylogenomic analyses

11 To estimate the divergence time of current P. latifolius/milanjianus lineages, we generated 12 dated gene phylogenies in BEAST 1.8.2 (Drummond and Rambaut 2007) using the CIPRES platform (Miller *et al.* 2011) for the cpDNA, nrDNA, and mtDNA datasets (n = 71, 82, 6013 respectively, including outgroups taxa, as detailed in Tables 1 and S1), assuming the 14 15 following evolutionary sites models GTR, HKY+I, and GTR+G respectively, according to 16 JMODELTEST 2.1.7 (Darriba et al. 2012). A strict clock model and an "Extended Bayesian 17 Skyline Plot" coalescent tree model ('mitochondrial data' or 'autosomal data' with 'linear 18 growth' between population size change events) were applied. To time-calibrate the 19 phylogenies, the divergence between Afrocarpus and Podocarpus was set as a normally 20 distributed variable with a mean of 87.46 Myrs and a 95% HPD (Highest Posterior Density) 21 between 69.40 and 108.06 Myrs, following the divergence estimated by Quiroga et al. 2016 22 (nodes A, A', and A'' in Figs 2-3, S1-2, and S3-4). Five independent MCMC runs were 23 launched for 100 million generations each, sampling trees at 10,000 step intervals in order to check the congruence of phylogenetic trees and divergence time estimations, before 24

1 combining them using LOGCOMBINER 1.8.2 (Drummond and Rambaut 2007). We used 2 TRACER 1.6 (Drummond and Rambaut 2007) to assess convergence, estimate Effective 3 Sample Sizes (ESS), and examine the posteriors of all the parameters. Mean heights were 4 taken in TREEANNOTATOR 1.4.8 (Drummond and Rambaut 2007), and trees were plotted in 5 FIGTREE 1.1.2 (http://tree.bio.ed.ac.uk/software/figtree/). Bayesian skyline plot were used to 6 graphically represent changes in coalescent rate through time (IICR, Inverse Instantaneous 7 Coalescence Rate; Chikhi et al. 2018), which is classically interpreted as underlying changes 8 of the effective size of a panmictic population (Ho and Shapiro 2011).

9 In addition, a network analysis of each reconstructed DNA region was undertaken 10 from a NeighborNet analysis using SPLITSTREE 4.14.2 (Huson and Bryant 2006), with 11 mapping of phylogroups using QGIS 2.18 (*http://qgis.osgeo.org*). Phylogroups were defined to 12 encompass closely related haplotypes (well supported clades in general) or isolated 13 haplotypes, combining phylogenetic and geographic coherence.

14 Three geographic groups of *P. latifolius/milanjianus* samples were also delineated 15 according to the main gene flow barriers detected: North-West (Cameroon), South-West 16 (Angola and Republic of the Congo), and East-South (remaining countries from Kenya to 17 South Africa). We computed Tajima's *D* statistics (Tajima 1989) and nucleotide diversity (π) 18 for each group, as well as mean genetic distances between groups using MEGA 10.0.5 (Kumar 19 *et al.* 2016).

- 20
- 21
- 22
- 23
- 24

1 **RESULTS**

2 Sequence data and reference genomes

3 We obtained on average 3,089,119 R1-R2 reads per sample (SD = 1,465,677). Our 4 reconstructed references for P. latifolius/milanjianus reached 134,031 bp for the plastome, 5 which lacked one of the large inverted repeat regions as evidenced for the Neotropical P. 6 lambertii (Vieira et al. 2014), 7,890 bp for the nrDNA, 6,026 bp for the mtDNA nad5 gene, 7 and 2,330 bp for the SSU-RNA region (Supplementary Data Tables S1-S2). After mapping 8 each sample on these four references, and filtering out samples with >10% missing data, the 9 average proportions of mapped reads reached, respectively, 1.96%, 0.19%, 0.08% and 0.11%, 10 and the depth reached, respectively, 52X (n = 71), 75X (n = 82), 47X (n = 77) and 33X (n = 77) 11 61) (Table S2). The numbers of SNPs detected over all samples decreased a lot after 12 excluding outgroup taxa: from 4152 to 212 SNPs for cpDNA, from 206 to 18 SNPs for nrDNA, from 583 to 35 SNPs for nad5 and SSU-RNA mtDNA after concatenating data from 13 14 the two mtDNA references (Tables 1 and S3).

15

16 *Phylogeographic pattern and molecular dating*

The age of the crown node of the current lineages of P. latifolius/milanjianus ranged from 17 18 0.86 Myrs (95% HPD: 0.54-1.17 Myrs; Fig. 2) using plastomes, to 1.74 Myrs (95% HPD: 19 0.55-3.08 Myrs; Fig. S1) using nrDNA data, and to 1.17 Myrs (95% HPD: 0.52-1.87 Myrs; 20 Fig. S3) using mtDNA data. High support (PP>0.9) was obtained for 37% of the nodes of the 21 plastid phylogenetic tree (Fig. 2B) but for only 5% and 12% of the nodes of the nrDNA and 22 mtDNA trees (Figs S1B, S3B), reflecting their lower number of SNPs (Table 1). The 23 NeighborNet networks of the *P. latifolius/milanjianus* sequences presented star-like structures for all the three genomes (Figs 3B, S2B, S4B). 24

1 For cpDNA, we identified six plastid phylogroups (CP) relatively well geographically 2 circumscribed (Fig. 3A), although two of them received low support (Fig. 2), plus five 3 isolated samples that were also numbered. The two oldest nodes (C dated to 0.86 Myrs and D 4 to 0.45 Myrs; Fig. 2B) isolated two samples coming from eastern D. R. Congo (CP 01) and 5 South Africa (CP 02) respectively, while the next oldest node (E is 0.31 Myrs, Fig 2B) included all the phylogroups identified. Phylogroups CP 04, CP 05 and CP 09 were 6 7 distributed in eastern and south-eastern Africa with some degree of overlapping, whereas the 8 sister phylogroups CP 10 and CP 11 were exclusively found in the western part of Central 9 Africa, distributed in Cameroon (CP 10) and from Angola to the Republic of the Congo (CP 10 11). This main east-west genetic divergence was confirmed by the highest mean genetic 11 distances calculated between eastern and western populations of P. latifolius/milanjianus 12 (Table S4). The phylogroup CP 06 was more northerly distributed in Cameroon, Equatorial Guinea, eastern D.R. Congo, and Tanzania. However, the low posterior probabilities for 13 phylogroups CP 06 (0.28) and CP 07-08 (0) prevented us from establishing their phylogenetic 14 relationship with other CP phylogroups. If we exclude the two most early-branching 15 16 haplotypes (CP 01 and CP 02), it is worth noting that all major phylogroups diverged from 17 each other between 0.2 Myrs (lower 95% HPD limit at 0.13 Myrs) and 0.31 Myrs (upper 95% 18 HPD limit at 0.43 Myrs). The most recent divergence time between west and east African 19 samples (between CP 03 in Cameroon and CP 04 or CP 05) was estimated at 0.24 Myrs (95% 20 HPD: 0.16- 0.33 Myrs).

Regarding nrDNA and mtDNA data, their low levels of polymorphism combined with their star-like networks implied that posterior probabilities of nodes were extremely low and generally null (due to a low number of informative SNPs). We could delineate the two earliest-branching phylogroups of nrDNA: (i) a Central African phylogroup distributed until the Albertine Rift (NR 01), and (ii) a northerly distributed phylogroup (NR 02) in Cameroon,
Uganda and Kenya (Fig. S2). According to mtDNA data, the delineation of some robust
phylogroups was highly congruent with those found from cpDNA data: MT 01-02 and CP 0102, MT03 and CP 09, MT 05b and CP 04, MT 06b and CP 10, MT 07b and CP 04 (Figs 2-3
and S3-4). This congruence could imply a same mode of uniparental transmission of the two
organelles, although paternal inheritance of chloroplasts (Vieira *et al.* 2014) and maternal
inheritance of mitochondria are often assumed in gymnosperms (Petit and Vendramin 2007).

8

9 Demographic inferences and genetic diversity gradients

10 Bayesian skyline plots were congruent between genomic datasets, showing a ten-fold increase 11 of coalescence rate between c. 200 kyrs ago compared to the present (i.e. inferred Ne ten 12 times lower 200 kyrs ago), which could result from a demographic and range expansion after a bottleneck event (Figs 2C, S1C, S3C). There was no evidence of a recent increase in 13 14 coalescence rate (demographic decline) that we hypothesized given the low current population 15 sizes in several regions. Congruently with the apparent demographic expansion inferred by 16 the skyline plots, Tajima's D statistics were very negative across populations at the species 17 scale (most values <-2; Table 1) and also considering only East and South African samples 18 and, to a lower extent, western samples (Table S3). For all genomes, nucleotide diversity 19 decreased from South and East Africa to North-West (Cameroon) and to South-West (Angola and Republic of the Congo) (Table S3), suggesting a more recent origin of the later 20 21 populations.

- 22
- 23

24 **DISCUSSION**

1 Species delimitation

Our phylogenomic data show that a large number of SNPs separates *Afrocarpus* from *Podocarpus*, consistently with the ancient divergence dated between 82.6 and 87.5 Myrs between *Podocarpus* and its sister group including *Afrocarpus*, *Nageia* and *Retrophyllum* (Quiroga *et al.* 2016). By contrast, the number of SNPs per genomic region decreased 10 to 18 times when considering only *P. latifolius/milanjianus* samples (Table 1). As South-African samples (*P. latifolius*) did not form a clade separated from the other ones (*P. milanjianus*), we confirm that the two taxa can be considered as synonyms (Fig. 2B).

9

10 Genetic diversification of P. latifolius/milanjianus during the Pleistocene

11 The current lineages of *P. latifolius/milanjianus* started to diverge 0.86 Myrs ago (95% HPD: 12 0.54-1.17 Myrs) according to our cpDNA results (Fig. 2), coinciding with the mid-Pleistocene period, when vegetation changes in Central Africa started to follow a clear glacial-interglacial 13 14 alternation (Dupont et al. 2001). However, most lineages diverged more recently, 0.31 Myrs 15 ago (95% HPD: 0.19-0.43 Myrs), and eventually reached locations distant by up to c. 4,500 16 km, implying wide dispersal. Recurrent widespread colonisation of Afromontane forests in 17 lowlands, followed by their fragmentation and decline driven by climate changes, could thus 18 have played a key role in connecting fragmented montane floras, during interglacial phases 19 (Ivory et al. 2018). However, this flickering connectivity pattern does not appear so simple 20 and synchronized throughout Africa. In East Africa, the expansion of mountain glaciers 21 during the last glacial period (Osmaston and Harrison 2005) led to the downward displacement of the upper treeline and Afromontane forest, so that subalpine and alpine taxa 22 23 expanded into low- and midlands down to 470 m around Lake Malawi (Ivory et al. 2012) and 1,139 m around Lake Victoria (Pinklington Bay; Kendall 1969). Such a "glacial" expansion is 24

1 not observed in Cameroon where traces of Quaternary glaciers have never been observed and 2 podocarps populations seem to have remained at their current altitudinal range during the last 3 glacial period (Lézine et al. 2019). Southwards, however, pollen data report the presence of 4 Podocarpus/Afrocarpus in Congo and also probably in Gabon during the last glacial period 5 (Elenga and Vincens 1990; Dupont et al. 2000), suggesting that podocarps considerably 6 expanded in western Central Africa south of the Equator. As P. latifolius/milanjianus is today 7 the only podocarp growing in western Central Africa (except Afrocarpus mannii, endemic to 8 São Tomé island), it can be hypothesised that it was this species which is recorded in pollen 9 data in this area.

10 The divergence times between geographically isolated lineages and the Bayesian 11 skyline plots provide compelling clues that *P. latifolius/milanjianus* expanded substantially 12 from c. 200 kyrs BP to reach its current distribution range; the signal of demographic expansion being congruent with geographic expansion of lineages (Figs 2, S1, S3). These 13 14 results fit into what we know from pollen data showing that *P. latifolius/milanjianus* widely 15 expanded in central Africa during the wet phases of the Quaternary (Elenga and Vincens 16 1990; Dupont et al. 2000; Lézine et al. 2019). Interestingly, the apparent demographic 17 bottleneck revealed by the skyline plot c. 200 kyrs BP (Fig. 2) closely coincides with a trend 18 of reduction of pollen abundance of podocarps in Atlantic marine cores between 400 and 250 19 kyrs BP, followed by an increase (with substantial variation) between 200 and 100 kyrs BP 20 (Fig. 1B). In Prunus africana, another Afromontane tree, coalescent simulations conducted on 21 chloroplast loci also suggested that this species expanded its range and reached its current 22 distribution during the late Pleistocene, within the last 100-180 kyrs (Kadu et al. 2011). The 23 relatively recent divergence time between disconnected populations of Afromontane trees 24 located thousands of kilometres apart sharply contrasts with the ancient divergence (several million years) reported for parapatric populations of a central African mature rain forest tree
species (Migliore *et al.* 2019), probably highlighting the contrasted population dynamics of
lowland and montane tree species.

4

5 Past migration routes between African mountains

6 The centre of diversity and thus the putative centre of origin of *P. latifolius/milanjianus* was 7 likely centred in East Africa which hosts the highest number of plastid phylogroups (Fig. 3) 8 and the most divergent sample in the cpDNA and mtDNA phylogenies (phylogroups CP/MT 9 01 – Figs 2 and S3) as well as the highest genetic diversity (Table S3). Reconstructing 10 migration routes is difficult after a fast demographic expansion followed by a drastic 11 fragmentation because DNA sequences linking regions along migration paths may have 12 disappeared or may not have accumulated enough indicative mutations. Nevertheless, P. *latifolius/milanjianus* plastome data reveal a clear east/west phylogeographic signal dated to 13 14 310 kyrs BP (node E; Fig. 2). Two phylogroups are restricted to western Central Africa, in 15 Cameroon (CP 10) and from Angola to the Republic of the Congo (CP 11). Three 16 phylogroups are exclusively distributed in East Africa, either in the Western branch of the 17 East African Rift (CP 04), or in the Eastern branch and the Lake Malawi branch (CP 05), or in 18 the Eastern branch and South Africa (CP 09). Central and East African phylogroups 19 diversified during the same temporal window between 200 and 210 kyrs BP (nodes J and I: 20 95% HPD of 130-280 kyrs; Fig. 2). Despite a lower phylogenetic resolution from nrDNA 21 sequences, the phylogroup NR01 is also restricted to Central Africa, from Cameroon to 22 Angola and Zambia (Figs S1-S2). This phylogeographic pattern suggests a barrier to gene 23 flow between Central and East/South Africa, as already detected for Prunus africana (Dawson and Powell 1999; Kadu et al. 2011). Such east-west phylogeographic breaks were 24

also reported for non-montane species in *Adansonia digitata* (Pock Tsy *et al.* 2009), and in
several savannah ungulates and carnivores (Bertola *et al.* 2016). The convergence in the
timing of phylogeographic divergence might indicate that the same "recent" environmental
changes drove the distribution of these species.

5 Two migratory tracks between East/South and West Africa received support from our 6 data. Phylogroups CP 06 (Fig. 3) and NR 02 (Fig. S2) connect Cameroon to Tanzania and 7 Kenya, respectively, supporting the hypothesis of a "northern" migration corridor already 8 suggested by the plastid lineages shared between Cameroon and Uganda in Prunus africana 9 (Kadu et al. 2011). By contrast, phylogroups CP 05 and NR 01 support the hypothesis of a 10 southern corridor through the highlands and plateaus of Zambia, and an extension until 11 eastern D. R. Congo close to Malawi. Along the Congo-Zambezian watershed, patchily 12 distributed Afromontane forests in the southern D. R. Congo, Zambia, northern Angola and Gabon could have acted as 'stepping stones' (White 1983, 1993). Although the exact 13 14 migration routes connecting Central and East/South Africa cannot be definitively determined, 15 our data are compatible with the occurrence of both northern and southern migration corridors 16 already hypothesised by White 1981, and also suggested for Delphinium dasycaulon (Chartier 17 *et al.* 2016).

Finally, plastome data suggest a barrier to gene flow between samples from Cameroon (CP 10) and Angola/Congo (CP 11). This could account for the isolation of the Cameroon highlands, as shown by pollen data from the last glacial period in western Central Africa. As discussed by Dupont *et al.* (2000) and recently confirmed by Lézine *et al.* (2019) and references therein, it is probable that the *Podocarpus* expansion in the lowlands during the last glacial period never crossed the Equator to the North. Although several living trees of *P. latifolius/milanjianus* currently occur at mid-altitude in Cameroon, as probable relicts of a

1 formerly wider distribution, there is no evidence that this expansion took place during the last 2 glacial period: P. latifolius/milanjianus was absent at that time from Lake Barombi Mbo (300 3 m asl; Maley and Brenac 1998) and Lake Monoun (1083 m asl; Lézine et al. submitted). Rare 4 pollen grains found at sites within the current elevation range of the species suggest that 5 *Podocarpus* populations survived only in the form of extremely restricted populations in the 6 Cameroon highlands. In this context, climate oscillations should not be considered as the only 7 driver of changes of range distribution; plant competition could also play a key role in the 8 succession of species during phases of forest expansion. It is likely that P. 9 latifolius/milanjianus does not occupy all its potential niche today.

10

11 Past dynamics of Afromontane forests

12 Phylogeographic studies on Afroalpine flora showed that gene flow between mountains is low but possible even across geographic barriers (Wondimu et al. 2014) with patterns of 13 14 differentiation coincident or predating the glacial cycles (Gizaw, Brochmann, et al. 2016; 15 Tusiime et al. 2017). Two Afroalpine species, Erica arborea and Koeleria capensis, that also 16 extend to lower vegetation belts in the mountains show no isolation-by-distance pattern 17 (Gizaw et al. 2013; Masao et al. 2013), possibly indicating that habitat connectivity through 18 lowland corridors has been more important than long-distance dispersal. By contrast to 19 Afroalpine vegetation, Afromontane forests seem to have been better connected, as evidenced by P. latifolius/milanjianus across South Africa (CP 09), across East Africa (CP 04-05), 20 across the Cameroon Volcanic Line (CP 10), between Congo and Angola (CP 11), and 21 22 between Central and East Africa (CP 06; Fig. 3).

In addition, the low levels of polymorphism detected, the star-like topology of NeighborNet networks, and the wide distribution of each phylogroup are consistent with a

1 relatively recent and fast range expansion of P. latifolius/milanjianus. This hypothesis is 2 further supported by the apparent demographic expansion since c. 200 kyrs revealed by the 3 Bayesian skyline plots and Tajima's D statistics (Figs 2, S1, S3; Tables 1-S3). Extensive 4 lowland colonisation is consistent with palaeorecords which reveal high podocarp abundances 5 at low elevation (Ivory et al. 2018), while modern pollen samples of Podocarpus indicate that 6 high pollen grain concentration are only found close to the source trees (Maley et al. 1990; 7 Verlhac et al. 2018). Additional population genetics data would be necessary to better 8 estimate the intensity of gene flow and to assess if seed dispersal mechanisms play a crucial 9 role in shaping the distribution of genetic diversity and differentiation in Afromontane flora 10 (Gizaw, Brochmann, et al. 2016; Gizaw, Wondimu, et al. 2016; Minaya et al. 2017). We 11 should thus better evaluate the role of pollen dispersal by wind versus seed dispersal. 12 Potentially 36 frugivorous birds and mammals disperse seeds of Prunus africana over short-13 and medium distances (Farwig et al. 2006), but whether they contributed to long-distance 14 dispersal at a subcontinental scale remains an open question.

15 Nowadays P. latifolius/milanjianus populations are generally very small, in particular 16 in western Central Africa, while the skyline plot does not display any recent increase in the 17 rate of coalescence as could be expected under strong demographic decline (Fig. 2). This 18 paradox is probably explained by two factors. First, if the demographic decline started 19 recently, during the major environmental crisis which occurred at the end of the Holocene 20 Humid Period (4.5-3.5 kyrs ago; Vincens et al. 1999; Lézine, Holl, et al. 2013) as suggested 21 by pollen records (Lézine, Assi-Kaudjhis, et al. 2013), it is maybe too early to detect a genetic 22 signature. Second, coalescence rate can increase between samples at a local scale due to 23 demographic decline but not between distant samples in the absence of gene flow, while our samples are widely distributed. This is related to the problematic interpretation of skyline 24

plots in terms of demographic changes when there is a strong spatial genetic structure (Chikhi
 et al. 2018). Hence, further studies must be conducted at a local scale to possibly detect recent
 population declines.

4

5 CONCLUSIONS

6 A long-standing question in African biogeography is whether colonisation of the mountains 7 and subsequent intermountain gene flow mainly depend on long-distance dispersal across 8 unsuitable lowland habitat or on intermittent suitable habitat bridges (Kebede et al. 2007; 9 Mairal et al. 2017). Podocarpus latifolius/milanjianus seems to illustrate that migration has 10 been possible through habitat bridges under more suitable climates in the past, when the 11 montane forest habitat extended to lower elevation than today. Despite the ancient history of 12 podocarps in Africa revealed by palaeobotanical records, the extended distribution of current 13 *P. latifolius/milanjianus* lineages is shown to result from a more recent history, mostly during 14 the mid-late Pleistocene. Phylogenomic analyses support the hypothesis that the Afromontane 15 forests were once far more widespread and continuous, and that the current patches are a 16 result of recent fragmentation, probably too recent to be detected at the genomic scale. 17 Finally, this work highlights the resilience of Afromontane forests during previous drastic 18 climate changes but questions also the complex history of these hotspots of biodiversity such 19 as the Cameroon volcanic line where several lineages still persist and could represent 20 successive waves of migration more or less ancient.

- 21
- 22

1 ACKNOWLEDGEMENTS

2 This study was financially supported by the BELMONT FORUM research program VULPES 3 (ANR-15-MASC-0003), the BRAIN-be BELSPO research program BR/132/A1/AFRIFORD, 4 and the Fonds de la Recherche Scientifique (F.R.S.-FNRS, grants J.0143.15 and J.0292.17). 5 Thanks are due to Rachid Cheddadi (CNRS Montpellier), Arthur Boom and Esra Kaymak 6 (ULB-EBE) for their constructive discussions, and to Laurent Grumiau (ULB-EBE Molecular 7 Biology platform, Belgium), Latifa Karim and Wouter Coppieters (GIGA Liège, Belgium) for 8 their advices in genomics. Special thanks go to Michel Veuille (ANR IFORA) for his helpful 9 comments on the manuscript. Finally, friendly thanks to all the colleagues who have 10 participated in the sampling for several years: Gaël Bouka, Vincent Droissart, João 11 Farminhão, Alexandra Ley, Francisco Maiato, Franck Kameni Monthe, Olivier-Valérie Séné, 12 Tarig Stévart, with special thanks to Claire Micheneau and Rosalía Piñeiro (the first to study Podocarpus), Stephen F. Omondi and Priscilla N. Kimani from the Kenya Forestry Research 13 14 Institute, Barthélemy Tchiengué and Gaston Achoundong from the National Herbarium of 15 Cameroon, and Lawrence Wagura in Kenya. For herbarium material, we sincerely thank the 16 Botanic Garden Meise (BR; Steven Janssens and Samuel Vanden Abeele), the Herbarium and 17 Library of African Botany at the Université Libre de Bruxelles (BRLU; Tariq Stevart and 18 Geoffrey Fadeur), and the Muséum National d'Histoire Naturelle (P; Myriam Gaudeul). For 19 pollen data, we acknowledge the African Pollen Database and Pangaea.de. For distribution data we thank GBIF.org (26th January 2019 - GBIF Occurrence Download), and the Conifers 20 21 of the world database (https://herbaria.plants.ox.ac.uk/bol/conifers).

22

1 DATA ACCESSIBILITY

- 2 Sampling locations are available as supporting information.
- 3 Reference cpDNA, nrDNA, and mtDNA regions of Podocarpus latifolius/milanjianus are
- 4 available in GenBank and their accession numbers as supporting information.
- 5 Fasta alignments are available on request.
- 6

12

14

17

20

23

26

7 SUPPLEMENTARY DATA

8 Supplementary data are available online at https://academic.oup.com/aob and consist of the
9 following.

11 **APPENDIX S1.** DNA extraction, genomic libraries preparation, and sequencing

13 **APPENDIX S2.** Bioinformatic treatment

FIG. S1. Phylogenetic relationships and tempo of diversification of *Podocarpus latifolius/milanjianus*, using nuclear ribosomal DNA data

- FIG. S2. Geographic distribution of nuclear ribosomal phylogroups (NR) of *Podocarpus latifolius/milanjianus* with their NeighborNet representation
- FIG. S3. Phylogenetic relationships and tempo of diversification of *Podocarpus latifolius/milanjianus*, using mitochondrial DNA data
- FIG. S4. Geographic distribution of mitochondrial phylogroups (MT) of *Podocarpus latifolius/milanjianus* with their NeighborNet representation
- TABLE S1. Characteristics of samples of *Podocarpus latifolius/milanjianus* used for genome
 skimming
- TABLE S2. Assembling and mapping statistics of plastid, ribosomal and mitochondrial DNA
 regions reconstructed from genomic libraries of *Podocarpus latifolius/milanjianus*
- 32
- TABLE S3. Diversity and Tajima statistics for plastid, ribosomal and mitochondrial DNA
 regions reconstructed from genomic libraries of *Podocarpus latifolius/milanjianus*
- 35
- 36 **TABLE S4.** Mean distances between African geographic groups for plastid, ribosomal and 37 mitochondrial DNA regions of *Podocarpus latifolius/milanjianus*

1 LITERATURE CITED

- Adeonipekun PA, Sowunmi MA, Richards K. 2017. A new Late Miocene to Pleistocene
 palynomorph zonation for the western offshore Niger Delta. *Palynology* 41: 2–16.
- Adie H, Lawes MJ. 2011. Podocarps in Africa: temperate zone relicts or rainforest
 survivors? In: Turner BL, Cernusak LA, eds. *Ecology of the Podocarpaceae in tropical forests*. Smithsonian Institution Scholarly Press, 79–100.
- Aubréville A. 1976. Centres tertiaires d'origine, radiations et migrations des flores
 angiospermiques tropicales. *Adansonia* 2: 297–354.
- Ayele TB, Gailing O, Umer M, Finkeldey R. 2009. Chloroplast DNA haplotype diversity
 and postglacial recolonization of *Hagenia abyssinica* (Bruce) J.F. Gmel. in Ethiopia. *Plant Systematics and Evolution* 280: 175–185.
- Barker NP, Muller EM, Mill RR. 2004. A yellowwood by any other name: molecular
 systematics and the taxonomy of *Podocarpus* and the Podocarpaceae in southern Africa.
 South African Journal of Science 100: 629–632.
- Bertola LD, Jongbloed H, van der Gaag KJ, et al. 2016. Phylogeographic patterns in
 Africa and high resolution delineation of genetic clades in the Lion (*Panthera leo*). Scientific
 Reports 6: 30807.
- Boaz NT, Bernor RL, Brooks AS, *et al.* 1992. A new evaluation of the significance of the
 Late Neogene Lusso Beds, Upper Semliki Valley, Zaire. *Journal of Human Evolution* 22:
 505–517.
- Bonnefille R. 2010. Cenozoic vegetation, climate changes and hominid evolution in tropical
 Africa. *Global and Planetary Change* 72: 390–411.
- Chala D, Zimmermann NE, Brochmann C, Bakkestuen V. 2017. Migration corridors for
 alpine plants among the 'sky islands' of eastern Africa: do they, or did they exist? *Alpine Botany* 127: 133–144.
- Chartier M, Dressler S, Schönenberger J, et al. 2016. The evolution of afro-montane
 Delphinium (Ranunculaceae): morphospecies, phylogenetics and biogeography. Taxon 65:
 1313–1327.
- 29 **Chevreux B, Wetter T, Suhai S**. **1999**. Genome sequence assembly using trace signals and 30 additional sequence information. In: *German conference on bioinformatics*. Citeseer, 45–56.
- Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O. 2018. The IICR (inverse
 instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic
 inference and model choice. *Heredity* 120: 13–24.
- 34 Coetzee JA. 1980. Tertiary environmental changes along the south-western African coast.
 35 *Palaeontologia Africana* 23: 197–203.

- 1 **Darriba D, Taboada GL, Doallo R, Posada D**. **2012**. jModelTest 2: more models, new 2 heuristics and parallel computing. *Nature Methods* **9**: 772.
- 3 **Dawson IK, Powell W. 1999.** Genetic variation in the Afromontane tree *Prunus africana*, an 4 endangered medicinal species. *Molecular Ecology* **8**: 151–156.
- 5 **Dierckxsens N, Mardulyn P, Smits G**. **2017**. NOVOPlasty: de novo assembly of organelle 6 genomes from whole genome data. *Nucleic Acids Research* **45**: e18.
- Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling
 trees. *BMC Evolutionary Biology* 7: 214–222.
- 9 Dupont LM, Caley T, Kim J-H, Castañeda I, Malaizé B, Giraudeau J. 2011. Glacial 10 interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature
 11 variations in the Western Indian Ocean. *Climate of the Past* 7: 1209–1224.
- 12 **Dupont LM, Donner B, Schneider R, Wefer G**. 2001. Mid-Pleistocene environmental 13 change in tropical Africa began as early as 1.05 Ma. *Geology* 29: 195–198.
- Dupont LM, Jahns S, Marret F, Ning S. 2000. Vegetation change in equatorial West
 Africa: time-slices for the last 150 ka. *Palaeogeography, Palaeoclimatology, Palaeoecology* 155: 95–122.
- 17 **Dupont LM, Marret F, Winn K. 1998.** Land-sea correlation by means of terrestrial and 18 marine palynomorphs from the equatorial East Atlantic: phasing of SE trade winds and the 19 oceanic productivity. *Palaeogeography, Palaeoclimatology, Palaeoecology* **142**: 51–84.
- Elenga H, Vincens A. 1990. Paléoenvironnements quaternaires récents des plateaux Bateke
 (Congo): étude palynologique des dépôts de la dépression du bois de Bilanko In: Lanfranchi
 R, Schwartz D, eds. Didactiques. *Paysages quaternaires de l'Afrique centrale atlantique*.
 Paris: ORSTOM, 271–282.
- Farwig N, Böhning-Gaese K, Bleher B. 2006. Enhanced seed dispersal of *Prunus africana* in fragmented and disturbed forests? *Oecologia* 147: 238–252.
- Flantua SGA, O'Dea A, Onstein RE, Giraldo C, Hooghiemstra H. 2019. The flickering
 connectivity system of the north Andean páramos. *Journal of Biogeography, in press*.
- Gehrke B, Linder HP. 2009. The scramble for Africa: pan-temperate elements on the
 African high mountains. *Proceedings of the Royal Society Biological Sciences* 276: 2657–
 2665.
- Gehrke B, Linder HP. 2014. Species richness, endemism and species composition in the
 tropical Afroalpine flora. *Alpine Botany* 124: 165–177.

Geldenhuys CJ. 1993. Reproductive biology and population structures of *Podocarpus falcatus* and *P. latifolius* in southern Cape forests. *Botanical Journal of the Linnean Society* 112: 59–74.

1 Gichira AW, Li Z-Z, Saina JK, et al. 2017. Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian 2 3 highlands and eastern African mountains. Tree Genetics & Genomes 13: 72.

4 Gizaw A, Brochmann C, Nemomissa S, et al. 2016. Colonization and diversification in the 5 African 'sky islands': insights from fossil-calibrated molecular dating of Lychnis 6 (Caryophyllaceae). New Phytologist 211: 719–734.

- 7 Gizaw A, Kebede M, Nemomissa S, et al. 2013. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine 'sky islands' inferred from AFLPs and plastid DNA 8 9 sequences. Flora - Morphology, Distribution, Functional Ecology of Plants 208: 453–463.
- Gizaw A, Wondimu T, Mugizi TF, et al. 2016. Vicariance, dispersal, and hybridization in a 10 11 naturally fragmented system: the afro-alpine endemics Carex monostachya and C. 12 runssoroensis (Cyperaceae). Alpine Botany 126: 59-71.
- 13 Goldblatt P. 1978. An analysis of the flora of Southern Africa: its characteristics, 14 relationships, and origins. Annals of the Missouri Botanical Garden 65: 369-436.
- 15 Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly 16 from genomic next-generation sequencing reads—a baiting and iterative mapping approach.
- Nucleic Acids Research 41: e129–e129. 17
- 18 Hedberg O. 1969. Evolution and speciation in a tropical high mountain flora. Biological 19 *Journal of the Linnean Society* **1**: 135–148.
- 20 Ho SYW, Shapiro B. 2011. Skyline-plot methods for estimating demographic history from 21 nucleotide sequences. *Molecular Ecology Resources* **11**: 423–434.
- 22 Hoetzel S, Dupont LM, Wefer G. 2015. Miocene-Pliocene vegetation change in south-23 western Africa (ODP Site 1081, offshore Namibia). Palaeogeography, Palaeoclimatology, *Palaeoecology* **423**: 102–108. 24
- 25 Hunter SS, Lyon RT, Sarver BAJ, Hardwick K, Forney LJ, Settles ML. 2015. Assembly 26 by Reduced Complexity (ARC): a hybrid approach for targeted assembly of homologous 27 sequences. *bioRxiv*: 014662.
- Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. 28 29 Molecular Biology and Evolution 23: 254–267.
- Ivory SJ, Lézine A-M, Vincens A, Cohen AS. 2012. Effect of aridity and rainfall 30 seasonality on vegetation in the southern tropics of East Africa during the 31 32 Pleistocene/Holocene transition. Quaternary Research 77: 77-86.
- 33 Ivory SJ, Lézine A-M, Vincens A, Cohen AS. 2018. Waxing and waning of forests: Late 34 Quaternary biogeography of southeast Africa. *Global Change Biology* 24: 2939–2951.
- 35 Kadu CAC, Konrad H, Schueler S, et al. 2013. Divergent pattern of nuclear genetic 36 diversity across the range of the Afromontane Prunus africana mirrors variable climate of
- 37 African highlands. Annals of Botany 111: 47–60.

- Kadu CAC, Schueler S, Konrad H, *et al.* 2011. Phylogeography of the Afromontane *Prunus africana* reveals a former migration corridor between East and West African highlands.
 Molecular Ecology 20: 165–178.
- Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C. 2007. Phylogeography
 and conservation genetics of a giant lobelia (*Lobelia giberroa*) in Ethiopian and Tropical East
 African mountains. *Molecular Ecology* 16: 1233–1243.
- Kendall RL. 1969. An ecological history of the Lake Victoria Basin. *Ecological Monographs*39: 121–176.
- 9 Knaap WA. 1971. A montane pollen species from the upper Tertiary of the Niger delta.
 10 Journal of Mining and Geology 6: 23–29.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis
 version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33: 1870–1874.
- Lézine A-M, Assi-Kaudjhis C, Roche E, Vincens A, Achoundong G. 2013. Towards an
 understanding of West African montane forest response to climate change. *Journal of Biogeography* 40: 183–196.
- Lézine A-M, Holl AF-C, Lebamba J, et al. 2013. Temporal relationship between Holocene
 human occupation and vegetation change along the northwestern margin of the Central
 African rainforest. *Comptes Rendus Geoscience* 345: 327–335.
- 19 **Lézine A-M, Izumi K, Kageyama M, Achoundong G**. **2019**. A 90,000-year record of 20 Afromontane forest responses to climate change. *Science* **363**: 177–181.
- Mairal M, Sanmartín I, Herrero A, *et al.* 2017. Geographic barriers and Pleistocene climate
 change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot.
 Scientific Reports 7: 45749.
- Maley J, Brenac P. 1998. Vegetation dynamics, palaeoenvironments and climatic changes in
 the forests of western Cameroon during the last 28,000 years B.P. *Review of Palaeobotany and Palynology* 99: 157–187.
- Maley J, Caballe G, Sita P. 1990. Etude d'un peuplement résiduel à basse altitude de *Podocarpus latifolius* sur le flanc congolais du massif du Chaillu. Implications
 paléoclimatiques et biogéographiques. Etude de la pluie pollinique actuelle. *Paysages Quaternaires de l'Afrique centrale Atlantique*: 336.
- Masao CA, Gizaw A, Piñeiro R, et al. 2013. Phylogeographic history and taxonomy of some
 afro-alpine grasses assessed based on AFLPs and morphometry: *Deschampsia cespitosa*, D.
 angusta and *Koeleria capensis*. Alpine Botany 123: 107–122.
- McCormack JE, Huang H, Knowles LL. 2009. Sky islands In: Gillespie RG, Clague DA,
 eds. *Encyclopedia of islands*. University of California Press, 841–843.

Migliore J, Kaymak E, Mariac C, *et al.* 2019. Pre-Pleistocene origin of phylogeographical
 breaks in African rain forest trees: new insights from *Greenwayodendron* (Annonaceae)
 phylogenomics. *Journal of Biogeography* 46: 212–223.

4 **Miller MA, Pfeiffer W, Schwartz T. 2011**. The CIPRES science gateway: a community 5 resource for phylogenetic analyses In: TG '11. *Proceedings of the 2011 TeraGrid* 6 *Conference: Extreme Digital Discovery*. New York: ACM, 41:1–41:8.

- Minaya M, Hackel J, Namaganda M, *et al.* 2017. Contrasting dispersal histories of broad and fine-leaved temperate Loliinae grasses: range expansion, founder events, and the roles of
 distance and barriers. *Journal of Biogeography* 44: 1980–1993.
- 10 Morley RJ. 2000. Origin and evolution of tropical rain forests. John Wiley & Sons.
- Osmaston HA, Harrison SP. 2005. The Late Quaternary glaciation of Africa: a regional
 synthesis. *Quaternary International* 138–139: 32–54.
- Owen RB, Muiruri VM, Lowenstein TK, et al. 2018. Progressive aridification in East
 Africa over the last half million years and implications for human evolution. *Proceedings of* the National Academy of Sciences 115: 11174–11179.
- Petit RJ, Vendramin GG. 2007. Plant phylogeography based on organelle genes: an
 introduction In: Weiss S, Ferrand N, eds. *Phylogeography of Southern European refugia*.
 Dordrecht: Springer, 23–97.
- Pock Tsy J-ML, Lumaret R, Mayne D, et al. 2009. Chloroplast DNA phylogeography
 suggests a West African centre of origin for the baobab, Adansonia digitata L.
 (Bombacoideae, Malvaceae). Molecular Ecology 18: 1707–1715.
- Quiroga MP, Mathiasen P, Iglesias A, Mill RR, Premoli AC. 2016. Molecular and fossil
 evidence disentangle the biogeographical history of *Podocarpus*, a key genus in plant
 geography. *Journal of Biogeography* 43: 372–383.
- Retallack GJ. 1992. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution
 of African grasslands. *Paleobiology* 18: 383–400.
- Salard-Cheboldaeff M, Dejax J. 1991. Evidence of cretaceous to recent West African
 intertropical vegetation from continental sediment spore-pollen analysis. *Journal of African Earth Sciences (and the Middle East)* 12: 353–361.
- 30 Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP. 2015.
- 31 As old as the mountains: the radiations of the Ericaceae. *New Phytologist* **207**: 355–367.
- 32 Sklenář P, Hedberg I, Cleef AM. 2014. Island biogeography of tropical alpine floras.
 33 *Journal of Biogeography* 41: 287–297.
- Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA
 polymorphism. *Genetics* 123: 585–595.

- Turner BL, Cernusak LA (Eds.). 2011. Ecology of the Podocarpaceae in Tropical Forests.
 Smithsonian Institution Scholarly Press.
- Tusiime FM, Gizaw A, Wondimu T, *et al.* 2017. Sweet vernal grasses (*Anthoxanthum*)
 colonized African mountains along two fronts in the Late Pliocene, followed by secondary
 contact, polyploidization and local extinction in the Pleistocene. *Molecular Ecology* 26:
 3513–3532.
- Verlhac L, Izumi K, Lézine A-M, *et al.* 2018. Altitudinal distribution of pollen, plants and
 biomes in the Cameroon highlands. *Review of Palaeobotany and Palynology* 259: 21–28.
- 9 Vieira L do N, Faoro H, Rogalski M, et al. 2014. The complete chloroplast genome
 10 sequence of *Podocarpus lambertii*: genome structure, evolutionary aspects, gene content and
 11 SSR detection. *PLOS ONE* 9: e90618.
- Vincens A, Schwartz D, Elenga H, et al. 1999. Forest response to climate changes in
 Atlantic Equatorial Africa during the last 4000 years BP and inheritance on the modern
 landscapes. *Journal of Biogeography* 26: 879–885.
- 15 White F. 1981. The history of the Afromontane archipelago and the scientific need for its 16 conservation. *African Journal of Ecology* 19: 33–54.
- White F. 1983. Long distance dispersal, overland migration and extinction in the shaping of
 tropical African floras. *Bothalia* 14: 395–403.
- 19 White F. 1993. Refuge theory, ice-age aridity and the history of tropical biotas: an essay in 20 plant geography. *Fragmenta Floristica et Geobotanica* 2: 385–409.
- Wichura H, Bousquet R, Oberhänsli R, Strecker MR, Trauth MH. 2010. Evidence for
 middle Miocene uplift of the East African Plateau. *Geology* 38: 543–546.
- Wondimu T, Gizaw A, Tusiime FM, et al. 2014. Crossing barriers in an extremely
 fragmented system: two case studies in the afro-alpine sky island flora. *Plant Systematics and Evolution* 300: 415–430.
- Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and
 aberrations in global climate 65 Ma to present. *Science* 292.
- 28

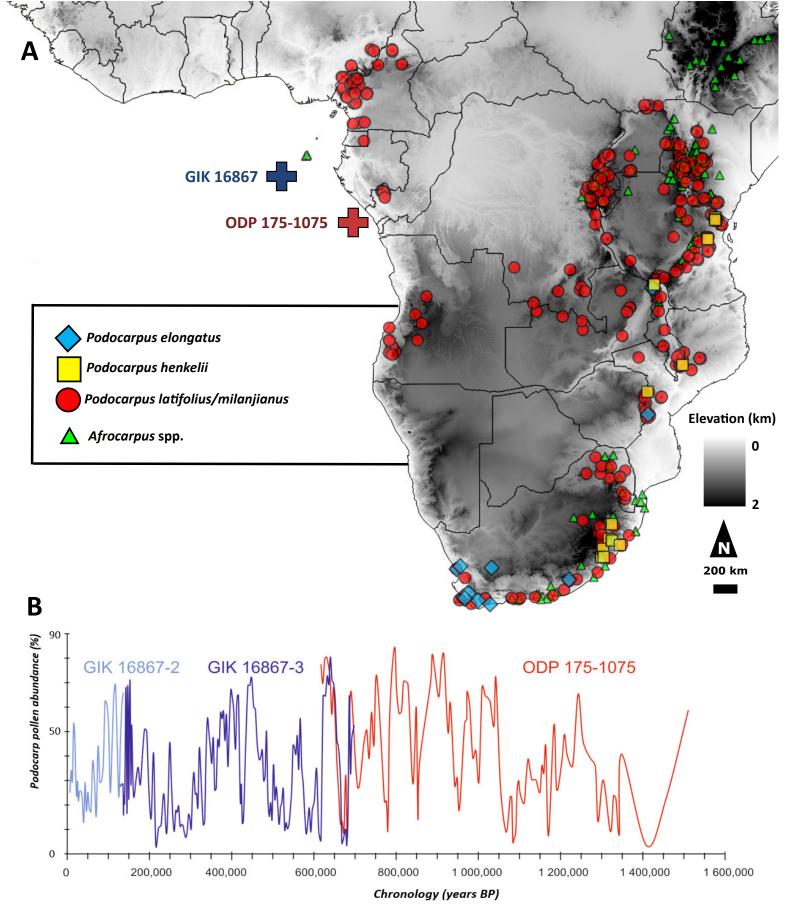
1 FIGURES AND TABLE CAPTIONS

2 FIG. 1. (A) Distribution map of African Podocarpus and Afrocarpus species. Data were 3 extracted from GBIF (GBIF.org - 26 January 2019 - GBIF Occurrence Download), field 4 missions, herbarium specimens (BRLU, BR, P), the Conifers of the world database (https://herbaria.plants.ox.ac.uk/bol/conifers), and scientific literature. (B) Evolution of 5 6 Podocarp-type pollen abundance throughout the Quaternary in three Atlantic marine cores 7 located on the map: the gravity core GIK 16827-2 and the piston core GIK16827-3 from the 8 same location off Gabon (Dupont et al. 1998), and ODP 175-1075 from the Congo fan 9 (Dupont *et al.* 2001).

10

11 FIG. 2. Phylogenetic relationships and tempo of diversification of *Podocarpus* 12 latifolius/milanjianus lineages, using plastome data. (A) Dated phylogeny including four outgroup taxa (n = 71). (B) Chronogram of *P. latifolius/milanjianus* plastomes, and molecular 13 dating of nodes A-M, including 95% highest posterior densities (HPD) and posterior 14 15 probabilities (PP). Nodes with a diamond symbol have a PP > 0.90. The main CP phylogroups 16 are represented by different coloured symbols, and five isolated samples are represented by 17 black stars and numbered as are phylogroups. (C) Inference of the inverse instantaneous 18 coalescence rate (IICR) through time using the Bayesian Skyline plot approach in BEAST, 19 expressed as the product of the effective population size Ne of panmictic population and the 20 generation time *t* (logarithmic scale).

21


FIG. 3. Geographic distribution of plastome phylogroups (CP) of *Podocarpus latifolius/milanjianus* (A) with their NeighborNet representation (B). Countries are
represented by their alpha-2-character alphabetic codes (ISO 3166).

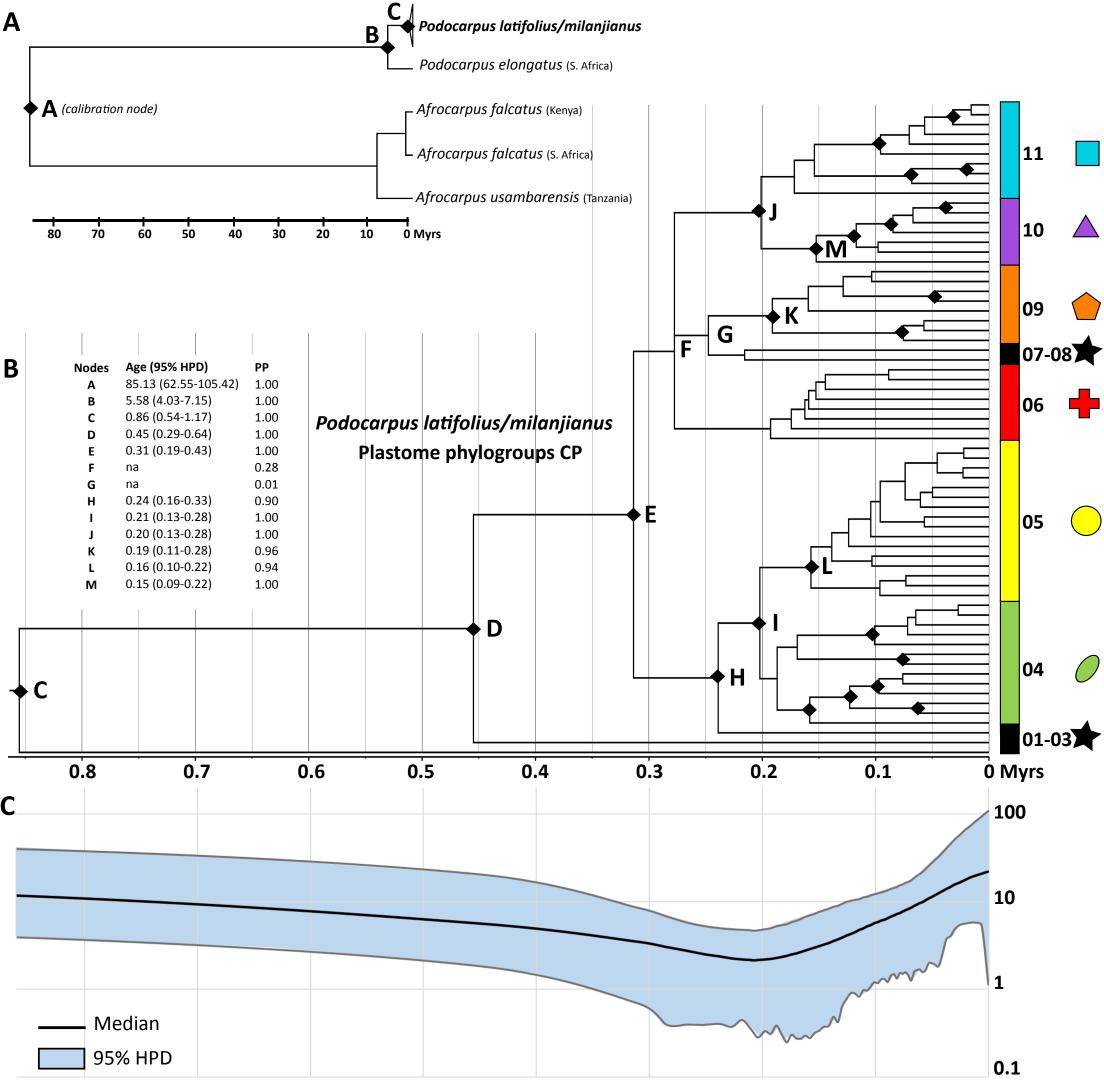
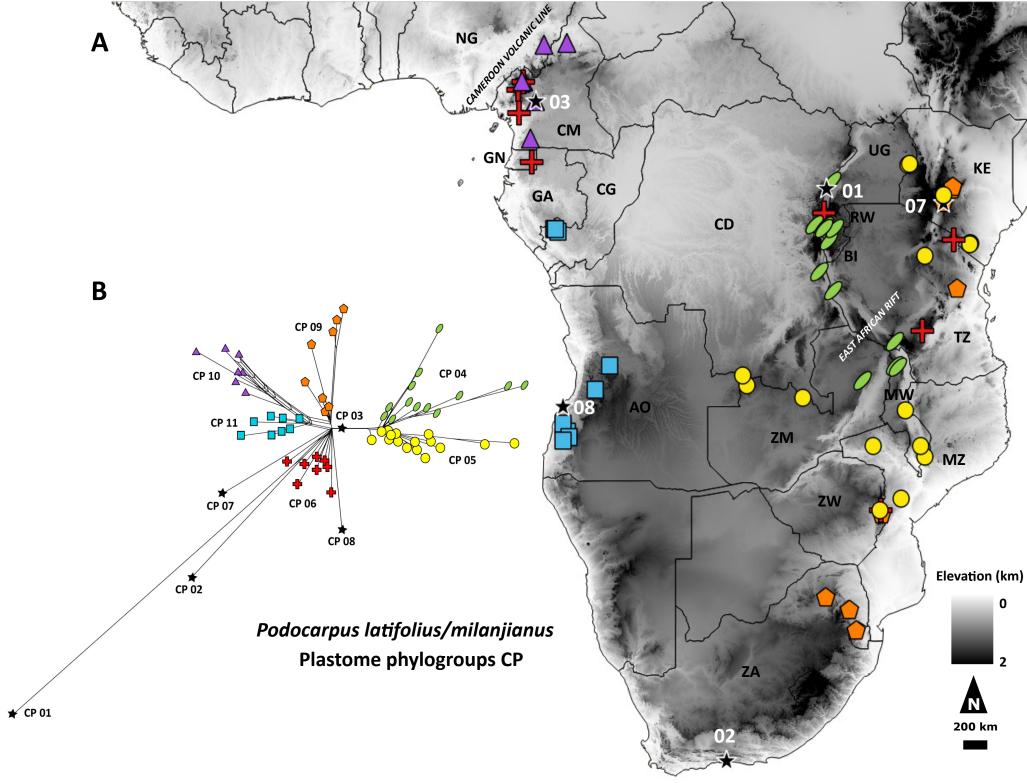

1

TABLE 1. Diversity and Tajima statistics for plastid, ribosomal and mitochondrial DNA regions of *Podocarpus latifolius/milanjianus*. The following genomic indices were calculated using MEGA 10.0.5 (Kumar *et al.* 2016) after pairwise deletion: total number of sites (*n*), number of sequences (*m*), number of segregating sites (*S*), proportion of variable sites ($p_s = S/n$), mean estimate of the expected number of single nucleotide polymorphisms between two DNA sequences under the neutral mutation model ($\Theta = p_s/a_I$), nucleotide diversity as the mean number of pairwise differences (π), and the Tajima statistic (*D*).


TABLE 1

Nb of sites n	Taxonomic groups	Sample size <i>m</i>	S	p _s	Θ	Nucleotide diversity π	D Tajima
Plastomes (cpDNA)	P. latifolius/milanjianus including outgroups	71	4152	0.0315	0.0065	0.0019	-2.5166
131770	P. latifolius/milanjianus	67	212	0.0016	0.0003	0.0001	-2.5903
Ribosomal nuclear (nrDNA)	P. latifolius/milanjianus including outgroups	82	206	0.0264	0.0053	0.0013	-2.5583
7810	P. latifolius/milanjianus	78	18	0.0023	0.0005	0.0002	-1.982
Mitochondrial <i>nad5</i> and SSU-RNA	P. latifolius/milanjianus including outgroups	60	583	0.0413	0.0089	0.0026	-2.5084
(mtDNA) 8356	P. latifolius/milanjianus	56	35	0.0025	0.0005	0.0001	-2.5502

Coalescent rate (IICR)

