N
N

N

HAL

open science

Modeling Realistic Bit Rates of D2D Communications
between Android Devices

Clément Bertier, Marcelo Dias de Amorim, Farid Benbadis, Vania Conan

» To cite this version:

Clément Bertier, Marcelo Dias de Amorim, Farid Benbadis, Vania Conan. Modeling Realistic Bit
Rates of D2D Communications between Android Devices.
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2019), Nov 2019, Miami

Beach, United States. pp.315-322, 10.1145/3345768.3355918 . hal-03036116

HAL Id: hal-03036116
https://hal.science/hal-03036116
Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

22nd ACM International Conference on

https://hal.science/hal-03036116
https://hal.archives-ouvertes.fr

Modeling Realistic Bit Rates of D2D Communications between
Android Devices

Clément Bertier*°, Marcelo Dias de Amorim*, Farid Benbadis®, and Vania Conan®

*LIP6/CNRS - Sorbonne Université

ABSTRACT

Although D2D communications have been extensively investigated
in the literature, relatively few works have focused on understand-
ing the capacity of direct links in a real setup. In this paper, we
propose an empirical characterization of the currently available
high-speed D2D technologies in Android, namely Wi-Fi P2P and
Google Nearby. To this end, we developed a custom Android ap-
plication called Ocat which interacts with the available D2D APIs
and measures the link’s goodput. From the experimental campaign,
we derive several useful observations. Concerning communication
capacity, the goodput between Android devices ranges between
320 Mbits/s when nodes are within 20 meters of each other and
0.1 Mbits/s when the distance grows to 300 meters. Based on the ex-
perimental measurements, we propose a model of the upper-bound
goodput as a function of the distance between two devices. Using
the wireless signal strength as a link measurement, we combine
it with the two-ray ground-reflection model to infer the goodput
and obtain a good fit for the characterization of D2D links between
Android devices. Our findings provide a reality check in regards to
actual direct data-exchange capabilities of Android devices and can
help assess system performance of D2D applications.

CCS CONCEPTS

« Networks — Network performance modeling; Network per-
formance analysis.

KEYWORDS

D2D, model, experimentation, Android, measurements, RSSI.

ACM Reference Format:

Clément Bertier*>°, Marcelo Dias de Amorim*, Farid Benbadis®, and Va-
nia Conan®. 2019. Modeling Realistic Bit Rates of D2D Communications
between Android Devices. In Proceedings of The 22nd ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM’19). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Albeit significant advances in the design of protocols and algo-
rithms for device-to-device (D2D) communications, the research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSWiIM’19, Nov 25-29 2019, Miami Beach, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

°Thales SIX GTS France

community still lacks experimental works that focus on finely un-
derstanding D2D links in real setups. Several fundamental questions
concerning the expected performance of direct links remain open:
“what is the expected transfer rate between two smartphones if they
are 25m apart?” or "how far can these two smartphones communicate
reliably?”. As a result, there are gaps in the state of the art when
it comes to modeling D2D exchanges. For example, when simulat-
ing D2D communications in the The ONE simulator, the user has
to select a maximum communication range as well as a constant
throughput between the devices. Due to the scarcity of studies
quantifying these parameters, authors often adopt rough estimates
for the physical layer bit rate used by the wireless medium [24].

In this paper, we characterize the link quality of device-to-device
communications based on empirical measurements of Wi-Fi Direct.
We model the upper-bound of D2D bit rate as a function of the
distance, thus shedding light on the applicability of D2D solutions.
We expect to help protocol and algorithm designers better select
their parameters in their simulations.

Studies tackling the performance of Wi-Fi links in infrastructure
mode exist [20]; however, these studies differ from ours in sev-
eral ways. Firstly, D2D links differ from traditional infrastructured
communications because of hardware differences. By considering
off-the-shelf smartphones using the latest OS updates (Android
8+ at the time of the writing of this paper), we provide up-to-date
results. Secondly, to the best of our knowledge, this is the first char-
acterization of a D2D link based on Google’s Nearby Connections
APL Thirdly, our results bring a number of new insightful observa-
tions for smartphone-based direct communications which notably
differ from previous works in the literature. In a nutshell, we explore
the state of current tools which enable high-speed D2D communi-
cations in Android and establish a model of the upper-bound bit
rate using off-the-shelf devices.

As a summary, our contributions are:

e We explore the currently available high-speed D2D APIs in
stock Android. As some APIs are proprietary, their inner-
workings are not always disclosed, which requires indirect
analysis to assess their behaviors.

e We design Ocat, a measurement application that stores data
transfer information for post-processing. We detail our exper-
imental procedure to collect data by using Ocat on Android
smartphones considering both Google Nearby and Wi-Fi P2P
APIs. We vary the distance between the devices up to the
distance beyond which the devices lose connectivity (around
300 m in our experiments).

e We propose a model, after a thorough analysis of the col-
lected data, to estimate the upper-bound of the goodput
between two devices as a function of the distance.

This work aims to be a stepping-stone on how to accurately
model D2D communications between Android devices in real-life.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

While there are still limited efforts to leverage D2D communications
as an applicable data-exchange solution [7], we are hopeful results
provided in this work entice the community to do so.

The rest of this paper is organized as follows. In Section 2, we
explain the different available APIs, while in Section 3 we introduce
Ocat, our measurement application for Android devices. We detail
the experimental work in Section 4; in particular, we provide a
thorough analysis of the RSSI measurements in D2D links and
how to model them accurately. In Section 5, we give a reality-
check based on our goodput analysis and how we perform the
goodput-to-distance modeling. We postpone the related work to
Section 6, so that the reader has enough material to best capture
our contributions. Finally, we conclude the paper and identify ideas
for future work in Section 7.

2 STOCK ANDROID HIGH-SPEED D2D APIS

To establish the upper-bound of D2D bit rate according to distance,
we carry out field measurements. To this end, we first take a look
at currently available D2D APIs in Android. As of now, there are
two supported APIs for high-speed D2D in stock Android, namely
Wi-Fi P2P [11] and Google Nearby Connections [10]. The former is
an implementation of the Wi-Fi Direct standard [3], while the latter
is a closed-source framework to send files, strings (e.g., URLs), or
even data streams (e.g., VoIP) to surrounding devices.

2.1 Wi-Fi P2P

Wi-Fi P2P is the Android implementation of Wi-Fi Alliance’s Wi-Fi
Direct standard. In short, peer-to-peer (P2P) devices communicate
through P2P Groups, which are dynamically formed by electing a
device as the P2P Group Owner, which embodies the role of the
access point. A P2P device can concurrently act as a P2P Group
Owner and as a P2P Client of another group.

While the standard’s inner-workings have been thoroughly re-
viewed in the literature [3], the Android implementation reveals
technical restrictions. For instance, while the standard does not
state any limitations in the number of clients in a P2P group, we
were not able to maintain more than one Wi-Fi P2P connection
using this API. Once two P2P devices have detected each other, one
(or both) can initiate a Wi-Fi P2P connection, as shown in Figure 1.
This connection needs to be approved by the user(s) via a pop-up
notification. The Wi-Fi Direct standard imposes the connection to
be set-up through the Wi-Fi Protected Setup protocol, and IP ad-
dresses are then configured through DHCP. After the assignment of
IP addresses to both devices, a socket has to be opened to establish
a two-way communication link between the two devices. In our
implementation (see Section 3), we use TCP.

2.2 Nearby

Google Nearby Connections appeared in 2017 as a framework meant
to completely abstract network-related complexities of D2D data ex-
change so that developers can focus on application features rather
than communications technicalities. For the rest of this paper, we
refer to this API as Nearby. Other than the application level func-
tions and callbacks available to developers, technical specification
of the inner-workings of Nearby are close to none.

Bertier et al.

7 TN@AED Y- m oo R
: BLE detectionj Wi-Fi detection :

Bluetooth
link

No connection

Wi-Fi 1ossJ

BT loss/disconnection

disconnection

<= WifiP2P--------===mmme e B RREEEEELEE N
Wi-Fi Direct detection H

No connection

Wi-Fi loss/disconnection

Figure 1: Summary of the connection process of both APIs.

The framework supports two types of topology: cluster and star.
Cluster topology acts in a completely decentralized fashion, where
any device can accept/start a connection from/with any other device.
A star topology is more restrictive, as a clear client/server design
has to be made prior to the connection. In a star, servers can accept
all incoming connections but cannot initiate a connection, and a
client can only be connected to a single server.

Nearby uses the commonly available wireless technologies found
in off-the-shelf smartphones, namely Bluetooth Low Energy (BLE),
Bluetooth, and Wi-Fi. In this paper, we consider the star topology as
it is the only one to use Wi-Fi (the cluster topology uses Bluetooth),
and because we aim to establish the upper-bound of D2D bit rates.

Using the adb software [9] and a spectrum analyzer, we unveil
that the connection process is actually three-fold, as summarized
in Figure 1. First, a BLE beacon is sent to notify all users within
communication range that a server is available (advertiser) or a
client is looking for a server to connect to (discoverer). Once two
devices have detected each other, they first establish a Bluetooth
connection in order to begin the data transfer as soon as possible.
During this Bluetooth data transfer, the two devices attempt to
establish a Wi-Fi connection; if they succeed, they automatically
switch the data transfer over to the Wi-Fi link. If the Wi-Fi link
drops due to poor signal, they fall back to the Bluetooth connection.
The choices of the Wi-Fi standard and of the carrier frequency are
always set by the server (advertiser) which acts as an AP.

After the establishment of the D2D link, the file transfer can
start. Nearby triggers regular callbacks to notify the user-space of
internal events, such as a status update on the transfer of the file.

2.3 Goodput measurement

We focus on Wi-Fi P2P and Nearby because they both enable higher
transfer speeds than BLE and Bluetooth. Unfortunately, there is no
integrated way in neither Wi-Fi P2P nor Nearby APIs to obtain the
throughput of the D2D wireless link (i.e., the data exchange rate
between the two Wi-Fi interfaces). Thus, instead of obtaining the
throughput, we consider the goodput in the remainder of this paper,
defined as the bit rate at the application level.

To obtain the goodput, we look at the behavior of the APIs.
Nearby triggers a callback every time a chunk is received. A chunk
is a application-level data block of < 21® bytes (the Nearby API

Modeling Realistic Bit Rates of D2D Communications between Android Devices

Ocat oneptusTSCYan

Nearby-receiver: connected to advertiser
OnePlusTSRed

Loops: 50 Los - Manually input distance

File size (KBytes)

ID 20000 (% 10000 (] 5000 (] 2000 [1000 (] ¢

= ocru |
Current goodput

Frequency
Link: 5180MHz|866 Mbps|-49 dBm MOC»ulatiOn S eed
RSST

Recening File name
random_10000KB_ymZtsvhxux.bin Progress bar

Figure 2: Ocat user interface.

enforces this size). To obtain the mean goodput after the file has
been sent, we collect timestamps at the arrival of each chunk. For
both Nearby and Wi-Fi P2P APIs, we define the mean goodput as:

Zﬁ;fzz sizeChunk(n)

Timestamp N — Timestamp 1 ‘

M

We start at n = 2 because we cannot obtain the timestamp before
the arrival of the first chunk.

Mean Goodput =

2.4 Network-related data collection

To better understand D2D characteristics, we intend to collect any
accessible network-related information or statistics, when using
either APIs. As we have not found any straightforward means to
obtain extra information using Nearby and Wi-Fi P2P APIs, we
require the use of a third API supported in stock Android that
solves the issue at least for the Nearby case. This API, called Wifi-
Manager [12], is built to handle regular client Wi-Fi connections in
Android. We exploit the fact that once Nearby establishes a D2D
link through Wi-Fi, this link acts as a standard Wi-Fi connection;
thus, it becomes possible to use WifiManager to query the Wi-Fi
interface to obtain extra information. Thanks to this workaround,
we obtain the received signal strength indication (RSSI, in dBm),
the link speed (in Mbit/s), and the used frequency (in MHz). Unfor-
tunately, this technique exclusively works on the client side of the
connection, due to the AP-side information being inaccessible in
Android for privacy issues. While there arguably could be complex
software solutions such as installing a custom Android firmware
on the device, this falls outside of the scope of this paper since we
focus on stock Android. We used in our experiments OnePlus 5T
smartphones, which uses Wi-Fi 5 (802.11ac) in both Nearby and
Wi-Fi P2P (contrarily to other brands that use Wi-Fi 4 for Nearby).

3 EXPERIMENTAL PROCEDURE

We designed and implemented Ocat (Opportunistic communica-
tions assessment tool), a mobile application whose purpose is to

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

Signal Data
Transmitter Receiver Transmitter Receiver
Connexion
setup
comments_distance_name|
/
next/
sizeFilel:nameFilel
File 1 Payload 1

\ \ Timestamp 1

File 1 Payload 2 <«

\ Timestamp 2

File 1 " <
[]
n
File 1 Payload N
T~ | Timestamp N
__________________________ —
next/hashfilel

\end\

Figure 3: Representation of the synchronization protocol im-
plemented in Ocat.

measure the connectivity characteristics between two or more de-
vices using (so far) either Nearby or Wi-Fi P2P.

3.1 Ocat

In Figure 2, we show the user interface of the application. The pro-
cess consists of generating random files of 10 MBytes, transmitting
them between the devices, and storing the gathered information in
a log file for post-processing. Recall that we only collect informa-
tion once the data reaches the application level at the receiver side,
as we cannot access network-related information at the OS level.

We unfortunately noticed that Nearby prematurely notified the
transmitter user-space of transfer completion, even though signifi-
cant part of the file was still being transferred. In Figure 3, we show
the protocol exchanges implemented in Ocat. The purpose of the
control plane is mainly to keep the synchronization between the
transmitter and the receiver. This synchronization scheme allowed
us to enforce strict transmission rules so that two files are never
sent concurrently, which is paramount to fine-grained measurement
of file transfer rates, thus solving the premature file transmission
notification issue.

To ensure that files arrive correctly, the receiver sends a hash of
the file to the transmitter along with the next command in order
to request the next file in the queue. If the hash is correct, the
transmitter sends the next file; otherwise, it sends the same file
again (up to 5 times in our experiments).

3.2 Empirical goodput as a function of distance

We now have the necessary background to investigate the relation-
ship between distance and goodput. In this second set of experi-
ments, we laid on the ground a measuring tape which we used as a
mean to measure the exact distance d between the transmitter and
receiver devices. We put the smartphones on tripods, both of them

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

Figure 4: Photography of the experimental procedure. Both
smartphones run the Ocat application, and we move one of
the tripods according to a chosen stepping along the measur-
ing tape (white line on the ground).

set at the height of 1.3 m. We start by putting them 1 m apart, as
seen in Figure 4, and then we gradually increase the distance. Using
Ocat, we connect two devices using either Wi-Fi P2P or Nearby
(implemented as an option in the app). With an active D2D con-
nection, the transmitter sends 100 randomly generated files to the
receiver. Once all files have been sent, we move the receiver to the
next mark and start the next round of transmissions. We repeat the
process until the devices are too far to establish a connection.

In practice, a plethora of parameters related to the wireless
medium has to be considered, such as shadowing, refraction, or
fading. To limit as much as we could the influence of these parame-
ters, we conducted our experiments in a rural environment with
little to no external interference (Figure 4). This is compliant with
our goal of measuring the maximum reachable transfer speeds. We
checked for interference using a spectrum analyzer by verifying
that no signal above noise-level (-100dBm in our case) was detected
on the 2.4 GHz and 5 GHz bands.

4 RSSI FOR GOODPUT ESTIMATION

As previously explained, we can only access the RSSI, as Android
does not give access to the transmission power. The RSSI, in dBm,
is calculated as:

RSSI(d) = P; + G; + Gy — L — PL(d), @)

where d is the distance between the transmitter and the receiver, Py
is the transmission power, G; is the transmitter’s antenna gain, G,
is the receiver’s antenna gain, L is the loss of the system, and PL(d)
is the path loss according to distance d. For the off-the-shelf smart-
phones that we use in our experiments, most of these parameters
are not disclosed.

We first assume that smartphones transmit at constant power,
meaning that P; is fixed. We simplify the equation by letting A =

Bertier et al.

—404 - —— Median
® Original data

-50 4

RSSI (dBm)
&
(=}

~70 1

-80 1

-90 1

Distance (m)

Figure 5: RSSI to distance measurements using the One-
Plus 5T devices.

P; + G + G, — L. This is done since we can only measure the RSSI,
hence making it impossible to differentiate the terms. We have then:

RSSI(d) = A — PL(d). 3)

4.1 Modeling the RSSI

We present in Figure 5 the RSSI measurements between two One-
Plus 5T following the measurement methodology presented in
Section 3. While at short distances (1 m to 20 m), the strength of
the signal seems to be monotonically decreasing, it is not the case
throughout the entire experiment. For instance, from 30 m to 50 m
there is an apparent increase in the signal strength even though we
increased the distance between the devices. While counter-intuitive,
this increase of signal in spite of the growth of distance is a behavior
typically found in the rural environment [21].

We consider three different models, namely the free-space path
loss propagation model [2], the log-distance path loss model [2],
and the accurate version of the two-ray ground-reflection model (as
opposed to the approximation often found in the literature) [19, 21].
As the model yielding the best results is the accurate version of the
two-ray ground-reflection model, as we will see below, we present
further details of this model in Appendix 7.

We estimate the parameters for each model through a best-fit
approach. As we only have the RSSI at each receiver, we need to
estimate the global gain of the system A (see Equation 3) for all
models. To find which path loss model leads to the best fit, we
perform a least-square curve fitting using Imfit [16]. We remind the
reader that, depending on the PL model used, several parameters
are used to find the best fit. These parameters are listed in Table 1,
where 7 is the attenuation exponent of the log-distance model and €
is a parameter that depends on the material of the reflection surface
and h,/h; the height of the receiver/transmitter.

We show in Figure 6 how the different models fit our measures.
The free-space model leads to a pretty good fitting by using a
global gain A ~ 10.46. The log-distance model seems to exhibit the

Modeling Realistic Bit Rates of D2D Communications between Android Devices

Table 1: Summary of the models and their parameters.

RSSI/PL Model Param 1 | Param 2 | Param 3
Freespace A - -
Log-Distance A n -
Two-Ray ground-reflection A € hy/hy
—— Original median
—404 Freespace

—— Log-Distance

504 —— Two-Ray ground-reflection

RSSI (dBm)
&
(=3

|
~
=)

L

-90 1

0 50 100 150 200 250 300
Distance (meters)

Figure 6: RSSI Models after least-square fitting. The two-ray
ground ground-reflection model is the only model capturing
the signal increase while augmenting the distance.

same behavior, however, the best-fit yields a gain of A = 8.3 and the
attenuation exponent is set to ~ 1.8; the problem is that 7 is under
the minimum value of 2 which corresponds to the propagation of
a signal in free-space. Thus, we consider this fit to be invalid and
ignore it since fixing this parameter to a minimum of 2 is equivalent
to calculating the free-space model.

The two-ray ground-reflection model gives the best results. It can
capture specific phenomena such as the signal increase observed
between 30 m and 50 m (which is the consequence of constructive
interference due to the ground reflection). The algorithm fixes the
parameters A ~ 9.19 dB and € = 1.009. It is not a surprise that the
algorithm gave h, = hg = 1.38m, which corresponds to the height
of the phones on top of the tripods.

4.2 RSSI and Goodput

To derive a distance-to-goodput model, we need to establish if a
clear correlation between a given RSSI value and a goodput exists.
We know from the Wi-Fi 5 standard that, for each value of RSSI, a
particular modulation is chosen in order to achieve the best trade-off
between throughput and error resilience [6]. Typically, modulations
reaching the highest throughputs are quite sensitive to noise and
are unsuitable for long-distance communications. If we were in a
noisy environment, the RSSI measurements should be correlated to
a throughput through a rate-adaptation algorithm, but since this is
not the case, the sole RSSI is enough for our upper-bound model.
Recall that, in Android, the modulation used by the Wi-Fi inter-
face is not disclosed; still, it can be inferred from the link speed

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

—— Median
® Original data

@25'
g
>
m 4
s © tot © o
:’ wn oMoum —
2 = 535 = X
<15 < <L < i
8 4 9X 9 @
o © Ot

. noo o

N o~

—
o
L

w
L

-40 -50 -60 -70 -80 -90
RSSI (dBm)

Figure 7: Empirical RSSI-to-goodput relationship with the
indication of the modulation used.

Table 2: Android Wi-Fi 5 theoretical maximum throughput
using 80MHz bandwidth & 2*2 MIMO, 400ns GI

Bit rate Modulation Redundancy Max RSSI Min RSSI

866 256-QAM 5/6 - -55
780 256-QAM 3/4 -56 -57
650 64-QAM 5/6 -58 -58
585 64-QAM 3/4 -59 -59
520 64-QAM 2/3 -60 -63
390 16-QAM 3/4 -64 -67
260 16-QAM 1/2 -68 -70
195 QPSK 3/4 -71 -72
130 QPSK 1/2 -73 -75
65 BPSK 1/2 -76 -

if the number of MIMO antennas is known. We compiled Table 2
from the Wi-Fi 5 standard to better understand the behavior of the
throughput. The BPSK modulation does not have a minimum RSSI
in the tested devices as it continues to operate until the signal is
lost, and the same logic applies to the 256-QAM which operates no
matter how high the RSSI is.

The units we consider are dBm for the RSSI and MBytes/s for
the goodput. In Section 2.3, we calculated a mean goodput per file,
and we now apply the same idea to the RSSI. The RSSI given by
WifiManager is not guaranteed to be up-to-date. We mitigate this
issue by weighting the RSSI of each chunk using the transmission
time of the chunk to establish the mean RSSI of the file.

As the choice of a specific RSSI value is not left to the user,
we cannot guarantee that all possible values of RSSI are covered.
However, by moving the tripods back and forth several times, we
were able to cover a wide range of possible values, from -40 dBm to
-87 dBm. In Figure 7, we present plot the mean goodput per file sent,
as a function of the mean RSSI during the file transmission. Each
red dot on the figure represents a sample (a file transmitted), and
we additionally superimposed the RSSI range of all modulations
to give a physical layer perspective to the reader. The blue line

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

Bertier et al.

w
S

~
&
=
——

Speed (MBytes/s)
N
o
—_— 0

= =
15} @

—————
—_—

60

Speed (MBytes/s)
w
(=]

o
M
0
D
L2

DAV DD AVAD DDA PADAVD DD DD ND
SELLERNNNNESEEHNHRANASONS

Distance (meters)

(a) Nearby

O PPN PRSP S S OEPE PSSO S S5

Distance (meters)

(b) Wi-Fi P2P

Figure 8: Goodput measurements from OnePlus 5T to OnePlus 5T connections with both APIs. The box-plots’ whiskers include

95% of the data.

represents the median values of all values of RSSI, given that at
least 50 samples over the same RSSI are available.

We note that the median does not significantly change in the
range -40 dBm to -62 dBm despite five different modulations. Since
prior works have found a clear correlation between modulation and
energy consumption in smartphones [23], this reveals a potential
energy consumption issue. As the goodput using the modulations
between 256-QAM 5/6 and 64-QAM 2/3 are unequivocally equiva-
lent, it seems that using the 64-QAM 2/3 modulation from -40 dBm
to-62 dBm could be a better alternative as we know that it consumes
less energy. Also, there are two significant drops in the measured
median goodput, at precisely -63 dBm and -72 dBm. While it would
seem intuitive to think that they correspond to a modulation change,
they are not correlated to a particular modulation.

We can also observe a large spread around the median good-
put from -40 to -50dBm. For instance, the goodput varies from
7 MBytes/s to 35 MBytes/s with a median around 24.5 MBytes/s.

The goodput as a function of RSSI, i.e. the results presented in
Figure 7 can be easily approximated by a linear piecewise function
@iﬁt(x), where x is the RSSI:

24.26 X > —64,
—_— —0.36x +42.35 -64 <x < -71,
goodput(x) = 4)
—0.79x + 66.44 71 <x < -82,
—0.24x + 21.13 -82 < x.

Now that we defined our model of the goodput as a function
of the RSSI, we need to extend it to become as a function of the
distance. This is the topic of the next section.

5 GOODPUT VS. DISTANCE

5.1 Analysis of empirical observations

We were able to maintain a D2D connection up to 280 m distance
using Wi-Fi P2P and up to 310 m using Nearby. This difference

is explained by the fact that Wi-Fi P2P is solely based on Wi-Fi 5
(5 GHz band) while Nearby may fall back to Bluetooth (2.4 GHz
band), as explained in Section 2.2. Nonetheless, when Nearby we
enforced Nearby to remain in the 5 GHz band, the distance limit is
around 280 m, exactly like Wi-Fi P2P. To the best of our knowledge,
there is no reference in the literature reporting D2D experiments
that achieve such distances using off-the-shelf Android devices.

In Figure 8, we show the goodput results when the devices com-
municate using both Nearby and Wi-Fi P2P. When we observe
the results for Nearby (Figure 8a), several patterns emerge. On
short distances (1 m to 20 m), the throughput seems relatively con-
stant ranging from 23 MBytes/s to 25 MBytes/s. The dispersion
around the median is however quite large, with values as high as
33 MBytes/s and as low as 10 MBytes/s — but this is consistent with
our observations in the RSSI analysis in Section 4.2, where a close-
range communication generated more spread around the median.
We also observe an increase in the goodput in the range 30 m to
50 m. We were expecting this behavior as it corresponds to the
constructive interference due to ground reflection (see Section 4.2).
This enables the devices to maintain a high goodput, ranging from
13 MBytes/s to 17 MBytes/s; it is notable that such a high goodput
is achieved within medium-range distances.

As for the Wi-Fi P2P API (Figure 8b), we see that the large
variance is also found within short distances (1 m to 20 m). The
median ranges from 35 MBytes/s to 39 MBytes/s, which is signifi-
cantly higher than the speed reached with Nearby. We believe that
this difference is due to a software bottleneck. Another hint is the
RSSI-to-goodput relationship (Section 4.2) that showed no increase
of throughput, albeit modulations with higher theoretical speeds.
Hence, we can deduce that Nearby’s maximum goodput is, in fact,
software-related more than hardware-related.

The next pattern, which we labeled as the sawtooth behavior,
can be observed in the range 60 m to approximately 270 m. This is
a consequence of the low RSSI over long-range communications,
where any obstacle may increase or decrease the signal (e.g., leaves

Modeling Realistic Bit Rates of D2D Communications between Android Devices

2514 Empirical goodput
=== TwoRay-based Model

20

2 H
>, 15 !
) 1
=) i
= 1
3 1
3 \
Q \
\ ety
v/ \‘\\
51 TAL
ol -
0 50 100 150 200 250 300

Distance (meters)

Figure 9: Comparison between the empirical data and our
model for Nearby.

on the ground and nearby trees). Regardless, the goodput ranges
from 1 MByte/s to 7 MBytes/s, which is still a significant value.

Over even longer distances, between 280 m and 310 m, the good-
put measurements are less accurate due to Nearby’s behavior. When
the Wi-Fi connection drops between two devices, which can hap-
pen when the RSSI is around -85 to -90 dBm, Nearby automatically
falls back to the Bluetooth connection. Nearby still allows devices
to exchange data, but this time with a significantly lower bit-rate
between 10 KBytes/s to 100 KBytes/s.

5.2 Model of the goodput in function of the
distance

We now propose a model to estimate the goodput based on the
distance between two Android devices. We use the PLtworay(d)
model (see Appendix 7) to estimate the path loss and fix the inner
parameters from the least-square estimation, where A = 9.19 (see
Section 4.1). From Equation 3, we derive:

RSSI(d) = 9.19 — PLiworay(d). (5)

To obtain the goodput as a function of the distance, we combine
Equations 4 and 3:

goodput(d) = goodput(RSSI(d)). (©6)

In Figure 9, we show how this model fits the dataset. The original
data is the same as the one presented in Figure 8a, but in Figure 9
we only show the median for the sake of readability. Our model
presents the expected characteristics that we observed in practice,
notably the sudden surge in goodput in the range 30 m to 50 m
along with the significant drop after 70 m.

Our proposed model, which is the upper-bound of D2D com-
munication in off-the-shelf Android smartphones, now allows the
research community to estimate the bit rate based on the distance
between two devices.

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

6 RELATED WORK

Given the ubiquitous nature of Wi-Fi in modern devices, there are
several studies that evaluate the performance of the different Wi-Fi
standards. Zeng et al. explore the relationship between overlapping
Wi-Fi standards (e.g., 802.11n/ac using the same frequency) and
power consumption [23]. Saha et al. extend this idea by focusing on
the characterization of the relationship between Wi-Fi throughput
of smartphones and battery consumption using several popular
models [20]. Chowdhury et al. [5] have previously proposed to
use the estimation of the RSSI as a mean to obtain the throughput
between a base station and a mobile client, based on the distance
between the two. Contrary to our empirical approach, they took
the physical speed of the Wi-Fi 4 as a reference model. Certain
domains commonly infer the distance between two devices from
the received signal strength. This is notably done in wireless sen-
sor networks [13, 22], vehicular networks [4, 21], and in mobility
detection of smartphones [17].

Qayyum et al. [18] take an empirical measurement of the through-
put according to distance using a mobile Android application. Inter-
estingly, while they admittedly use dated hardware and software
compared to ours, they report significantly shorter range of * 10 m
and undeniably slower throughput as they used Bluetooth.

Several authors have implemented D2D-based frameworks us-
ing Android devices Android. For instance, Keller et al. propose
a cooperative streaming system named Microcast [14]. Other ex-
amples of full-fledged D2D data sharing solutions exist, but they
all assume the devices communicate within a short range [1, 15].
Another issue is the assumption that devices can maintain several
simultaneous D2D connections, while in reality this is not guaran-
teed and switching from one Wi-Fi Direct connection to the next
may create a latency of several seconds [8]. On top of this, while
these frameworks may be functional, they are not found in stock
Android and are therefore not always available to developers nor
have guaranteed support.

While all these works are substantial to their domains, they
often ignore the importance of distance as a parameter for the
throughput estimation in a D2D context or were outdated in regards
to hardware and software. Hopefully, our work is an appreciated
contribution to this goal.

7 CONCLUSION AND FUTURE WORK

In this paper, we explored the current state of D2D communications
in stock Android devices. To this end, we first designed and imple-
mented Ocat, an Android application that eases the measurement
process of D2D communications through both Google Nearby and
Wi-Fi P2P. As a result, we were able to establish a model for the
upper-bound goodput of D2D communications as a function of the
distance between the communicating devices.

We showed that the Nearby API can maintain a goodput of
25 MBytes/s in the 1 m to 20 m range. Within the same range, Wi-Fi
P2P can reach up to 39 MBytes/s, showing that Nearby possibly
lacks software optimization to achieve similar speeds. In our find-
ings, we note that the ground reflection has a significant impact
on goodput performance, which can be positive within medium
distances between 30 m to 50 m, enabling a steady goodput rate
between 13 MBytes/s to 17 MBytes/s. To our surprise, devices were

MSWiM’19, Nov 25-29 2019, Miami Beach, USA

able to communicate at fairly long distances (280 m to 310 m), which
was undocumented so far.

In our future work, to better assess D2D data sharing capabilities,
we intend to exchange data between several devices at the same
time and at different distances. We also want to model the asymmet-
rical relationship between emitter and transmitter devices, since
our tests showed that devices may perform differently when they
transmit or receive signals. Ultimately, this work enables a new
sort of characterization for D2D communications by establishing
how much data can be exchanged between devices through a spa-
tiotemporal contact. We believe that our work will significantly help
researchers and application designers understand the possibilities
and limits of D2D communications using Android devices.

REFERENCES

[1] Xuan Bao, Yin Lin, Uichin Lee, Ivica Rimac, and Romit Roy Choudhury. 2013.

DataSpotting: Exploiting naturally clustered mobile devices to offload cellular

traffic. In 2013 Proceedings IEEE INFOCOM. IEEE, 420-424. https://doi.org/10.

1109/INFCOM.2013.6566807

K. Benkic, M. Malajner, P. Planinsic, and Z. Cucej. 2008. Using RSSI value for

distance estimation in wireless sensor networks based on ZigBee. Proceedings of

the 15th International Conference on Systems, Signals and Image Processing (2008),

303-306. https://doi.org/10.1109/IWSSIP.2008.4604427

[3] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. 2013. Device-to-device
communications with Wi-Fi Direct: overview and experimentation. IEEE Wireless
Communications 20, 3 (jun 2013), 96-104. https://doi.org/10.1109/MWC.2013.
6549288

[4] Chien-Ming Chou, Chen-Yuan Li, Wei-Min Chien, and Kun-chan Lan. 2009. A
Feasibility Study on Vehicle-to-Infrastructure Communication: WiFi vs. WiMAX.
In 2009 Tenth International Conference on Mobile Data Management: Systems,
Services and Middleware. IEEE, 397-398. https://doi.org/10.1109/MDM.2009.127

[5] Helal Chowdhury, Janne Lehtomaiki, Juha-Pekka Mékeld, and Sastri Kota. 2010.
Data Downloading on the Sparse Coverage-Based Wireless Networks. Journal of
Electrical and Computer Engineering 2010 (2010), 1-7. https://doi.org/10.1155/
2010/843272

[6] Cisco. 2014. 802.11ac: The Fifth Generation of Wi-Fi. Technical Report March. 1-4
pages.

[7] Marco Conti and Silvia Giordano. 2014. Mobile ad hoc networking: milestones,
challenges, and new research directions. IEEE Communications Magazine 52, 1
(jan 2014), 85-96. https://doi.org/10.1109/MCOM.2014.6710069

[8] Colin Funai, Cristiano Tapparello, and Wendi Heinzelman. 2017. Enabling multi-
hop ad hoc networks through WiFi Direct multi-group networking. In 2017
International Conference on Computing, Networking and Communications (ICNC).
IEEE, 491-497. https://doi.org/10.1109/ICCNC.2017.7876178 arXiv:1601.00028

[9] Google. [n.d.]. ADB. https://developer.android.com/studio/command-line/adb

] Google. [n. d.]. Nearby - Connections API Overview. https://developers.google.
com/nearby/connections/overview

[11] Google. [n. d.]. Wi-Fi peer-to-peer overview. https://developer.android.com/
guide/topics/connectivity/wifip2p

[12] Google. [n. d.]. WifiManager. https://developer.android.com/reference/android/
net/wifi/WifiManager

[13] Lei Guan, Xing Zhang, Zongchao Liu, Yu Huang, Ruogian Lan, and Wenbo Wang.

2013. Spatial modeling and analysis of traffic distribution based on real data

from current mobile cellular networks. Proc. of ICCP’13 - 2013 IEEE International

Conference on Computational Problem-Solving (2013), 135-138. https://doi.org/

10.1109/ICCPS.2013.6893524

Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and

Athina Markopoulou. 2012. MicroCast: Cooperative Video Streaming on Smart-

phones. In Proceedings of the 10th international conference on Mobile systems,

applications, and services - MobiSys °12, Vol. 68. ACM Press, New York, New York,

USA, 57. https://doi.org/10.1145/2307636.2307643

Kyunghan Lee, Injong Rhee, Joohyun Lee, Song Chong, and Yung Yi. 2010. Mobile

data offloading. In Proceedings of the 6th International COnference on - Co-NEXT

’10, Vol. 21. ACM Press, New York, New York, USA, 1. https://doi.org/10.1145/

1921168.1921203

Matthew Newville and Till Stensitzki. 2017. Non-Linear Least-Squares Minimiza-

tion and Curve-Fitting for Python Matthew Newville, Till Stensitzki, and others.

(2017).

[17] Pavan Kumar Pedapolu, Pradeep Kumar, Vaidya Harish, Satvik Venturi, Sushil K
Bharti, Vinay Kumar, and Sudhir Kumar. 2017. Mobile Phone User’s Speed
Estimation using WiFi Signal-to-Noise Ratio. In Proceedings of the 18th ACM
International Symposium on Mobile Ad Hoc Networking and Computing - Mobihoc

™
[

=
=t

=
)

[16

Bertier et al.

’17. ACM Press, New York, New York, USA, 1-2. https://doi.org/10.1145/3084041.
3084072
Shiraz Qayyum, Mehrab Shahriar, Mohan Kumar, and Sajal K. Das. 2013. PCV:
Predicting contact volume for reliable and efficient data transfers in opportunistic
networks. Proceedings - Conference on Local Computer Networks, LCN (2013),
801-809. https://doi.org/10.1109/LCN.2013.6761335
Theodore Rappaport. 2001. Wireless Communications: Principles and Practice.
(2001).
Swetank Kumar Saha, Pratik Deshpande, Pranav P. Inamdar, Ramanujan K.
Sheshadri, and Dimitrios Koutsonikolas. 2015. Power-throughput tradeoffs of
802.11n/ac in smartphones. In 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), Vol. 26. IEEE, 100-108. https://doi.org/10.1109/INFOCOM.
2015.7218372
Christoph Sommer, Stefan Joerer, and Falko Dressler. 2012. On the applicability
of Two-Ray path loss models for vehicular network simulation. In 2012 IEEE
Vehicular Networking Conference (VNC). IEEE, 64-69. https://doi.org/10.1109/
VNC.2012.6407446
[22] Jiugiang Xu, Wei Liu, Fenggao Lang, Yuanyuan Zhang, and Chenglong Wang.
2010. Distance Measurement Model Based on RSSI in WSN. Wireless Sensor
Network 02, 08 (2010), 606—-611. https://doi.org/10.4236/wsn.2010.28072
[23] Yunze Zeng, Parth H. Pathak, and Prasant Mohapatra. 2014. A first look
at 802.11ac in action: Energy efficiency and interference characterization. In
2014 IFIP Networking Conference, Vol. 20. IEEE, 1-9. https://doi.org/10.1109/
IFIPNetworking.2014.6857103
Xiangming Zhu, Yong Li, Depeng Jin, and Jianhua Lu. 2017. Contact-Aware Opti-
mal Resource Allocation for Mobile Data Offloading in Opportunistic Vehicular
Networks. IEEE Transactions on Vehicular Technology 66, 8 (aug 2017), 7384-7399.
https://doi.org/10.1109/TVT.2017.2668396

[18

[19

[20

[21

[24

TWO RAY GROUND REFLECTION MODEL

The idea behind this model is that the receiver obtains two copies
of the same signal, the original one and a copy reflected from the
ground. The principle is to calculate the phase difference between
the two copies of the signal to verify whether the interference is con-
structive or destructive, based on the heights of the transmitter and
the receiver. In our case, these heights are equal, which guarantees
that the line of sight distance between the two devices is dj,; = d.
The distance of the reflected signal is dyefjecr = Va2 + (hy + hy)?,
where h, and h; are the heights of the transmitter and receiver de-
vices, respectively (again, equal in our setup). The phase difference

os Qreflect

as ¢ =21 !
To obtain the final model, we also need the reflection coefficient,
which gives the capacity of the ground to reflect an electromagnetic

_ sinf-Ve—cos? 0
sin @+Ve—cos2 6’
of incidence of the reflected signal based on the heights of the

transmitter and receiver, and € is a fixed parameter based on the
material.
The two-ray ground reflection model is then written as [21]:

wave. It is given by I’} where 6 is the angle

d)
PLiworay(d) = 201og;, [47rz|l + FJ_e”Pl_l} . (7)
Using Euler’s formula, we replace the complex exponential in
the equation as:
d Ca -1
PLtworay(d) = 201og;, 47rz|1 +T cosp+Tising|™ |- (8)

As the modulus of a complex number yields a real number, we
use this final equation:

PLiworay(d) = 20logy,

1
471'%\/(1 + T cos)% + T2 sin?] .
9)

https://doi.org/10.1109/INFCOM.2013.6566807
https://doi.org/10.1109/INFCOM.2013.6566807
https://doi.org/10.1109/IWSSIP.2008.4604427
https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1109/MDM.2009.127
https://doi.org/10.1155/2010/843272
https://doi.org/10.1155/2010/843272
https://doi.org/10.1109/MCOM.2014.6710069
https://doi.org/10.1109/ICCNC.2017.7876178
http://arxiv.org/abs/1601.00028
https://developer.android.com/studio/command-line/adb
https://developers.google.com/nearby/connections/overview
https://developers.google.com/nearby/connections/overview
https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/reference/android/net/wifi/WifiManager
https://developer.android.com/reference/android/net/wifi/WifiManager
https://doi.org/10.1109/ICCPS.2013.6893524
https://doi.org/10.1109/ICCPS.2013.6893524
https://doi.org/10.1145/2307636.2307643
https://doi.org/10.1145/1921168.1921203
https://doi.org/10.1145/1921168.1921203
https://doi.org/10.1145/3084041.3084072
https://doi.org/10.1145/3084041.3084072
https://doi.org/10.1109/LCN.2013.6761335
https://doi.org/10.1109/INFOCOM.2015.7218372
https://doi.org/10.1109/INFOCOM.2015.7218372
https://doi.org/10.1109/VNC.2012.6407446
https://doi.org/10.1109/VNC.2012.6407446
https://doi.org/10.4236/wsn.2010.28072
https://doi.org/10.1109/IFIPNetworking.2014.6857103
https://doi.org/10.1109/IFIPNetworking.2014.6857103
https://doi.org/10.1109/TVT.2017.2668396

	Abstract
	1 Introduction
	2 Stock Android High-Speed D2D APIs
	2.1 Wi-Fi P2P
	2.2 Nearby
	2.3 Goodput measurement
	2.4 Network-related data collection

	3 Experimental procedure
	3.1 Ocat
	3.2 Empirical goodput as a function of distance

	4 RSSI for goodput estimation
	4.1 Modeling the RSSI
	4.2 RSSI and Goodput

	5 Goodput vs. distance
	5.1 Analysis of empirical observations
	5.2 Model of the goodput in function of the distance

	6 Related work
	7 Conclusion and future work
	References

