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Abstract

Viscoelastic parameter identification in sandwich structures (shear modulus and loss factor) is addressed

in the present paper. Finite element modelling of three-layered viscoelastic sandwich beams is considered

leading to the resolution of a non-linear eigenvalue problem for modal properties determination. An adjoint-

based gradient method is developed to minimize the quadratic error between the finite element model and

the experimental modal data (frequencies and loss factors). The discrete adjoint approach requires the

resolution of a linear system to compute the gradient of the objective function. The method is successfully

validated in comparison with central finite difference schemes for gradient’s computation. Two use cases

are used to illustrate the performance of the method in the case of viscoelastic sandwich beams parameter

identification.

Keywords: Identification, Adjoint method, Non-linear eigenvalue problem, Viscoelastic, Sandwich

structure

1. Introduction

Constrained viscoelastic structures (CVS) are commonly used for noise and vibration control. They are

usually composed of a viscoelastic layer sandwiched beetween two stiff layers. In the literature many works

have been devoted to study the vibrational characteristics of viscoelastic damped sandwich structures. Rao

[1] proposed a semi-analytical method to compute resonant frequencies and loss factors for three-layered5

beams. Soni [2] developed a finite elements computer program Magna-D to compute frequencies, damping

ratios and response frequency curves of frequency dependent viscoelastic structures. Johnson and Kienholz

[3] used volumic finite elements along with modal strain energy method to determine modal frequencies,

damping ratios and frequency response curves of frequency dependent viscoelastic structures. Ma and He

[4] employed finite element analysis associated with an asymptotic solution method using Padé approxi-10

mants to predict damping ratios and frequencies of viscoelastic sandwich plates. Daya and Potier-Ferry [5]

used finite elements and an asymptotic numerical method to determine frequencies and damping ratios of

frequency dependent viscoelastic sandwich structures. Chen et al. [6] proposed an order-reduction iterative

algorithm to solve the non-linear eigenvalue problem arising in modal analysis of viscoelastic sandwich

1Since 1880.
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structures using finite elements. Bilasse et al. [7] developed a finite elements based numerical method for15

linear and non linear vibrations analysis of viscoelastic sandwich structures. Moita et al. [8] established a

finite element model framework for vibration analysis of active-passive damped multilayer sandwich plates.

Akoussan et al. [9] detailed a finite element model for laminated viscoelastic sandwich structures. Recently,

Zghal et al.[10] proposed a finite elements based reduced order model in frequency and time domains for

viscoelastic sandwich structures. As the performance of CVS is highly dependent on the characteristics of20

the viscoelastic layer, it is important to characterize it accurately. In the literature, many methods have been

proposed so far to identify viscoelastic materials properties. Most of them rely on experimental tests and

a viscoelastic model fit. In the time domain, creep and relaxation tests (constant stress and strain uniaxial

experiments, respectively) [11] are generally used to fit a viscoelastic model. A procedure based on creep

tests and least square error minimization (between measured and model based creep moduli) to character-25

ize a three-parameter viscoelastic fractional model is proposed in [12]. Least square fitting algorithms for

Dirichlet-Prony series representation of creep data is presented in [13]. Several identification methods for

force and displacement temporal data using hysterisis loop and error functional minimization are presented

in [14]. On the other side, in the frequency domain, the most well known method is certainly the dynamical

mechanical analysis (DMA) that consists in applying harmonic loadings to determine the complex Young30

modulus [15]. Later on, a method to find the parameters of a generalized Maxwell model from experimental

storage and loss moduli data is described in [16]. A least square procedure to fit a generic complex param-

eters model for viscoelastic complex modulus to experimental data is detailed in [17]. Graphical methods

and Newton-Raphson procedures to fit complex moduli by rational fractions and fractional derivative mod-

els using experimental data is detailed in [18]. A method to identify a five parameter fractional derivative35

model using its properties around the maximum loss factor is introduced in [19]. New graphical methods

relying on the TIBI diagram to identify the parameters of fractional derivatives models is presented in [20].

A robust method to determine the parameters of a generalized Maxwell model is proposed in [21]. The

Kramers-Kronig relationships are used in [22] to characterize the temperature and frequency viscoelastic

behaviour of Deltane using DMA tests along with a least square fitting procedure with different viscoelastic40

models. Other methods aim at characterizing the viscoelastic material while being embedded in a structure

such as CVS. The Oberst method described in [23] consists in performing a series of vibration tests on a

constrained or unconstrained viscoelastic beam in order to obtain frequency response curves (FRF). Then,

modal frequencies and loss factors are determined using either the −3 dB bandwith or the Nyquist diagram

methods [24]. The material Young modulus and loss factor are usually obtained using the Ross-Kerwin-45

Ungar (RKU) relationships [25],[26]. When no analytical relationship (such as the RKU relationships) is

available, computational models could be used. A method based on minimizing the difference between mea-

sured and computed finite elements frequency response curves (FRF) using a gradient based optimization

algorithm to identify the parameters of a fractional derivative model is proposed in [27]. Furthermore, [28]

used a response surface methodology, finite element modelling and simple vibrations tests to characterize50

the viscoelastic properties of sandwich beams with ISD112 cores. On the other side, [29] used finite element
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modelling and gradient-based optimization to fit a generalized Maxwell model to experimental modal data.

The gradient of the relative error between modal experimental data coming from vibration tests and finite el-

ement numerical model predictions was computed by means of automatic differentiation. In addition to that,

[30] determined a fractional derivative model for viscoelastic sandwich beams by minimizing the error be-55

tween predicted and measured frequency response curves (FRF) at specified control frequencies. Sandwich

beams shear complex moduli is identified in [31] using the force analysis technique with homogenization

and Timoshenko beam’s theory. More recently, [32] used the response surface methodology, a simplified

FRF representation and an optimization approach to identify the frequency dependent mechanical param-

eter of unconstrained viscoelastic plates. An iterative method based on Rayleigh quotient to identify the60

viscoelastic properties of damped sandwich beams has also been proposed in [33]. The aim of this article

is to present an adjoint method for gradient computation of the error between modal experimental data and

a numerical model relying on finite elements [34]. Many methods have been proposed so far in the litera-

ture to compute the gradient of numerical objective functions [35]. One can cite finite differences methods

[36], complex step methods [37], automatic differentiation methods [38], direct differentiation methods and65

adjoint methods [39]. Adjoints methods come from the field of optimal control [40, 41]. They have been

extended to the field of partial derivative equations by the seminal work of Jacques Louis-Lions [42]. They

are popular in many engineering fields such as topology optimization [43, 44], shape optimization [45],

optimal design in computational fluid dynamics [46], optimal flow control [47] and parameter identification

[48, 49, 50]. Their main advantage relies on computing the gradient of an objective function thanks to70

the resolution of a linear adjoint equation. In the present paper, we present a discrete adjoint approach for

gradient computation when the state equations are described by a non linear eigenvalue problem. The orga-

nization of the paper is as follows. In section 2, the finite element model is detailed. In section 3, the adjoint

state method for gradient computation is derived. In section 4, the identification process is presented. In

section 5, two use cases are used to illustrate the use of the method.75

2. Finite element model

2.1. Visco-elastic sandwich model

A symmetric rectangular cross-section sandwich beam is considered. The viscoelastic layer is located

between two elastic layers (see Fig. 1). The symbols x, y and z denote respectively the coordinates along the

length, the width and the thickness. The symbol zi represents the ith middle plane coordinate with respect80

to z = 0. The subscripts i = 1 or i = 3 refer to the elastic faces while the subscript i = 2 refers to the core

layer. The thickness of the elastic face layer is h f and the thickness of the visco-elastic core is hc. The beam

length in x direction is L while the width in y direction is b. The damping of the structure is due to the

shearing in the visco-elastic core layer. It is assumed that :

• plane transverse sections to the middle plane remain plane after bending,85

• the three layers undergo the same transverse deflection,
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• shear strain is neglected in the elastic layers,

• no slipping occurs at the interfaces between the three layers,

• the constitutive materials of the beam are linear, homogeneous and isotropic.

Figure 1: Sandwich beam sketch

Euler-Bernoulli’s beam theory is used for the elastic layers and the Timoshenko’s beam theory is employed90

for the visco-elastic layer. However, the choice of these kinematics show limitations in certain cases. Hu et

al. [51] evaluated classical zig-zag models through static and dynamic tests. They showed that if
hc

h f

≤ 10,

these models remain accurate. In this study, this condition holds. The core material is linearly visco-elastic

with a complex frequency dependent shear modulus G∗(ω), but the Poisson’s ratio νc is assumed to be real

and constant.95

Based on these assumptions, the strain, the displacement fields and the constitutive laws governing the

viscoelastic sandwich beam motion can be derived. Following the notation of Fig. 1 the normal strain εi

and the displacement (Ui,Wi) fields are presented for the elastic layers i = 1,3 as follows :

Ui(x,z, t) = ui(x, t)− (z− zi)
∂w

∂x
, (1)

Wi(x,z, t) = w(x, t), (2)

εi(x,z, t) =
∂ui

∂x
− (z− zi)

∂ 2w

∂x2
, (3)

where z1 =
h f +hc

2
= −z3, ui represents the axial displacement of the middle surface of the ith layer and w

denotes the common transverse displacement. The quantities related to the viscoelastic layer i = 2 are given100

by:

U2(x,z, t) = u(x, t)+ zβ , (4)

W2(x,z, t) = w(x, t), (5)

ε2(x,z, t) =
∂u

∂x
+ z

∂β

∂x
, (6)

ξ2 = β +
∂w

∂x
, (7)
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where ξ2 is the shear strain. The continuity of the displacement field at layers interfaces gives :

u1 = u+(
hc

2
β −

h f

2

∂w

∂x
), (8)

u3 = u− (
hc

2
β −

h f

2

∂w

∂x
). (9)

Then, the generalized displacement vector u,w,β related to the core layer could be defined. The generalized

Hooke’s stress-strain law gives for the axial force Ni and bending moment Mi of each layer i = 1,3 :

Ni(x, t) = E f S f

∂ui

∂x
, (10)

Mi(x, t) = E f I f

∂ 2w

∂x2
, (11)

where E f is the Young’s modulus of the elastic faces, S f and I f are respectively the area and the quadratic105

moment of the elastic faces cross-section. The axial force and bending moment for the visco-elastic layer

are given by

N2(x, t) = ScY (t)∗
∂

∂ t
(

∂u

∂x
), (12)

M2(x, t) = IcY (t)∗
∂

∂ t
(

∂β

∂x
), (13)

T (x, t) =
Sc

2(1+νc)
Y (t)∗

∂

∂ t
(β +

∂w

∂x
), (14)

where Sc and Ic are the area and quadratic moment of the cross-section of the visco-elastic core, Y (t) is

the visco-elastic relaxation function, νc is the Poisson’s ratio and T is the shear stress. The virtual work

principle is used to establish the equation of motion of the visco-elastic sandwich beam. The transverse110

inertia effects are considered, however, the longitudinal and rotary inertia effects are neglected [34]. The

three components of the virtual work principles are

δPint = −

∫ L

0
(Nδu,x +Mβ δβ,x +Mwδw,xx +T (δw,x + δβ )dx), (15)

δPext = 0, (16)

δPacc =
∫ L

0
(2ρ f S f +ρcSc)w,tt δwdx, (17)

where ρ f and ρc are the mass density of the elastic faces and the mass density of the visco-elastic layer,

respectively. The symbols δu, δw and δβ represent the components of the virtual displacement vector.

Furthermore, N, Mβ and Mw are defined by115

N = N1 +N2 +N3, (18)

Mβ = M2 +(N1 −N3)
hc

2
, (19)

Mw = M1 +M3 +(N3 −N1)
h f

2
. (20)

The equation of motion is then given by

∫ L

0
(Nδu,x +Mβ δβ,x +Mwδw,xx +T (δw,x + δβ ))dx =−

∫ L

0
(2ρ f S f +ρcSc)w,tt δwdx. (21)
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Since the axial inertia terms are not considered here, the axial equilibrium could be obtained by

∫ L

0
Nδu,x = 0, (22)

and the transverse equation of motion could then be given by:

∫ L

0
(Mβ δβ,x +Mwδw,xx +T(δw,x + δβ )dx) =−

∫ L

0
(2ρ f S f +ρcSc)w,tt δwdx. (23)

The finite element method is used in the following to solve equation (23) since no analytical solution exist.

2.2. Finite element formulation

The equation of motion is sought in the following harmonic form :

w(x, t) = W (x)exp(iωt), (24)

β (x, t) = B(x)exp(iωt). (25)

One dimensional two nodes finite element is used in this work. Each node has three degrees of freedom :

the transverse displacement W , the slope W,x and the rotation B. Thus for each element bounded with the

nodes 1 and 2, the nodal displacement vector is

Ue = [W1,W1,x,B1,W2,W2,x,B2]
T . (26)

Using polynomial shape functions, the displacement field is written as follows

[WB]T =
[

Nw,Nβ

]T
Ue, (27)

where

Nw = [n1(ξ ),n2(ξ ),0,n3(ξ ),n4(ξ ),0], (28)

Nβ = [0,0,n5(ξ ),0,0,n6(ξ )], (29)

and ξ = 2x
Le − 1 with Le the length of the one dimensional element and x the real spatial variable ∈ [0,Le].120

The shape functions are given by:

n1(ξ ) =
(1− ξ )2(2+ ξ )

2
, (30)

n2(ξ ) =
Le(1− ξ )2(1+ ξ )

8
, (31)

n3(ξ ) =
(1+ ξ )2(2− ξ )

4
, (32)

n4(ξ ) = −
Le(1+ ξ )2(1− ξ )

8
, (33)

n5(ξ ) =
1− ξ

2
, (34)

n6(ξ ) =
1+ ξ

2
. (35)
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Finally, by inserting equations (24)-(35) into the equations of motion , one obtains the following non-linear

complex eigenvalue problem

(K0 +G∗(ω)Kν −ω2M)U = 0, (36)

where M, K0 and Kν are the global mass, elastic and viscoelastic stiffness matrices and U is the generalized

displacement vector. The matrix formulation (36) of the visco-elastic sandwich beam in free vibrations

is well-known [52]. Many methods have been used to solve the resulting non-linear eigenvalue problem

(36) taking into account the frequency dependence of the visco-elastic shear modulus. Several methods125

such as the direct frequency response method [2], the iterative shift-invert method [8], the order-reduction

iterative algorithm [6], the high-order sensitivity method [53], the asymptotic numerical method [52], the

inverse iteration [54], the non-linear Arnoldi/Jacobi-Davidson methods [55, 56] have been proposed to

tackle this problem. Recently, Hamdaoui et al. [57] proposed a comparison of such methods in the context

of viscoelastic laminated plates.130

2.3. Eigenmodes computation using inverse iteration

The problem (36) can be rewritten as

T(λ )X = 0 (37)

by letting λ = ω2, X = U and T a parameter dependent complex valued matrix. The complex eigenmodes

and eigenvalues are computed exactly using the method of the inverse iteration.

Inverse iteration (IV). The inverse iteration [54] is based on applying Newton’s method to the system

formed by (36) and an orthogonalization condition as follows135

T(λ )X = 0,

ZH X = 1,

(38)

where Z is a normalized vector. At step k of the algorithm, one can compute λ k+1 and Xk+1 using the two

following update equations:

T(λ k)Xk+1 =
∂T

∂λ
(λ k)Xk,

λ k+1 = λ k −
ZH Xk

ZH Xk+1
,

where (λ k+1,Xk+1) are current iterates. At each iteration, this algorithm involves the inversion of a matrix

which can be very costly, therefore it could be only used to solve small sized non-linear eigenvalue problems.

In the present work, we use Z = Xk and initialized the process by (Xi
0,λ

i
0) (solutions to the real generalized140

linear eigenvalue problem obtained by setting G∗(ω) = 0 in (36)) to find the eigenvalue number i and its

corresponding eigenvector. It is worth mentioning that T(λ ) becomes singular in the vicinity of the target

eigenvalue as det(T(λ )) becomes exactly zero and the matrix is no longer invertible. Then, the algorithm is

stopped when the matrix becomes singular since the iterates are very close to the eigenvalue. The main steps
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Data: Approximate eigenvalue λ0, Approximate eigenvector X0, εtol

Result: X and λ

1 Initialize: X0 = X0

||X0||
, λ 0 = λ0;

2 while
||r||

||Xk ||
< εtol do

3 Solve for X k+1, T (λ k)X k+1 = ∂T
∂λ (λ

k)X k;

4 Compute λ k+1 = λ k − (Xk)H Xk

(Xk)H Xk+1 ;

5 Normalize X k+1, X k+1 = Xk+1

(Xk)H Xk+1 ;

6 Compute the residual r = T (λ k+1)X k+1;

7 Increment k, k = k+ 1;

8 end

Algorithm 1: Inverse iteration algorithm

of the algorithm are summarized in Algorithm 1. The real frequency f and the loss factor η are computed145

by the following relationships:

f =
Re{λ}

1
2

2π
, (39)

η =
Im{λ}

Re{λ}
. (40)

3. Adjoint state method

3.1. Optimization problem setup

We are interested in constrained optimization problems involving a real valued scalar function f (x,λ ,p)

that defines a mapping from Cn ×C×Rk to R and an equality constraint in the form of a non linear150

eigenvalue problem T(λ ,p)x = 0, xHw = 1, where w ∈Cn and T ∈ Mn(C). The quantities (x,λ ) are called

the state variables and p is the vector of design parameters. The optimization problem can be written as

follows

min
(x,λ ,p)∈Cn×C×Ω

f (x,λ ,p)

s.t.T(λ ,p)x = 0,

xHw = 1,

(41)

with Ω an open set of Rk. It is worth noticing that this problem is equivalent to the following optimization

problem

min
p∈Ω

f (X(p),Λ(p),p), (42)

X(p) and Λ(p) are solutions of the non-linear equation T(Λ(p),p)X(p) = 0 and X(p)Hw = 1 [39]. Since

the constraints are complex, they should be re-written in R to be compatible with the theory of constrained155
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optimization. We reformulate the problem (41) as follows

min
(x1,x2,λ1,λ2,p)∈Rn×Rn×R×R×Ω

f (x1,x2,λ1,λ2,p)

s.t. T1(λ1,λ2,p)x1 −T2(λ1,λ2,p)x2 = 0,

T1(λ1,λ2,p)x2 +T2(λ1,λ2,p)x1 = 0,

w1
T x1 +w2

T x2 = 1,

w1
T x2 −w2

T x1 = 0,

(43)

with (T1,T2) ∈ Mn(C)×Mn(C) such that

x = x1 + ix2,

w = w1 + iw2,

λ = λ1 + iλ2,

T = T1 + iT2,

(44)

where i is the complex imaginary number such that i2 =−1.

3.2. First order optimality conditions

The Lagrangian function of the problem is defined as follows160

L (x1,x2,λ1,λ2,p,ξ1ξ1ξ1,ξ2ξ2ξ2,µ1,µ2) = f (x,λ ,p)

+ ξ1ξ1ξ1
T (T1(λ1,λ2,p)x1 −T2(λ1,λ2,p)x2)

+ ξ2ξ2ξ2
T (T1(λ1,λ2,p)x2 +T2(λ1,λ2,p)x1)

+ µ1(w1
T x1 +w2

T x2 − 1)+ µ2(w1
T x2 −w2

T x1),

(45)

where the adjoint state variables satisfy (ξ1ξ1ξ1,ξ2ξ2ξ2,µ1,µ2) ∈ R
n ×R

n ×R×R. It is worth mentioning that the

symbol ∂ stands for a partial derivative and the symbol d represents a total derivative in what follows.

3.2.1. State equations

The equations satisfied by the state variables are obtained by imposing the stationarity of the Lagrangian

in the adjoint state variables as follows165

∀i ∈ [1,2] ,
∂L

∂ξiξiξi

= 0,

∀i ∈ [1,2] ,
∂L

∂ µi

= 0,

(46)
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which gives

T(λ ,p)x = 0,

wH x = 1,

(47)

that corresponds to the original non linear eigenvalue problem.

3.2.2. Adjoint State equations

The equations for the adjoint state variables are given by imposing the stationarity of the Lagrangian in

the state variables (x,λ ) which leads to the following system170

∀i ∈ [1,2] ,
∂L

∂xi

= 0,

∀i ∈ [1,2] ,
∂L

∂λi

= 0,

(48)

that becomes

∀i ∈ [1,2] ,
∂ f

∂λi

+ξ1ξ1ξ1
T

[

∂T1

∂λi

x1 −
∂T2

∂λi

x2

]

+ξ2ξ2ξ2
T

[

∂T1

∂λi

x2 +
∂T2

∂λi

x1

]

= 0,

∀i ∈ [1,2] ,
∂ f

∂xi

+ξ1ξ1ξ1
T [T1δi1 −T2δi2]+ξ2ξ2ξ2

T [T2δi1 +T1δi2]

+µ1

[

w1
T δi1 +w2

T δi2

]

+ µ2

[

−w2
T δi1 +w1

T δi2

]

= 0,

(49)

where δi j is Kronecker’s delta. We suppose that λ 7→ T(λ ) is an holomorphic function, which gives us the

following relationship between T1 and T2

∂T1

∂λ1

=
∂T2

∂λ2

(50)

∂T1

∂λ2

= −
∂T2

∂λ1

. (51)

In matrix form, the equation (49) for the adjoint state variables can be written as follows

















T1
T T2

T w1 −w2

−T2
T T1

T w2 w1
[

∂T1
∂λ1

x1 +
∂T1
∂λ2

x2

]T [

− ∂T1
∂λ2

x1 +
∂T1
∂λ1

x2

]T

0 0
[

∂T1

∂λ2
x1 −

∂T1

∂λ1
x2

]T [

∂T1

∂λ1
x1 +

∂T1

∂λ2
x2

]T

0 0

































ξ1ξ1ξ1

ξ2ξ2ξ2

µ1

µ2

















=−

















∂ f

∂x1

∂ f
∂x2

∂ f

∂λ1

∂ f

∂λ2

















. (52)

One can notice that the system of equations (52) depends on the state variables (x,λ ) that have to be

determined before solving (52).175
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3.3. Gradient computation

The computation of the gradient of the objective function f could be performed by noticing that ∀p ∈Rk

X(p)=X1(p)+ i X2(p) and Λ(p)=Λ1(p)+ i Λ2(p) satisfy the state equations (46),(47) and Ξ1Ξ1Ξ1(p),Ξ2Ξ2Ξ2(p),M1(p),M2(p)

satisfy the adjoint equations (46),(49). Then

dL

dp
(X1(p),X2(p),Λ1(p),Λ2(p),p,Ξ1Ξ1Ξ1(p),Ξ2Ξ2Ξ2(p),M1(p),M2(p))

=

∂L

∂ p
(X1(p),X2(p),Λ1(p),Λ2(p),p,Ξ1Ξ1Ξ1(p),Ξ2Ξ2Ξ2(p),M1(p),M2(p)),

(53)

due to (48) and (46). Moreover,180

L (X1(p),X2(p),Λ1(p),Λ2(p),p,Ξ1Ξ1Ξ1(p),Ξ2Ξ2Ξ2(p),M1(p),M2(p))

=

f (X1(p),X2(p),Λ1(p),Λ2(p),p),

(54)

since the state equation (47) is satisfied. Then taking the derivative of (54) versus the design vector pa-

rameter p, one obtains that
d f

dp
=

dL

dp
=

∂L

∂p
(X1(p),X2(p),Λ1(p),Λ2(p),p,Ξ1Ξ1Ξ1(p),Ξ2Ξ2Ξ2(p),M1(p),M2(p))

owing to (53). Finally, the gradient of the objective function G = [Gi]1≤i≤k relatively to the vectors of

parameters p = [pi]1≤i≤k can be expressed as follows:

Gi =
∂ f

∂ pi

(X(p),Λ(p),p)+Ξ1Ξ1Ξ1(p)
T (

∂T1

∂ pi

(Λ1(p),Λ2(p),p)X1(p)−
∂T2

∂ pi

(Λ1(p),Λ2(p),p)X2(p))

+Ξ2Ξ2Ξ2(p)
T (

∂T1

∂ pi

(Λ1(p),Λ2(p),p)X2(p)+
∂T2

∂p
(Λ1(p),Λ2(p),p)X1(p)).

(55)

In substance, for a given vector of design parameters p, one has to solve the state equations (47) and the185

system of adjoint equations (49) to compute the gradient of the objective function.

4. Identification process

4.1. Experimental setup

A three layered viscoelastic sandwich beam with a dieletric resin is considered. The characteristics of

the viscoelastic beam are given in Table 1. The experimental setup (see Fig. 2) is composed of a shaker,190

a laser vibrometer and a sandwich beam. The shaker generates vibrations restrained by a controller device

(UCON system). Frequency excitation range is between 4 and 1500 Hz. The shaker’s vibration amplitude

is controlled thanks to an accelerometer (PCB Piezotronics - 352C33). The shaker’s amplitude is chosen

to minimize nonlinear vibrations (∼ 0,02 mm displacement between 5 and 157,5Hz and a 1g acceleration

between 157,5 and 1500Hz). The beam’s vibration amplitude is measured by a laser vibrometer pointed on195

11



Table 1: Characteristics of the viscoelastic beam

Young’s modulus E f 69 GPa

Poisson’s ratios νc/ν f 0.3 GPa

Density ρ f 2766 Kg/m3

Density ρc 1550 Kg/m3

hc 1 mm

h f 1 mm

L 462 mm

b 30 mm

Figure 2: Experimental setup to measure resonant frequencies and loss factors of sandwich beams
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its free extremity. The boundary condition is clamped-free. The first seventh frequencies and loss factors

are reported in Table 2. Figure 3 represents the vibration spectrum displacement amplitude at the free end of

the beam. For each mode, resonant frequencies and loss factors are determined. The damping is computed

by the half power bandwidth method which remains accurate for low damping values [58].

Figure 3: Spectrum of vibration displacement amplitude at the beam’s free extremity

Table 2: Experimental modal data (frequencies are in Hz)

f
exp
1 f

exp
2 f

exp
3 f

exp
4 f

exp
5 f

exp
6 f

exp
7

11.03 69.33 193.27 376.72 614.84 910.08 1209.9

ηexp
1 ηexp

2 ηexp
3 ηexp

4 ηexp
5 ηexp

6 ηexp
7

0.075 0.057 0.054 0.0603 0.064 0.078 0.025

4.2. Objective function200

Let us denote by ( fi,ηi) the resonant frequencies and the loss factors. The identification strategy adopted

here is to find the values of the viscoelastic complex modulus for each value of the resonant frequencies

and then to perform interpolation on these values in order to obtain a continuous description of the shear

complex modulus and loss factor over a wide range of frequencies. Let us set ω2
i = (2π fi)

2(1+ iηi). Since

( fi,ηi) are resonant modal data for mode i, they are supposed to solve the non linear eigenvalue problem205

(36) derived from the finite element model described in section 2. If we write G∗(ωi) = Gi(1+ iη i), we

obtain that for each mode Ui

T(λ ,Gi,η
i) = 0, (56)

(K0 +Gi(1+ iη i)Kν −ω2
i M)Ui = 0, (57)

(58)
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which means that once Gi and η i are given, ωi and hence fi and ηi could be found be solving a generalized

standard eigenvalue problem in the complex domain. Thus, we can think of getting the values of Gi and η i

by minimizing an error between the numerically computed frequencies f num
i and loss factors ηnum

i and the

experimental ones denoted by f
exp
i and ηexp

i . The error between numerical and experimental values can be

defined for each mode i as follows:

J (Gi,η
i) = w1(

f num
i − f

exp
i

f
exp
i

)2 +w2(
ηnum

i −ηexp
i

ηexp
i

)2. (59)

4.3. Gradient validation

The gradient of the objective function J versus (Gi,η
i) is computed by the adjoint approach described

in section 3. Since f num
i =

√

λ i
1

2π
and ηnum

i =
λ i

2

λ i
1

, some quantities needed for the evaluation of the adjoint210

variables (see (52)) are given by:

∂J

∂λ i
1

= 2w1

f num
i − f

exp
i

( f
exp
i )2

1

8π2 f num
i

− 2w2(
ηnum

i −η
exp
i

(ηexp
i )2

ηnum
i

4π2 ( f num
i )2

,

∂J

∂λ i
2

= w2

ηnum
i −ηexp

i

(ηexp
i )2

1

4π2 ( f num
i )2

,

∂J

∂x1

= 0,

∂J

∂x2

= 0.

The evaluation of the gradient by (55) necessitates also the following quantities:

∂T

∂Gi

= (1+ iη i)Kν ,

∂T

∂η i
= iGiKν .

This adjoint gradient is compared to a central finite difference approach for the first four modes. We choose

w1 = w2 = 0.5, a perturbation step of 10−6 for the central difference scheme and compute the gradient with

the two approaches for values of Gi from 107 to 109 (normalized between 0 and 1) and for η i from 0 to215

1. One can see from Figures 4-7 that the gradient provided by the adjoint approach is quite close to the

gradient computed by finite differences which validates the adjoint approach.

5. Numerical examples

5.1. Use case 1

In this use case, modal data (see Table 4) is generated by solving (36) for the previous viscoelastic beam

(see Table 1) under clamped-free boundary conditions, with a known shear complex viscoelastic modulus

given by

G∗(ω) = G0(1+
j=5

∑
j=1

δ jω

ω − iΩ j

), (60)
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Figure 4: Derivative
∂J
∂ Gi

versus Gi (normalized between 0 and 1) for i = 1, . . . ,4 by adjoint approach (Mode 1: ◦, Mode 2: ×,Mode
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Figure 5: Derivative
∂J
∂ η i versus Gi (normalized between 0 and 1) for i = 1, . . . ,4 by adjoint approach (Mode 1: ◦, Mode 2: ×,Mode

3:�,Mode 4:⋄) and central finite differences (Mode 1:−,Mode 2−−:,Mode 3:..,Mode 4:−.) for η i = 0.5
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Figure 6: Derivative
∂J
∂ Gi

versus η i for i = 1, . . . ,4 by adjoint approach (Mode 1: ◦, Mode 2: ×,Mode 3:�,Mode 4:⋄) and central finite

differences (Mode 1:−,Mode 2−−:,Mode 3:..,Mode 4:−.) for Gi = 0.5109
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Figure 7: Derivative
∂J
∂ η i versus η i for i = 1, . . . ,4 by adjoint approach (Mode 1: ◦, Mode 2: ×,Mode 3:�,Mode 4:⋄) and central finite

differences (Mode 1:−,Mode 2−−:,Mode 3:..,Mode 4:−.) for Gi = 0.5109

Table 3: Fit parameters

j δ j Ω j(rad/s)

1 1.3545 12.4547

2 3.2610 73.8749

3 7.7741 387.4302

4 18.9495 1472.7588

5 49.7732 9791.3957

Table 4: Numerically generated modal data (frequencies are in Hz)

f1 f2 f3 f4 f5 f6 f7

6.606 31.2 77.4 141.4 225.2 326.4 445.8

η1 η2 η3 η4 η5 η6 η7

0.52 0.44 0.405 0.31 0.23 0.18 0.14
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with G0 = 0.5106 Pa and fit parameters (δ j,Ω j) given in Table 3. The optimization problem is solved220

thanks to a gradient based interior point algorithm used in the function fmincon of Matlab with a termination

tolerance of 10−12 on function values and 10−10 on the optimization variables. The search space is fixed

to
[

0,106
]

× [0,2] for the couple (Gi,η
i). The identified values are compared to the true values given by

(60) as shown on Figures 8 for Gi and 9 for η i. As one can see, the identified values match perfectly the

true values of the complex shear modulus used to generate the modal data which validates the identification225

process.
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Figure 8: Identified and true values of the shear modulus Gi versus the frequency. Identified ◦ and True ×
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Figure 9: Identified and true values of the material loss factor η i versus the frequency. Identified ◦ and True ×

5.2. Use case 2

Our goal is to identify the shear modulus and the loss factor of the viscoelastic beam using the experi-

mental data presented in Table 2. In this case, we have no hint on the true complex shear modulus as in the

17



previous example. The search space is fixed to
[

0,109
]

× [0,2] for the couple (Gi,η
i). The optimization230

problem is solved thanks to a multistart strategy with 10 runs implemented via the function ms of Matlab.

The interior point algorithm available through the generic function fmincon is used once again with the

previous termination tolerances. This use case is more difficult than the first one since we have no hints on

the true values and then we cannot check for convergence. Since gradient based methods are local methods,

they need to be initialized with points near the optimum to converge. In the multistart strategy, the initial235

point is varied in such a way that the search is the most exhaustive possible. We adopted this strategy in

order to increase our chances to find the the true value. The identified values of material shear modulus

and loss factor are depicted in Figures 10 and 11, respectively. We notice that, the shear modulus becomes

quasi frequency independent for frequencies higher than 950 Hz. It seems that for this viscoelastic material,

the shear modulus approaches its maximal value while the loss factor reaches its minimal value. From the240

knowledge of typical evolutions of shear modulus and loss factors it can be inferred that the polymer is in

the glassy regime above this frequency. The frequencies and loss factors obtained for the identified shear
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Figure 10: Identified values of the material shear modulus Gi versus the frequency.

modulus and loss factor are displayed in Table 5 . One can notice by comparison with Table 2 that the

numerical modal characteristics are the same as for the experimental ones.It is worth noting that with the

identified values of shear moduli and loss factors for each resonant frequency, the numerical and experi-245

mental values match. This means that the multistart gradient-based optimization strategy, used here, has

been successfull at minimizing the quadractic loss error (see (59)) between the experimental data and the

numerical model. This error is for most of the modes near zero which explains that the experimental and

numerical values of frequencies and loss factors are the same.

6. Conclusion250

In the context of a non linear complex eigenvalue problem, a discrete adjoint method for gradient com-

putation is derived. First, it is demonstrated that the method gives accurate results in comparison with
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Figure 11: Identified values of the material loss factor η i versus the frequency.

Table 5: Identified modal characteristics (frequencies are in Hz)

f num
1 f num

2 f num
3 f num

4 f num
5 f num

6 f num
7

11.03 69.329 193.27 376.72 614.84 910.08 1209.9

ηnum
1 ηnum

2 ηnum
3 ηnum

4 ηnum
5 ηnum

6 ηnum
7

0.0749 0.0569 0.054 0.0602 0.064 0.078 0.025

central finite difference schemes. Then, the validated method is applied to the identification of the complex

shear modulus of a viscoelastic sandwich beam using modal data. In a first use case, it is shown that the

method is able to identify with accuracy the values of shear modulus and loss factor of a known viscoelastic255

material. Then, in a second use case the method is applied to real modal data stemming from vibration tests

to identify the shear and the loss factor of a real viscoelastic material. These different tests show the ability

of the adjoint gradient approach to solve optimization based identification problems.
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