
HAL Id: hal-03036082
https://hal.science/hal-03036082

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Delay-Aware Coverage Metric for Bus-Based Sensor
Networks

Pedro Henrique Cruz Caminha, Rodrigo de Souza Couto, Luís Henrique
Maciel Kosmalski Costa, Anne Fladenmuller, Marcelo Dias de Amorim

To cite this version:
Pedro Henrique Cruz Caminha, Rodrigo de Souza Couto, Luís Henrique Maciel Kosmalski Costa,
Anne Fladenmuller, Marcelo Dias de Amorim. A Delay-Aware Coverage Metric for Bus-Based Sensor
Networks. Computer Communications, 2020, 156, pp.192-200. �10.1016/j.comcom.2020.03.043�. �hal-
03036082�

https://hal.science/hal-03036082
https://hal.archives-ouvertes.fr


A Delay-Aware Coverage Metric
for Bus-Based Sensor Networks

Pedro Cruza,b, Rodrigo S. Coutoa, Lúıs Henrique M. K. Costaa, Anne
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Abstract

Embedding sensors in urban buses is a promising strategy to deploy city-wide

wireless sensor networks. By taking advantage of the mobility of buses, it is

possible to achieve extended spatial coverage with fewer sensors as compared to

a static setup. The trade-offs are that urban buses only cover part of the city,

and that the frequency of the buses, and consequently of the data collection, is

inhomogeneous across the city. Depending on the communication technology,

buses may be unable to deliver the collected data on time. In this paper, we

propose a coverage metric that takes into account the delivery delays of sensed

data and the frequency at which a given region is sensed. The metric indicates,

for a given time window, the proportion of streets that can be sensed under the

requirements of an application. We apply the metric to more than 19 million

GPS coordinates of 5,706 buses in Rio de Janeiro, mapping the coverage achieved

for different application needs during a week. We build an abacus relating the

coverage to different application requirements. We also calculate the coverage

of a scenario only with static sensors. We show, among several observations,

that bus-based sensing increases the coverage of applications by up to 7.6 times,

in the worst case analyzed, when compared to a pure static scenario.
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Couto), luish@gta.ufrj.br (Lúıs Henrique M. K. Costa), anne.fladenmuller@lip6.fr
(Anne Fladenmuller), marcelo.amorim@lip6.fr (Marcelo Dias de Amorim)

Preprint submitted to Computer Communications December 2, 2020



1. Introduction

A clear advantage of mobile wireless sensor networks (MWSN) is that they

can use mobility to expand the coverage area of a smart city [1]. When com-

pared to static sensors, the deployment of mobile sensors involves two main

challenges. Firstly, communication links between nodes and gateways are inter-5

mittent. Therefore, sensors must store sensed data until there is a connection

to a gateway, delaying the transmission and delivery of sensed data. The second

challenge concerns the measurement frequency. As zones of the target area are

covered only when a mobile sensor passes nearby, intervals between readings are

inherently heterogeneous.10

The communication delay and the measurement frequency determine whether

a specific application may run on top of the MWSN. In this paper, we consider

the case where mobile sensors are embedded in urban buses. Even though buses

connected to the cellular network could probably deliver gathered data with neg-

ligible delay, recent offloading concerns show that it is important to unload the15

cellular networks using secondary infrastructures [2]. In this case, buses could

leverage the existing offloading infrastructure to deliver delay-tolerant data. We

consider that gateways are placed in bus stops. The delivery delay depends on

the itinerary of bus lines, the traffic conditions, and the location of bus stops.

Previous studies have considered the coverage of MWSNs. Liu et al. [1]20

and Ekici et al. [3] investigate the effects of mobility on coverage and on data

delivery. Mosaic [4, 5, 6] and Opensense [7] projects show the feasibility of

such networks for air quality applications, using machine learning techniques

to predict missing data. The works from Ali et al. and Cruz et al. [8, 9]

propose a coverage metric for bus-based WSNs, but do not take into account25

the delays generated by the mobile coverage and transmission. The work from

Zhao et al. [10, 11] characterizes opportunistic coverage, proposing a metric

called Inter-Cover Time, but does not take into account delays in data delivery.

We propose a coverage metric that takes into account the delivery delay and

the measurement frequency of a given street section. Since applications have30
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different requirements of data delivery delay and measurement frequency, the

metric considers that buses can cover a street section if and only if they gather

data with a minimum measurement frequency and deliver the gathered data

with a maximum delivery delay. We apply the metric to real mobility traces

of buses from the city of Rio de Janeiro. We present the results in the form of35

an abacus, relating coverage to different tolerances in terms of delivery delay

and measurement frequency. We map the coverage obtained by buses to the

applications of waste management, air quality monitoring, and noise monitoring.

We also compare the coverage obtained to the scenario where bus stops serve

as gateways to static sensors. Taking the application of waste management as40

an example, our results show that buses can cover up to 16.4 times the region

that it would cover with static sensors. This value corresponds to a coverage of

27.9% of the streets of Rio de Janeiro.

The main contributions of the paper can be summarized as:

• We propose a coverage metric that takes into account the delivery delay45

and measurement frequency required by applications.

• We measure the achievable coverage provided by a MWSN using bus traces

collected in Rio de Janeiro.

• We compare the coverage obtained by a bus-based mobile WSN and a

static WSN, for different applications.50

This paper is organized as follows. In Section 2, we position this paper in

relation to the scientific literature. Section 3 describes the scenario of bus-based

urban sensing. In Section 4, we propose a coverage metric designed to deal with

the delays and sensing frequencies of the studied scenario. In Section 5, we

apply the metric to real mobility traces of buses of the city of Rio de Janeiro.55

Section 6 concludes the work and points out directions for future work.
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2. Related work

The literature presents some works in bus-based MWSNs and more gener-

ally, vehicle-based WSNs. It is possible to note that coverage is an important

measure of the effectiveness of a WSN. There are still open challenges to the60

characterization of coverage, depending on the application.

2.1. Vehicle-based urban sensing

Vehicle-based urban sensing is a relevant option to collect data for smart

cities applications. The following works present different strategies to better

adequate the data collection and delivery to the mobile scenario. The metric65

proposed in this paper could be used by these works to estimate the covered

area by each one of them or as a comparison with each proposal and other

alternatives.

The pioneer project BusNet [12] monitors road surface condition using sen-

sors embarked in buses. Buses are used as data mules, taking raw data from70

a secondary station to another one until data reaches the main station. Once

in the main station, the information about the road condition is retrieved and

served to final users.

Projects Mosaic [4, 5, 6] and Opensense [7] use urban buses to monitor the

air quality of cities. Since pollution sensors are not reliable in the presence75

of mobility, Mosaic designs an algorithm to improve the accuracy of pollution

sensors in a mobile scenario. Opensense proposes log-linear models to infer the

air quality of uncovered regions. In Mosaic and Opensense, buses are connected

all the time with the cloud, being able to send data with negligible delay.

Alsina et al. [13] design a bus-based WSN for noise monitoring. The paper80

evaluates the costs and equipment requirements to implement this network.

They also propose strategies to build a noise map of the city canceling the noise

from the bus carrying the sensors. The authors conclude that the application of

noise monitoring can exploit the mobility of urban buses to improve its coverage,

an assumption we share with them.85

4



The work of Apte et al. and the work of Von Fischer et al. both explore the

predictable mobility of Google Street View cars. Apte et al. embark sensors

in the cars to measure the air quality in the city of Oakland [14], proposing

methods to implement similar services in other cities. Similarly to this work,

Apte et al. uses street sections of the city to define the regions of the city90

that can be covered. Von Fischeret al. use the improved coverage provided by

Google Street View cars to detect gas leaks and rapidly communicate them to

maintenance teams, avoiding accidents [15]. To infer the magnitude of the gas

leaks, the measurements obtained by sensors and the speed of the wind are used

by a prediction algorithm.95

SmartSantander uses vehicles as part of a multi-purpose WSN to gather

data about the city of Santander [16]. Other urban objects are used to sense

and actuate in the city, providing services to its citizens. The work presents a

framework to integrate IoT in the smart city environment and deploys a city-

wide network, showing the feasibility of this system and some applications that100

can benefit from it, such as environmental monitoring and smart parking. In

the communication paradigm used, data is delivered immediately to the appli-

cations. This means that there is no concern about delivery delays, but there is

also no benefit from offloading infrastructures.

SensingBus [17] uses a three-level architecture to collect, transmit and serve105

data on a smart city. Sensing nodes, embarked in buses, gather data from

the city; fog nodes coupled to bus stops receive and pre-process raw data from

buses, sending it over the Internet to the next level; the cloud level processes and

serves data to users. Hence, SensingBus explores delay-tolerant communication.

In another work, the authors propose a model for the delays and a selection110

algorithm to choose bus stops to place fog nodes minimizing the delivery delay

respecting budget constraints [18]. The present work is in the same context

of SensingBus, and has as main objective to discover the coverage provided by

systems similar to SensingBus.

The works listed can apply the metric proposed in the present paper to define115

a notion of coverage for these works. The metric reveals which regions of the
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city can benefit from the applications offered by each of these systems.

2.2. Mobile wireless sensor networks coverage

The coverage of MWSNs gives an important indication of the quality of data

generated by these networks [19]. Mosaic and Opensense use different strategies120

to study the coverage of their proposals. Mosaic divides the city using a grid and

sets a score for every grid cell, depending on the number of routes that include

the grid cell [6]. Additionally, Mosaic proposes an algorithm to select the best

buses to receive sensing nodes and cover points of interest spread in the city.

Opensense [7] divides the city into street segments and uses log-linear models125

to predict pollution data on segments that could not be directly measured. The

results obtained by Opensense show that, for urban environments, the street

segmentation is more appropriate than grid partitioning. The metric proposed

in the present paper uses street segmentation and enables the estimation of

the coverage of Opensense and Mosaic by taking into account the number of130

measurements in each street segment. This makes possible to identify places

where, even though there are a few measurements, they are not enough to

serve as input to the applications. Neither Mosaic nor Opensense consider the

data delivery delay. For this reason, their coverage models are not suited for

opportunistic delivery.135

Ali and Dyo propose a coverage metric for a bus-based WSN focused on

road surface inspection [8]. Their proposed metric divides the city into street

segments and considers a street segment as covered if at least one bus line passes

through it. Ali and Dyo also propose a method to choose a limited number of bus

lines while maximizing coverage. The authors test the method using a dataset140

containing the routes of London buses. In our previous work, we propose a

similar approach, but we consider the lengths of the streets when calculating

the coverage [9]. The basic idea of this metric is that longer streets produce

more data. We also propose a method to maximize coverage when the number

of buses that can be part of the network is limited. We apply the method to GPS145

traces of the city of Rio de Janeiro and obtain the maximum possible coverage for
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different budgets, in terms of the number of participating buses. Nevertheless,

our previous work does not take into account the delays caused by intermittent

connection or application requirements in terms of measurement frequency. The

present work proposes a more general metric, that considers both delays and150

measurement frequency when calculating the coverage. These works can be

interpreted as particular cases of the present work. Our previous work is a case

where applications need only one measurement per street segment, disregarding

the delivery delay. The work by Ali and Dyo is a specific case of our previous

work, where all streets have unitary length. Consequently, the work by Ali and155

Dyo is a specific case of the present work, that needs only one measurement,

has no delay restrictions and every street segment has unitary length

Zhao et al. propose a coverage metric for vehicle-based WSNs that takes

into account the time between measurements [10, 11]. In their work, time is

discretized into slots and the area of the city is divided into a grid. A cell in the160

grid is covered for a given time slot if and only if a participating vehicle is inside

the grid cell during the time slot. They also propose a metric called Inter-Cover

Time, which is the time elapsed between two consecutive samples of the same

grid cell. They also propose a metric called the opportunistic coverage ratio,

which is the expected number of covered grid cells on a given time interval.165

In our work, we use the measurement frequency to determine whether there

is enough information in time, taking advantage of the predictability of buses

routes. Additionally, we add the delivery delay to our coverage metric, making

sure that applications get data in a timely manner. Zhao et al. do not consider

the delivery delay in their metric.170

The work by Zhang et al. introduces a coverage metric for Mobile Crowd-

sensing Networks [20]. In their metric, points of interest (POI) are sensed if

a participating user is within the sensing range of the POI. Since POIs are

weighted according to their importance, the total coverage is the sum of weights

of the union of all sensed POIs. Crowdsensing coverage is also explored by175

Chon et al. [21]. They consider a place is covered if it is visited by at least

one participant in the sensing tasks. Both works do not take into account the
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measurement frequency nor the delivery delay of data, making them suited only

for applications with no constraints regarding these parameters.

Masutani [22] proposes a route control method to maximize the coverage of180

vehicle crowdsensing. In his work, he uses a coverage metric based on sensing

demands. It considers a certain area covered if it is visited by at least one car

during a given time window. The time window is the time the sensing task is

valid. Masutani ignores the frequency of measurement and the delivery delay

of data. Therefore, his work is not able to predict the coverage of applications185

that are constrained in terms of these dimensions.

Table 1 shows the main aspects of the work related to MWSN coverage. It

shows that the present work, to the best of our knowledge, is the only that pro-

poses a coverage notion considering the measurement frequency and the delivery

delay of sensed data. This makes the proposed metric capable of estimating the190

coverage of a larger number of applications, since it considers their restrictions.

3. Bus-based urban sensing: Goals and assumptions

There is a wide range of applications that can benefit from data gathered

by buses. A few examples are the applications of pothole detection, air qual-

ity monitoring, and noise monitoring. Some of them also serve as data mules195

for sensors in buildings, electricity meters, smart lamps, smart trashcans, and

others. For such applications to work properly, it is important that data meets

certain requirements. In the case of a MWSN with delay-tolerant data delivery,

the critical requirements are related to temporal adequacy of data [19]. In this

context, temporal adequacy refers to the sensing frequency of each area, and the200

time it takes since a bus collects the data until data is available to applications

and users. The survey conducted by Zanella et al. [23] identifies applications,

the frequency of measurement needed, and the delay tolerated by those appli-

cations. Sinaeepourfard et al. [24] also provide the frequency of measurement

needed for some smart city applications, but gives no information on delays.205

Table 2 lists applications and its data requirements, according to these studies.
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Table 1: Related work and their approach on sensing coverage.

Reference

Considers

measure-

ment

frequency

Considers

delivery

delay

Covered

unit

Multi-

purpose

[6] Yes No Grid tile No

[7] Yes No
Street

segment
No

[8] No No
Unweighted

street segment
No

[9] No No
Street

segment
Yes

[11, 10] Yes No Grid tile No

[20] No No
Point of

interest
No

[21] Yes No Place Yes

[22] No No Place Yes

Present paper Yes Yes
Street

segment
Yes

Table 2: Smart city applications and their data needs in terms of minimum measurement

frequency and maximum tolerated delay.

Application
Measurement Tolerated

Source
frequency (day−1) delay (s)

Waste management 24 1,800 [23]

Air quality monitoring 48 300 [23]

Noise monitoring 144 300 [23]

Electricity meter 96 not defined [24]

Gas meter 96 not defined [24]

Temperature 96 not defined [24]

Weather 48 not defined [24]
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Due to the large amount of data exchanged by users, cellular networks are

reaching their operational limits. As pointed by Zhou et al., data offloading

through opportunistic mobile networks is one of the main strategies to circum-

vent this problem [2]. In this strategy, delay-tolerant data is piggybacked on mo-210

bile nodes and delivered to gateways in their paths, instead of using traditional

cellular networks [25]. In the literature, there are works that propose leveraging

the mobility of buses to offload data from the cellular networks [12, 2, 26]. In

this case, buses serve as data mules and offload data using gateways spread

around the city. Buses carrying sensors can use the same gateways to deliver215

data collected throughout their paths. Another advantage of using opportunis-

tic communication is to still be able to sense regions not covered by cellular

networks, a situation that still happens in some cities.

We assume that sensors carried by buses gather data about the city and store

them until a connection with a gateway is possible. We assume that all stored220

data can be delivered in a single connection. Gateways, located at bus stops,

receive data when buses are within communication range, and use the Internet

to send this data to a cloud server. The server processes the data and makes it

available to applications. We approximate the time that data remains stored in

the sensing node by the time a bus takes to travel between two consecutive bus225

stops. The time for data to travel over the Internet is negligible when compared

to the time buses take to travel between bus stops. In this regard, we consider

that the delivery delay is the time since data was acquired until it is delivered

to a gateway. The paths followed by buses are often cyclic, therefore, the same

bus may visit the same location several times a day. In addition, bus lines230

have overlapping sections and a certain number of trips per day, meaning that

different buses may pass by the same location several times a day. Therefore,

we define the measurement frequency as the number of times a certain section

is measured, considering that data is delivered on time.

As Table 2 shows, different applications have different requirements of mea-235

surement frequency and maximum delivery delay. We can notice that the appli-

cation of waste management tolerates a delay up to 6 times the delay tolerated
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by the applications of air quality monitoring and noise monitoring. This is due

to the fact that the conditions of waste management infrastructure change more

slowly than the conditions of the air quality and the noise in a city.240

In a bus-based MWSN with delay-tolerant data delivery, different regions of

the city are not sensed with the same frequency. Additionally, their information

suffers different delivery delays. This means that not all applications can benefit

from data gathered in the same region of a city. Therefore, it is important to

use a coverage metric to reflect these requirements. The next section proposes245

a coverage metric that is aware of delays and frequency measurements.

4. Delay-aware coverage metric

A common way of representing the road map of a city consists of modelling

it as a directed graph G = {V, E}. The set V contains the vertices of G. Each

vertex x1, . . . , x|V| ∈ V represents an intersection, a curve or other point of250

interest in the topology of the streets. The set E contains the edges of G. An

edge (xi, xj) ∈ E exists if and only if it is possible to follow a street from xi to

xj , not visiting any other vertex. A weight l(xi,xj) is associated to each edge

(xi, xj), representing the distance between xi and xj . Since a street is an ordered

collection of points of interest, a street is a sequence of vertices. A vertex can255

be part of more than one street, when this vertex is an intersection between two

or more streets. The notations used in this paper can be found in Table 3.

In this paper, we use the edges of G to represent the street segments of the

city. The street segments are used as an atomic unit of the measured region.

The concept of a street segment is used in our previous work [9], while similar260

concepts are used by Ali and Dyo [8] and by the project Opensense [7].

4.1. Opportunistic sensing and data delivery

Each bus in set B follows a fixed path through the street segments of the

city. The path Pb of a bus b can be represented as a sequence of the edges in

the graph G, ((xi, xj), (xj , xk), (xk, xl) . . .), where Pb[n] is the nth edge reached265
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Table 3: Notations used in this work.

Notation Description Type

E Street segments of the city Set

V Vertices of the map of the city Set

G Graph representing the road map of a city Graph

B Urban buses that serve a city Set

P The set containing all the paths of the buses of a city Set

(xi, xj) The street segment that starts in vertex xi and ends in vertex xj Parameter

l(xi,xj)
The length of street segment (xi, xj) Parameter

Pb The path ((xi, xj), (xj , xk), (xk, xl) . . .) of bus b, in terms of edges in E Sequence

Pb[m] The mth edge visited by bus b ∈ B in its path Pb Parameter

Dmax The maximum tolerated delivery delay for the considered application Parameter

Fmin The minimum measurement frequency
Parameter

required by the considered application

vT
(xi,xj)

The number of visits received by
Parameter

street segment (xi, xj) on a given time interval

F(xi,xj)
The frequency at which the street segment (xi, xj) is visited Parameter

Ec The subset of E that is covered for the considered application Parameter

by b. While passing through a street segment, a bus gathers data and stores

it until the bus reaches the next gateway. When a connection is achieved, the

bus delivers the data. The delivery delay of data gathered in street segment

(xj , xk) is the time elapsed between the instant when the first data about this

street segment is collected until the instant when data is delivered to a gateway.270

Figure 1 illustrates this situation1. The path of bus b ∈ B is a sequence of

vertices that includes street segment (xj , xk) ∈ E . Later, when passing by the

vertex xl ∈ V, b delivers data to gateway g2. The time elapsed between the

moment b reaches xj and xl represents the delivery delay suffered by the data

collected by b in (xj , xk). The bus b also collects data from the street segment275

(xk, xl) and delivers this data when it reaches xl. The delay this data suffers is

the time elapsed between xk and xl.

1Shuttle icon made by Skyclick and antenna icon made by Freepik from https://www.

flaticon.com/. Licensed by Creative Commons BY 3.0
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Figure 1: Path of bus b through the segment (xj , xk) and subsequent delivery in xl.

Several variables might influence the delivery delay of data collected in a

street segment (xi, xj). Among them, the traffic conditions, the number of

times a bus stops to serve passengers, and the distance between (xi, xj) and the280

gateway where data from (xi, xj) is delivered. As shown in Table 2, different

applications can tolerate different data delivery delays. This means that, de-

pending on the delivery delay, data collected on section (xi, xj) may be useful

or not for a given application. Since different applications may have different

tolerances to delay, the same data may be useful to some applications and not285

for others.

Buses might sense a street segment (xi, xj) several times during a given

interval of time T . This can happen either because (xi, xj) is in the path of

more than one bus but also because some buses can pass over the same street

segment several times during T . In this case, it is possible to say that there290

is a certain measurement frequency of street segment (xi, xj). As shown in

Table 2, applications might need a certain measurement frequency to provide a

reasonable service to its users.
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4.2. A delay-aware coverage metric

It is important that a coverage metric reflects application requirements in295

terms of delays and measurement frequency. To define the coverage for a given

application, we use its maximum tolerated delay, Dmax, and its minimum toler-

ated measurement frequency, Fmin. We say that a bus b ∈ B has visited street

segment (xi, xj) ∈ E if, after passing by (xi, xj) and collecting data, b is able to

deliver the data before Dmax. We can define the visiting frequency F(xi,xj) of300

(xi, xj) as the number of times (xi, xj) has been visited in a given period T . A

street segment (xi, xj) is covered if and only if its visiting frequency is greater

than or equal to the minimum visiting frequency Fmin required by the target

application. It is possible, then, to define Ec as the subset of E containing all

the covered street sections, which is evaluated in terms of Dmax and Fmin.305

Algorithm 1 Algorithm to construct the subset Ec
Require: P = {Pb1, . . . , Pbn}, ,Dmin, Fmax

1: visits counters ← 0

2: for Pbi ∈ P do . For the bus path of every bus

3: m ← 1

4: while m ≤ |Pbi| do . For each street section along the path of bi

5: delivery delay ← get delivery delay(Pbi,m)

6: if delivery delay ≤ Dmax then

7: visits counters[Pbi[m]] ← visits counters[Pbi[m]] + 1 . Count the number of

visits for each section

8: m ← m+1

9: Ec ← ∅

10: for section ∈ E do . Verify the measurement frequency for each section

11: measurement frequency ← visits counters[section]/T

12: if measurement frequency ≥ Fmin then

13: Ec ← Ec ∪ section

14: return Ec

Algorithm 1 formalizes the construction of Ec. The algorithm receives as

inputs the set P, the limit Dmax and the limit Fmin. The set P contains all the

paths from the buses. Each path is defined in terms of the street segments of

the city. The limits Dmax and Fmin define, respectively, the maximum delivery

delay and the minimum measurement frequency tolerated by the considered310

application. The array visits counters is an array indexed by section. In
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the while loop starting at Line 4, the visits of each section are accumulated

in visits counters. The function get delivery delay receives as input a path

and an index m in the path. The function returns the delivery delay for the

mth street section of the path. The for loop starting in Line 10 adds to the315

subset Ec the sections that were visited with at least the minimum frequency of

measurement Fmin. The algorithm returns the subset Ec, containing the street

sections that are covered for the considered application. This set is the final

output of the algorithm.

Given the reasoning above and the construction of Ec, Equation 1 defines the320

coverage C of a city for a given application as the sum of the lengths of street

segments that are visited within a minimum visiting frequency, normalized by

the sum of the length of all the street segments of the city. In Equation 1, Ec is

the set of covered street segments and L is the sum of street segments lengths.

C =
∑

(xi,xj)∈Ec

l(xi,xj)

L
· (1)

It is important to notice that the coverage metric proposed is a linear metric.325

Since we assume a multi-purpose MWSN, we do not infer the sensing range of

each sensor. Therefore, we assume the sensing range as the width of each street

that a bus passes by. As a consequence, coverage is related to the length of

streets covered by each bus.

5. Experimental analysis330

To show the feasibility of the proposal, we apply the metric to a hypothetical

network, derived from real mobility traces of the buses of the city of Rio de

Janeiro. Initially, we split the streets of Rio de Janeiro into street segments.

After that, we collect traces consisting of GPS coordinates of buses, refreshed

every minute. To calculate the coverage using the traces, we must filter the335

traces and adjust them to the topology of the street segments. To obtain the

delivery delay of each measurement, we must access the times when each bus
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can make contact with a gateway and, therefore, can deliver data. Finally, we

can compute the coverage of the city, for different application requirements.

5.1. Data collection and processing340

To divide the streets of Rio de Janeiro into street segments, we use a map

provided by OpenStreetMap [27]. The area of Rio de Janeiro is selected from

the map, using a square delimited by the coordinates (-23.07,-43.7) and (-22.78,-

43.16). The map is a graph that uses the same model described in Section 4.

Therefore, each edge of the graph is a street segment. The sum of all street345

segment lengths on the map is 13,852 km.

The city administration of Rio de Janeiro provides bus mobility traces through

an Application Programming Interface (API) [28]. The API offers a list contain-

ing the GPS coordinates of each bus, refreshed every minute. Each element of

this list is a tuple containing the bus identification, its coordinates, and a times-350

tamp of the moment when the coordinates are obtained. We have collected

29,155,221 GPS positions of 5,706 buses during the week between November,

5th, 00:00, and November, 11th, 23:59, in the year of 2,018. Since GPS coordi-

nates are prone to errors, we eliminate inconsistent records. We consider that

the records outside the square defined by the map and the records with times-355

tamp out of the gathered period are inconsistent. Also, to reduce the cardinality

of the dataset, we eliminate consecutive records of the same bus that differ from

less than 10 meters. It is possible to discard these records because the difference

between them is within the GPS error, i.e. 10 meters [29]. After these filters,

there are 19,979,537 records. Table 4 shows the number of active buses for each360

day of the week. A bus is considered active if there is at least one entry for this

bus in the day. It is possible to note that the largest difference in the number of

buses is between Wednesday and Sunday. This difference is of 216 buses, which

represents only 4% of the buses. Based on this result, the dataset is not divided

into weekdays and weekends.365

We also analyze the effect of the time of day when the buses are operating.

To do so, we compute the cumulative distance traveled by buses at each moment
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Table 4: Number of active buses in the different weekdays.

Day of Number

the week of buses

Monday 5,540

Tuesday 5,546

Wednesday 5,573

Thursday 5,563

Friday 5,547

Saturday 5,435

Sunday 5,357

of the day. Figure 2 shows the result of the total distance traveled as a function

of the time of the day. It is possible to observe that between 0h and 4h, the

distance traveled is close to zero. Therefore, we choose to eliminate this period370

of the day of our analysis, trusting that the buses are not capable of collecting

data during this interval.
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Figure 2: Cumulative distance traveled on each time of the day.

Bus traces have one GPS-coordinate sample per minute per bus. As illus-

trated in Figure 3(a), the GPS sampling rate does not allow the detection of all

the street segments in the path of each bus. It is necessary to obtain the path375
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Figure 3: Transformation of GPS coordinates into bus paths using OSRM.

of a bus in terms of all the edges in G that are part of the path of the bus, i.e.,

the street segments of the path. Therefore, we use the matching function on

Open Source Routing Machine (OSRM) [30]. This function returns the most

likely route followed by a vehicle, from a sequence of GPS coordinates. OSRM

returns a route as a sequence of vertices of the map. This way, we obtain the380

paths of the buses as a list of all the vertices where the buses pass by. With this

list, we can derive the street segments visited by each bus.

After obtaining the paths in terms of map vertices, we must also associate

to every edge (xi, xj) in a path Pb the instant when b passes by this edge. It is

expected that between two consecutive GPS positions, the route generated by385

OSRM consists of many vertices. Since OSRM identifies the vertices that cor-

respond to a given GPS position in the matching, we associate the timestamp

t of the GPS position to the corresponding vertex returned by OSRM. Then,

we use interpolation to associate an instant to the other vertices, employing the

time between vertices as weights. In other words, we assume the bus traveled390

at a constant speed between those two points. Figure 3(a) illustrates this inter-

polation, where tin,n+1 is the ith instant estimated by the interpolation between

GPS positions n and n + 1 in the GPS positions sequence.
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To determine the time at which a bus can deliver data, it is necessary to

detect the instants when a bus is in contact with a gateway. Hence, we define395

that a bus can deliver data when it reaches a vertex that is within communication

range of a bus stop. We also define that a node is within communication range of

a bus stop when it is in a distance of 10 m or less from this bus stop. Therefore,

the bus can deliver data when it is within communication range of at least one

bus stop. After the processing, it is possible to build the set Ec and, finally,400

evaluate the coverage for different applications.

5.2. Coverage analysis

With the data obtained in Section 5.1, we build an abacus of the network

coverage. Figure 4 shows the coverage of Rio de Janeiro as a function of Fmin, for

different maximum delays Dmax of 12 s, 120 s, 300 s, 600 s, 1,800 s, and 72,000 s.405

As mentioned in Section 2, the case where Dmax is unrestricted (i.e., 72, 000 s)

and Fmin is minimum (i.e, one) is equivalent to the coverage proposed in [9]. To

calculate F(xi,xj), we count the number of visits received by (xi, xj) and divide

it by the period T . The period used to calculate the measurement frequency

is of 20 h, since it is the period considered in the traces. If we observe the less410

restricted case, where Dmax = 72, 000 s and Fmin = 1 measurement per day,

we can note that the coverage is 47.4% of the streets of the city. It is also

possible to observe that, for Fmin = 1 measurement per day, the coverage value

for Dmax = 120 s more than doubles when compared to Dmax = 12 s. In every

observed case, a change in Dmax or in Fmin implies in a change in the coverage,415

as a consequence. These results demonstrate the importance of considering the

delivery delay when estimating the coverage of such network.

As shown in Table 2, a Dmin of 300 s represents the applications of air quality

and noise monitoring, while a Dmin of 1,800 s represents an application of waste

management. Figure 5 illustrates the coverage for the central region of Rio420

de Janeiro, for the applications of waste management, air quality monitoring,

and noise monitoring. The streets in blue are the coverage of noise monitoring

application. Since air quality monitoring application is less restrictive than
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Figure 4: Abacus of the coverage of Rio de Janeiro in function of F(xi,xj)
, for different Dmax

over one week.

noise monitoring, the coverage of this application is equal to the coverage of the

noise monitoring application plus the street sections in green. The application425

of waste management is even less restrictive than the application of air quality

monitoring. Its coverage is the coverage of air quality monitoring plus the

street sections in red. The street sections in gray could not be covered. The

area illustrated in Figure 5 has 22.26 km, representing about 1.86% of the total

area of Rio de Janeiro.430

Other values of maximum delay are added to Figure 4 to represent appli-

cations that do not have a fixed delay value in the literature. It is possible to

observe that the maximum coverage of the network is about 49% of the length

of the streets of Rio de Janeiro.

Using the delay and frequency thresholds in Table 2, it is possible to de-435

fine the coverage for different applications for smart cities. Table 5 shows the

coverage for some of these applications. This table and Figure 5 show together

the differences in coverage obtained with different real-world requirements. We

can observe a difference of up to 15.9% in the coverage of the analyzed appli-

cations. In other words, the coverage more than doubles when we compare the440
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Figure 5: Coverage of the central region of Rio de Janeiro for different smart city applications.

applications of noise monitoring and waste management.

5.3. Comparison with another coverage metric

There are many coverage metrics that do not consider the maximum delivery

delay Dmax and the minimum measurement frequency Fmin tolerated by each

application. The coverage metric proposed by Ali and Dyo is an example of445

this situation [8]. Their metric counts the number of streets that are visited

at least once by any bus. Therefore, in addition to not including Dmax and

Table 5: Coverage obtained by different Smart city applications.

Application Coverage (%)

Waste management 27.9

Air quality monitoring 19.3

Noise monitoring 12.0
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Fmin, the length of street segments are also not considered. Even though it

appears very similar to our proposal, not considering Dmax and Fmin creates

significant difference. To show the importance of considering Dmax and Fmin450

when estimating also other coverage metrics, we apply the coverage metric by Ali

and Dyo to the dataset obtained in Section 5.1. After estimating the coverage

by the original model proposed by Ali and Dyo, we adapt their coverage metric

to take into consideration Dmax and Fmin.
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Figure 6: Abacus of the coverage metric proposed by Ali and Dyo for Rio de Janeiro in

function of F(xi,xj)
, for different Dmax over one week.

Figure 6 shows the coverage as estimated by Ali and Dyo. We also plot455

the coverage values when different restrictions on Dmax and Fmin are imposed,

to show the impact of considering these dimensions. The coverage obtained

by Ali and Dyo, signaled by an “×” symbol, is the unrestricted case. In our

dataset, this means Dmax = 72,000 s and Fmin = 1. It is possible to observe

that the coverage obtained by Ali and Dyo overestimates the coverage to any460

application whose restrictions are tighter than Dmax = 72,000 s and Fmin = 1.

This result stresses further the importance of considering Dmax and Fmin when

estimating coverage, even in the case where the coverage metric ignores the

length of streets.
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5.4. Comparison with the static case465

The goal of using mobile sensors is to achieve better spatial coverage for

certain applications. To quantify the coverage gain, we want to analyze the

coverage obtained by leveraging buses mobility with the coverage obtained by

a possible static scenario. In the case of bus-based mobility, sensors cover each

street segment from its beginning to its end. This is not the case for static470

sensors. Therefore, it is important to use a method capable of considering the

coverage of fractions of street segments. In this static scenario, bus stops are

gateways and sensors are placed within their communication range. We consider

as covered a fraction of street segment that is inside the communication range of

at least one gateway. The total coverage is the sum of the lengths of all covered475

fractions.

To evaluate the static coverage, we treat each gateway as a circle of radius

equal to the communication range. The union of such circles represents the

area in the city where communication with at least one gateway is possible. We

represent street segments as line segments. The union of these line segments is480

the total road map of the city. In this metric, the total sensing coverage is the

intersection between the area where communication with gateways is possible

and the road map of the city. The idea behind it is that it is possible to place

static sensors anywhere in the communication range of gateways. Figure 7

illustrates the coverage by static sensors placed in the communication range of485

gateways. The evaluations show a total static coverage of 1,7% of the total

roads on the map. The static coverage obtained is equivalent to about 242 km

of streets.

Figure 8 shows the gain of coverage obtained by the bus-based mobility of

sensors over the course of a week. It is possible to notice that the coverage gain490

for an application of waste management (Dmax=1,800 s , Fmin=24 per day) is

more than 16.4 times, while for the applications of air quality (Dmax=300 s,

Fmin=48 per day) and noise monitoring (Dmax=300 s, Fmin=144 per day) are

11.6 and 7.6, respectively. Table 6 shows, for each Dmax analyzed, the maxi-

mum Fmin that could benefit from the mobility. In other words, it shows the495
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Figure 7: Example of covered streets by static sensors placed within communication range the

gateways.

tightest application requirements that could be satisfied by the mobile network

and still improve coverage. These results show that the coverage of smart city

applications can largely benefit from the mobility provided by buses.

6. Conclusion

Mobile Wireless Sensor Networks (MWSNs) are an option to decrease the500

sensing cost of a large area. On the one hand, the mobility increases the region

covered by each sensor and lowers the networking costs, through delay-tolerant

data delivery. On the other hand, regions are not covered the whole time and

sensed data is not delivered instantly. In the scenario where buses are used to

enable sensors with mobility, there are different visiting frequency and deliv-505

ery delay for different streets. Since smart city applications have different data

needs, each application can benefit from data gathered from different streets.

Consequently, the coverage of the network is not the same for different applica-

tions.

This work proposes a coverage metric that takes into account the minimum510

visiting frequency and the maximum delivery delay tolerated by an application.

The metric is used with real traces from buses of the city of Rio de Janeiro, in
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Figure 8: Coverage gain by buses of Rio de Janeiro in comparison to a static network, in

function of F(xi,xj)
, for different Dmax over one week.

a scenario where bus stops are gateways. We present our results in the form of

an abacus. Therefore, it is possible to obtain the coverage of the network, given

a certain application that requires a minimum visiting frequency and maximum515

delivery delay. We also obtain the coverage of applications that have known

minimum visiting frequencies and maximum delivery delays in the literature.

We found that a waste management application can cover 27.9% of the city

of Rio de Janeiro using the buses of the city. We also show that, for this

application, buses increase the coverage of the network up to 16.4 times, when520

compared to the scenario where sensors are static.

As future works, we plan to investigate the effect of using other commu-

nication technologies and more realistic propagation models. We believe that

changes in the communication links can change the trade-off between mobile

and static scenarios. We also plan to evaluate the effects of recruiting other525

vehicles and pedestrians for coverage. Another possible extension is to measure

the impact of different gateway distribution on system performance.
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Table 6: Applications requirements limits to benefit from the mobile scenario.

Dmin (s) Fmin (day−1)

12 105

120 715

300 960

600 1110

1,800 1203

72,000 1219
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