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Abstract

Branched Manifold analysis through Homologies (BraMAH) is a technique that
computes the state-space topology of a dynamical reconstruction from scalar data.
This work introduces the application of this technique to Lagrangian time series.
The approach unveils the topological structure underlying the behavior of a fluid
particle. When applied to a set of sparse particles, the results of the analysis can be
used to classify them according to the dynamics they deploy during a given time
window. Topological grids can be constructed to portray the spatial organization
of the topological classes. The connection between the topological grids and the
transport properties of the flow is examined using streaklines. Even if demon-
strated here in the context of kinematic flow models, the generality of the method
allows for its potential application to experimental or observational Lagrangian
data satisfying the technical requirements for the analysis.

Keywords: Topology, Delay-coordinate embedding, Nonlinear time-series
analysis, Homology

1. INTRODUCTION

The interest of topology within nonlinear dynamics dates back to Poincaré,
who had already noticed the way in which a dynamical system’s properties de-
pend upon topology [1]. With the latest advances in computational topology [2],
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the subject is attracting once again the attention of dynamicists who considered
applying general pattern recognition concepts [3, 4, 5] to the spatio-temporal pat-
terns emerging in nonlinear systems involving diffusion and convection mecha-
nisms [6, 7, 8, 9, 10, 11]. In the field of Fluid Dynamics, additional important
contributions can be found in [12]. Contemporaneously, scientists started adapt-
ing the newly developed topological tools to the state-space reconstruction of dy-
namical systems [13, 14, 15]. This research line builds upon earlier studies that
proposed the extraction of Betti numbers from time series [16]. All these meth-
ods rely on the construction of a cell complex, as defined in algebraic topology
[17]. In chaos topology [18], the cell complex must be built from a point cloud
that is obtained from a time series with embedding techniques [19]. The topol-
ogy associated to the time series is unveiled computing the homology groups of
the constructed cell complex, but the cell complex can be constructed in many
nonequivalent ways. Standard computational strategies to compute homologies
from point clouds [20, 21, 22] have some points in common: the points of the
cloud are vertices of the cells; the cells are simplices; and connections between
the vertices of the cells are determined by their nearness. For the algorithms to
be efficient, the complex should have as few simplices as possible [14]. This is
often achieved by a coarse-graining procedure that reduces the point cloud to a
subset of points called landmarks, not without some loss of information which
may, or may not, be significant. But in the context of dynamical reconstructions
from chaotic-like time series, point clouds in state space are structured in a partic-
ular way, which is well described by a branched manifold. This property can be
harnessed to construct a complex that has one cell per patch with two immediate
benefits: the number of cells is drastically reduced, and the cell dimension respects
–by construction– the local dimension of the branched manifold. The price to pay
is that such a cell has a non simplicial nature, but nothing prevents the computa-
tion of the homology groups of a non simplicial complex. This approach, called
Branched Manifold analysis through Homologies (BraMAH), was first reported
in [23], and described in detail in [24]. BraMAH calculates homologies keep-
ing track of the information that is required to identify the mutual organization of
the branches in a branched manifold, as well as the localization of twists or tor-
sions, thanks to the supplementary computation of orientability chains. BraMAH
is of course less efficient and general than optimized packages based on bringing
a complex to its canonical form by upper-triangular matrices [25], but its speci-
ficity is interesting because it provides information that is otherwise absent from
the output. This work will focus on BraMAH, but one methodology does not rule
out the other: simplicial and non simplicial approaches can be used in tandem if
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necessary, since their strengths are complementary.
Parallel to the proliferation of topological techniques in nonlinear dynamics,

a variety of mathematical methods are being proposed to characterize the kine-
matics of a fluid flow from sparse data [26, 27]. These works include topology,
through braid theory [28], but also other branches of mathematics such as graph
theory [29]. These methodologies are expected to be particularly useful in geo-
physical problems [30], where Lagrangian coherent structure detection is an issue
of great interest [31]. Using BraMAH to analyze Lagrangian time series will have
points in common with the braid method through the use of topology [28], and
with the graph theory method [29] in the evaluation of properties of individual
particle trajectories. In all these approaches, the aim is to achieve a characteriza-
tion of the fluid relying on the advection of a relatively sparse set of Lagrangian
particles and without a knowledge of the full velocity field, which is often un-
available. A topological analysis of dynamical reconstructions from Lagrangian
time series will sort trajectories in terms of the dynamics deployed in their finite-
time behavior. Dynamical diversity has an important role in the formation of
Lagrangian coherent sets [32, 33, 34] which are most often defined in terms of the
exchange of fluid across a transport barrier in the presence of small noise or dif-
fusion. But they are also defined in terms of a maximal dynamical disconnection
in phase space over a specified time duration of finite length [32]. Non communi-
cating regions in a fluid can certainly be expected to have differentiated dynamics
that BraMAH may be able to detect considering a set of individual particle trajec-
tories, a fact that makes BraMAH relevant and complementary to other fluid flow
characterization strategies [35, 36].

This work explores the topology of dynamical reconstructions from univariate
time series associated to individual particle trajectories in finite-time windows
using BraMAH. Section 2 provides basic definitions that will be useful in the
rest of the article. Section 3 describes the BraMAH methodology, and section 4
presents its application in a Lagrangian context through two paradigmatic flow
kinematic models: the driven Double Gyre and the Bickley Jet. Conclusions are
drawn in the last section.

2. DEFINITIONS

2.1. Cell and cell complex
A few definitions may be useful before we proceed. In algebraic topology,

an n-cell (n ∈ N0) in a cell complex K is a set that can be mapped through a
continuous invertible map into the interior of an n-disk, and has its boundaries
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divided into finite numbers of lower-dimensional cells, called faces. A point is a
0-cell, a line segment joining two points is a 1-cell, and so forth.

A cell complex is a finite set of cells such that the faces of the cells are ele-
ments of the complex, and such that the interiors of two cells in a complex do not
intersect. The dimension h of a cell complex K is the dimension of its highest-
dimensional cell.

If all cells in a complex have the minimal number of faces corresponding to
the cell dimension, the cell complex is said to be simplicial, and its cells are called
simplices. Non simplicial complexes or cell complexes tout court are complexes
for which cells need not be simplices.

A cell complex is said to be directed or oriented if each cell is given a direction.

2.2. Homology groups and orientability chains
Algebraic operations enable a characterization of the topological properties of

K in terms of homology groups. The output is layered in k sets labeled Hk with
k = 0, · · · ,h. Each of these sets are formed by elements that can be expressed
as chains of k-cells. In a directed complex, a k-chain is a linear combination
of k-cells where the coefficients are integers. These chains contain information
regarding the connectivity of the cells at each k level, identifying k-order holes in
the complex.

A k-order hole in a cell complex is a k-cycle (loop or closed chain) that is not
the border of a higher-dimensional cell. The kth Betti number Bk is the rank of Hk:
Bk = dim(Hk). The set B0 provides the number of connected components of the
complex. If the complex is made of one piece, B0 will be 1. If there are p pieces,
B0 = p and H0 will contain the homologically independent 0-cells identifying each
of these pieces. Similarly, B1 indicates the number of closed paths encompassing
holes, and H1 identifies in terms of the 1-chains of the complex, the homologically
independent sequence of segments encircling each of these holes. The number of
enclosed cavities is provided by B2, and the identification of the enclosed cavities
in terms of homologically independent 2-cells in the complex, by the generators
of H2.

If a cell complex is uniformly directed, i.e. if the orientation of every cell is
the same as its neighboring cells, one can extract information regarding torsions
and their location in the complex. This is achieved through the computation of
orientability chains, i.e. of the chains summing all the borders of the complex that
present integer multiples of cells.
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2.3. Manifolds and branched manifolds
A manifold is a topological space in which every point has a neighborhood

that is homeomorphic to either a full n-ball or a half n-ball, in order to permit
manifolds with boundaries [16].

A branched manifold is a structure, relative to a flow in state space, which
allows a point cloud to be collapsed onto a lower-dimensional subset of state space
[37, 38]. This mathematical object is a manifold everywhere but at the tear points
of the branches, which are precisely associated to the stretching and squeezing
mechanisms that are present in the flow [39].

Let us introduce the term finite-time branched manifold to refer to branched
manifolds that are strictly relative to the finite time series used in a dynamical
reconstruction.

2.4. Dynamical reconstructions and observability
Observability is a concept that is introduced to check whether the measured

variables provide a reliable characterization of the system’s dynamics or not [40,
41, 42].

A measured variable is said to have full observability of the original space
when there is no loss of information in the measurements. An observability analy-
sis may therefore ensure that all the properties of the dynamics are actually “seen”
by the variable.

For this reason, even if a measured time series is sufficiently long and well
sampled, dynamical reconstructions cannot be guaranteed to be full without a
prior knowledge of the system and its observability properties. In multivariate
problems, some variables may carry more information about the whole state space
dynamics than others.

A finite-time branched manifold analysis should therefore not be interpreted
as global or full, but as a limited description of the underlying dynamics. Such
a partial result can however be fruitful and meaningful, as will be shown in this
work, when a collection of Lagrangian time series are examined. A study of
observability of bidimensional fluid flows in state space can be found in [43].

3. METHOD

BraMAH is a method conceived to extract the topological structure of a re-
constructed flow in state space from data, and therefore to characterize the main
features of the finite-time dynamics contained in the dataset that is taken as in-
put. The starting point of the analysis is a time series, or a collection of time
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series, with certain characteristics (sampling rate, length, noise level, etc). This
section will describe the data requirements, the steps that must be accomplished to
compute the topological properties associated to a time series, and the particular
features that are encountered when dealing with Lagrangian data.

3.1. Data requirements
In [39], data requirements for the input of a topological analysis from time

series are expressed in terms of quasi-cycles, where a quasi-cycle can be estimated
as the lowest time-delay peak in a close-returns histogram, or as the inverse of the
highest frequency peak in the power spectrum. In the examples considered therein
[39], one hundred quasi-cycles is found to be more than enough for a topological
analysis: the first dozen quasi-cycles already outline the structure of the branched
manifold. Fewer than fifty samples per quasi-cycle often requires the data to be
interpolated or smoothed. The generality of these thresholds can certainly not be
assessed, but can be used as reference values.

In the case studies that will be considered below, the indications provided in
[39] apply and are useful to draw interesting conclusions. Let us mention that in
the present work, the datasets are generated with kinematic model equations, so
that one can freely fix many parameters, including the length and sampling rate of
the simulated time series. This will of course not be the case when dealing with
datasets issued from observations or experiments. The important message here
is that datasets of an “acceptable” quality and length are required for a BraMAH
analysis to be feasible. A suitable preprocessing of the data may also be critical
to attain optimal topological results with the available measurements.

3.2. Computational steps
Two separate steps must be accomplished:

- Embedding the time series in a domain that provides a suitable state-space
reconstruction of the underlying dynamics,

- Computing the topological properties associated to the point cloud formed
by the embedded time series.

Let us start by giving details on the first step. Time-delay embeddings are the
most well-established strategy for obtaining the dynamics of a system from scalar
time series [19]. Differential or integral embeddings may be preferred when the
scope is to extract modeling equations from data, as done in global modeling
techniques [44, 45], but the user must beware that an order of magnitude in the
signal-to-noise ratio is often lost each time a derivative (or integral) is taken. Loss
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of two orders of magnitude degrades the embedding to the extent that the topo-
logical organization may be difficult to compute [39].

The delay coordinate reconstruction parameters can be chosen following the
customary heuristics, e.g. false nearest neighbors (FNN) to determine the embed-
ding dimension m, and average mutual information (AMI) to determine the time
delay τ [46, 47, 48, 49, 50]. In case of noisy data, the user must remember that
the embedding dimension is often over-estimated by these methods [14].

The variable chosen to construct the embedding will also be relevant. In La-
grangian studies, and depending on the effective physical space dimension of the
fluid system, there will be more or less spatial coordinates involved. Variables
with a bad observability may involve working in higher state space dimensions,
especially when the aim is to achieve a full characterization of the system dynam-
ics. This is the case for modeling purposes, to extract models from data, or to
validate a model [44, 45], but for classification purposes, one can remain at lower
precision levels. In practice, the level of detail will be case-dependent, and must
be evaluated in terms of the available variables and the particular needs.

To sum up, the first step of the analysis implies choosing (i) a scalar variable
v, (ii) a time window Tw, (iii) an embedding dimension m, and (iv) a time delay τ .
For topological comparison and classification purposes, these four choices should
be kept fixed for the time series collection under inspection.

Let us now turn to the second step of the analysis. Topological feature ex-
traction from delay-embedded time series is revisited in [14]. In that work, the
extraction of the large-scale topological features of a state-space point cloud are
found to be affordable with low-dimensional embeddings, i.e. of a dimension that
is lower than the one required for a full reconstruction of the dynamics. This point
cloud can be placed on a single geometric object that operates as a point-cloud
organizer or template of the embedded time series. Mathematically, this object
is a finite-time branched manifold, the term introduced in 2.3 to stress that it is
obtained from a finite time dataset.

The approach adopted in this work is built upon the algorithm described in
[24]. BraMAH builds non simplicial complexes, i.e. complexes for which cells
need not be simplices. Given a point cloud {xi / xi ∈ Rm∧1 ≤ i ≤ N}, the non
simplicial complex constructed with the BraMAH procedure requires a prior de-
composition of the point cloud into overlapping point sets called patches, defined
as homeomorphic to the interior of a d-disk, d being the local dimension of the
branched manifold (d ≤ m). Intersections between patches allow keeping track
of the gluing prescriptions that are necessary to assemble them. Each patch is
associated to a point x0 that is used as center or axis of the disk that encloses
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its neighbors. The size Nc of the patch {xi, i = 1, · · · ,Nc} around a center x0

is computed searching for the largest number of points around x0 that constitute
good approximations to a Euclidean set. The search is done within limits Nmin
and Nmax that are selected so that the point density is approximately uniform. A
series of candidate sets {xi, i = 1, · · · ,nc} are considered, with its elements sorted
in order of increasing distance from x0, and with nc sweeping the values between
the limits (Nmin,Nmax). The criterion used to choose the best candidate, i.e. to find
Nc, is the same used in [16, 51], and can be synthesized as follows.

Given a center x0 = (x0,1,x0,2, · · · ,x0,m), all the points xi = (xi,1,xi,2, · · · ,xi,m)
that lie within the ball centered at x0 and radius r , are represented by the neigh-
borhood matrix X ∈ Rnc×m

Xi, j =
1
√

nc
(xi, j− x0, j)

The singular vectors of X give a local coordinate system centered at x0, and the
singular values describe the distribution of the points within the ball centered at
x0. For small enough r, the effects of curvature of the d-dimensional patch of the
manifold become unimportant and the patch is well approximated by its tangent
space at x0. The local singular spectrum of X for a d-manifold in Rm will have
d singular values that will scale linearly with nc as r is increased, until saturation
or the effects of curvature in the manifold become noticeable. The remaining
(m− d) singular values will measure the deviation from the tangent space of the
manifold and will scale, due to the curvature, as r2 or as higher powers of r. This
property allows us to distinguish the d relevant singular values from the (m− d)
non relevant ones: nc = Nc when the d largest singular values of X present the
best linear regression coefficient. After this process, the d-dimensional patch is
the set {xi, i = 1...Nc}. Once the whole point cloud is decomposed into patches,
convex hulls are used to construct a uniformly directed complex in which each cell
corresponds to a patch. The result is a non simplicial complex K with dimension
h = d, and with a number of cells that is considerably lower than the number of
points in the cloud.

The next step in BraMAH is to extract homology groups and relevant torsion
information from the constructed complex. The symbolic code in Wolfram Math-
ematica written in [23, 24] was updated and used to extract the homology groups
and orientability chains from the non simplicial uniformly directed cell complex
that is constructed in the previous step. The code performs the following opera-
tions: (i) it reads the list of vertices in order to construct a boundary map matrix;
(ii) it extracts the linearly independent rows of the boundary map matrices; (iii)
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it computes the null spaces of the transpose of the boundary map matrices; (iv) it
expresses the k-borders in terms of the the k-cycles in order to find which k-cycles
are homologous to others; (v) it appends in Hk the k-cycles that are homologically
independent; and (vi) it identifies the cells preceded by integer multiples in the
chains summing all the borders. The output consists of the homology groups Hk
spelled in terms of their generators, and the orientability chains, if there are any.
Because the cells of the complex are denoted using a list of labeled vertices cor-
responding to numbered points in the original cloud, the generators can be used
to identify the branches in the cloud, and the orientability chains to locate the
existence of twists.

3.3. Lagrangian time series
Let us consider the application of this methodology to Lagrangian time series

presenting some kind of recurrent bounded behavior in reconstructed state space,
and satisfying the data requirements described in 3.1.

When a collection of time series under analysis is Lagrangian, or in other
words, associated to the motion of a fluid particle, the results of the BraMAH
analysis described in 3.2 can be represented, not only in the reconstructed state
space, as is customary, but also in the spatial domain where fluid particles flow.

All time series sharing the same topological structure, namely the same or-
ganization of branches and torsions, can be assigned a common label, and that
label can be located in physical or ‘geographical’ space in correspondence with
the particle that is associated to the inspected time series. In analytical cases, as
the ones we will be considering in this work, one can introduce the usage of what
we shall term, for short, topological grids. In this representation one finds at each
position of the grid, the label corresponding to the topological class of a particle
that is passing through that position at an instant ts for a time series defined for
instance in [ts, ts + Tw] (or [ts− Tw, ts]). Notice that a topological grid is always
defined in relation with a time ts and a window Tw. If the grid is sufficiently fine,
the temporal evolution of the labels will show how the distribution of topological
classes changes in space as ts is varied.

4. RESULTS

In this section, we show the results of the analysis of Lagrangian time series
generated with two analytical nonlinear kinematic flow models, typically used as
testbench in Lagrangian studies: the driven Double Gyre and the Bickley Jet [29].
The driven Double Gyre is a bidimensional cellular flow inspired in oceanic flow
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patterns proposed by [52], and the Bickley Jet is an example of a two-dimensional
open flow, frequently used to model zonal jets in the Earth’s atmosphere [53, 54].

Both models are defined in terms of a stream function ψ(x, t) = ψ(x1,x2, t),
so that the motion of the fluid particles located at x(0) evolve according to:

ẋ =V (x, t) (1)

with V = ( ∂ψ

∂x2
,− ∂ψ

∂x1
). These ordinary differential equations can be numerically

integrated to generate individual particle trajectories that will serve as input for
BraMAH.

The interest here is to illustrate how the BraMAH approach performs on these
well-known cases. In both cases, the analyses will be conducted on a collection
of time series for sparsely distributed particles at a certain time step. The output
will allow for a classification of the different time series according to the homolo-
gies and orientability properties of the cell complex. Topological grids will be
constructed with these results, in order to visualize the spatial organization of the
topological results.

Topological grids will be presented in juxtaposition with streakline snapshots.
Dye continuously injected into a fluid at a fixed point extends along a streakline.
In practical situations, this may correspond to different scale problems ranging
from oil spills in the ocean or to the injection of small amounts of drugs from
small tubes in cells of microfluidic devices. Streaklines are used in the laboratory
to visualize flows, to develop flow control strategies [55] or to analyze mixing
[56]. Computing a streakline for a kinematic model amounts to conducting a
virtual experiment in which dye is continuously released from a fixed location,
called seeding or injection point. Streakline snapshots show the dyed particles at
a certain instant. We will use streaklines to compare the results of the BraMAH
analysis on individual particle trajectories with the transport properties of the flow.

4.1. Driven Double Gyre
The driven Double Gyre system [52] is defined by the stream function ψ , the

domain under consideration is Ω = [0,2]× [0,1] and usual parameter values are
A = 0.1, η = 0.1 and ω = π/5:

ψ(x1,x2, t) = Asin(π f (x1, t))sin(πx2)

with:
f (x1, t) = a(t)x1

2 +b(t)x1,
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Figure 1: Streakline images in the driven Double Gyre flow (A = 0.1, η = 0.1 and ω = π/5) at
time 35 Tp, with Tp = 2π/ω . Injection points are: (a) p = (1,0.5) and (b) p = (0.5,0.5).

a(t) = η sin(ωt) ,

b(t) = 1−2a(t).

Let us first characterize the transport properties of this flow using streaklines.
Figure 1 shows streakline images with different injection points: (a) at p= (1,0.5)
and (b) at p = (0.5,0.5). The elapsed time in both cases is long enough for the
tracer to invade all the reachable spaces of the domain (35Tp with Tp = 2π/ω).
In (a), one can observe four closed regions or islands in which the tracer does not
penetrate. These islands adopt either a circular or an arrow-like shape; they are not
static and rotate in each half domain suffering deformation in their shape during
their displacement, keeping the same size due to incompressibility [57]. When
the injection is performed in the left circular blank island of (a), as shown in (b),
the tracer never invades the central part of the circle. These images illustrate the
well-known presence of regions in the driven Double Gyre flow, which experience
no mixing with the surrounding fluid.

Let us now perform a BraMAH analysis for particle trajectories generated with
this system. For the sake of demonstration, the Lagrangian time series are gener-
ated with characteristics that largely satisfy the technical requirements described
in section 3.1: the time window has a length Tw = 500 and the sampling rate is
sr = Tp/100 = 0.1. Concerning the variable choice, we will show the method at
work on the horizontal position coordinate, labeled x1, which is more interesting
than the vertical position coordinate for symmetry reasons. Figure 2 shows four
individual particle trajectories initiated at different positions with their respective
time series.
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Figure 2: Individual particle trajectories of the driven Double Gyre and associated x1 time series
used as input in the BraMAH analysis for different initial positions: (1) p01 = (0.25,0.125), (2)
p02 = (1,0.5), (3) p03 = (0.5,0.625), (4) p04 = (0.55,0.5).
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Figure 3: Fraction of false nearest neighbors (FNN) as a function of the embedding dimension for
the driven Double Gyre time series (1), (2), (3), (4) shown in Figure 2.

The first step is to select the parameters for the time-delay reconstruction. An
FNN test on these time series shows that the reconstruction dimension stabilizes
at an embedding dimension of m = 4, as shown in Figure 3. The delay τ is chosen
among the minima indicated by AMI tests [47] and is set to τ = 0.2Tp.

The results of the BraMAH analysis of the four time series of Figure 2 are
shown in Figure 4. With these settings, the four-dimensional point clouds that
result, define finite-time branched manifolds that are locally bidimensional (d =
2), and that can be therefore approximated by complexes K with dimension h = 2.
Three-dimensional projections of the four-dimensional point clouds are shown
together with the non simplicial complexes generated for each point cloud by the
algorithm detailed in Section 3.2. The homology groups of each of the four cell
complexes are:

(1) Standard strip: H0(K1)∼ Z, H1(K1)∼ Z, H2(K1)∼ /0,

(2) Five-handle structure with a torsion: H0(K2) ∼ Z, H1(K2) ∼ Z5 with one
orientability chain, H2(K2)∼ /0,

(3) Torus: H0(K3)∼ Z, H1(K3)∼ Z2, H2(K3)∼ Z,

(4) Moebius strip: H0(K4) ∼ Z, H1(K4) ∼ Z with one orientability chain,
H2(K4)∼ /0

Complexes K1 and K4 have a single 1-hole and complex K3 encloses a single
2-hole, i.e. a cavity. The H1 generators for each complex Ki with i = 1,2,3,4 are
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illustrated in color on the cell complexes. Torsions are detected only in complexes
K2 and K4 of Figure 4. As the topology of K1 and K4 is single-hole (H1 ∼ Z), the
presence of a torsion in K4 provides a distinction from K1 which would otherwise
be undetectable. This shows the importance of computing orientability chains
along with homology groups.

Looking at Figures 2 and 4 simultaneously, one can remark that the time series
associated to the strips and the torus correspond to particles that remain in only
one hemisphere of the domain, while the five-handle structure corresponds to a
background flow trajectory, that visits both hemispheres.

Let us now enlarge the dataset under analysis with particles located at other
initial positions in the domain. We will consider collections of Np = 105 particles
with sparsely distributed initial positions. Each of the 105 time series is found to
fall into one of the four topological categories already presented in Figure 4. The
Moebius-strip class of trajectories presents a particular feature: the point clouds
are such that one can distinguish lanes along the branches. The banded structure
of a branched manifold can be studied in terms of subtemplates [58]: a BraMAH
analysis can be conducted to describe these subtemplates adjusting (Nmin,Nmax)
which set the approximate size of the cells, but the level of detail required to dis-
criminate subtemplates is out of the scope of the current analysis. All these parti-
cle trajectories are therefore classified within (4), independently of the existence
of subclasses at a finer scale.

In order to construct the topological grids, let us introduce the following sym-
bols: triangles (4) for K1, circles (©) for K2 , squares (�) for K3, and asterisks
(∗) for K4. The Np initial particle positions will be plotted using the symbol that
corresponds to the corresponding result of the BraMAH analysis. As anticipated,
the topological grid is shown in juxtaposition with streakline snapshots used for
reference. Figure 5 shows four snapshots of the topological grids of the flow for
the streakline having p= (1,0.5) as injection point. The sequence provides a clear
idea of the evolution of the flow regions, and of the topological classes observed
for particles placed at different positions. A complementary plot is provided in
Figure 6 to show the detail inside the circular region for the streakline with injec-
tion point at p = (0.5,0.5).

The juxtaposition of streaklines and topological grids shows the close connec-
tion found between the branched manifold analysis of individual particle trajec-
tories and the transport properties of the kinematic flow. There is a significant
similarity between the topological grids and the patterns that are found with the
braid theory and the transfer operator in [26], and with the coherent structure col-
oring method applied to the quadruple gyre in [59], even if the time windows of
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(1) K1 with H1(K1)∼ Z (2) K2 with H1(K2)∼ Z5

(3) K3 with H1(K3)∼ Z2
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Figure 4: BraMAH analysis for the driven Double Gyre times series in Figure 2. Three-
dimensional projections of the embeddings with τ = 0.2Tp and m = 4 are shown. The associated
non simplicial complexes with dimension h = 2 are presented, with the H1 generators highlighted
in color.
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ts = 39 Tp ts = 39.2 Tp

ts = 39.4 Tp ts = 39.6 Tp

Figure 5: Snapshots of the driven Double Gyre flow showing the streakline injected in p = (1,0.5)
together with the BraMAH topological grid, where ts is the snapshot time and topological classes
are: (a) K1 (4), (b) K2 (©), (c) K3 (�) and (d) K4 (∗).

0 0.5 1 1.5 2

x
1

0

0.5

1

x
2

Figure 6: Streakline in the driven Double Gyre flow at time ts = 35 Tp seeded at p = (0.5,0.5)
juxtaposed with the results of the BraMAH analysis: K3(�), K4(∗).
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the studies differ.
Particles in the background flow are associated to the topology of complex

K2. Particles in the arrow-like islands, that orbit around the circular ones, have
a dynamics corresponding to the topology of complex K1. Inside each of the
two circular islands that remain out of reach for the tracer injected in the center
of the domain, two different topological classes are found. The most eccentric
particles correspond to the topology of complex K4, and the most central ones to
the topology of complex K3, as visualized when the injection point is moved to
the interior of a circular region.

The connection suggests that particles within regions that are separated by a
transport barrier from the surrounding fluid are associated to the same finite-time
branched manifold.

4.2. Bickley jet
Let us now turn to the kinematic model of an open flow. The Bickley Jet is

a model gathering the essential characteristics of the stratospheric polar vortex in
which a zonal jet acts as a transport barrier. The stream function ψ(x1,x2, t) has
a steady background flow ψ0(x2) and three traveling Rossby waves are superim-
posed [53, 60],

ψ(x1,x2, t) = ψ0(x2)+ψ1(x1,x2, t),

ψ0(x2) =−U0L0 tanh
(

x2

L0

)
ψ1(x1,x2, t) =U0L0sech2

(
x2

L0

) 3

∑
n=1

εncos(kn(x1− cnt)) .

The parameters are the characteristic velocity U0 = 62.66 m/s, the character-
istic length scale L0 = 1770 km, ε1 = 0.0075, ε2 = 0.15, ε3 = 0.3, lx = 6.3717×
106π , kn = 2nπ/lx, c1 = 0.1446U0, c2 = 0.205U0 and c3 = 0.461U0.

Figure 7 shows a streakline snapshot at 40 days with injection locations p =
(x1,x2) / x1 = 1× 106 ∧ x2 ∈ [−4 : 0.05 : −2]× 106 ∪ [2 : 0.05 : 4]× 106, with
the length units measured in meters. The snapshot shows that this kinematic flow
also presents regions with little mixing with the background fluid. The regions
that are not invaded by the tracer are the sequence of counter-rotating vortices and
a central alley corresponding to the sinuous jet region.

The BraMAH analysis of the Bickley Jet trajectories is performed using scalar
time series of the vertical coordinate x2, the variable that carries the information
of the north and south hemispheres of the model. For demonstration purposes,

17



Figure 7: Streakline associated to the Bickley Jet flow at 40 days. The injection locations are
points p = (x1,x2) / x1 = 1×106∧x2 ∈ [−4 : 0.05 :−2]×106 ∪ [2 : 0.05 : 4]×106. Length units
are meters.

Figure 8: Fraction of false nearest neighbors (FNN) as a function of the embedding dimension for
the Bickley Jet.
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Figure 9: Individual particle trajectories of the Bickley Jet, and associated x2 time series with t in
seconds and x2 in meters, used as input in the BraMAH analysis for different initial positions: (1)
p01 = (6× 107,1× 106), (2) p02 = (6× 107,2× 106), (3) p03 = (6× 107,−1× 106), (4) p04 =
(6.3×107,2×106).
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(1) K1 with H1(K1)∼ Z (2) K2 with H1(K2)∼ Z3

(3) K3 with H1(K3)∼ Z2 (4) K4 with H1(K4)∼ Z

Figure 10: BraMAH analysis of the Bickley Jet the times series in Figure 9. Three-dimensional
projections of the embeddings with τ = 6×104 seconds and m = 4 are shown. The associated non
simplicial complexes with dimension h = 2 are presented, with the H1 generators highlighted in
color.

20



the time window is set to Tw = 200 days, a value that is well above the minimal
time series length needed for the analysis. The FNN algorithm is implemented
to estimate the embedding dimension, see Figure 8, that yields m = 4. The time-
delay is fixed at τ = 6×104 seconds. These settings yield four-dimensional point
clouds defining finite-time branched manifolds that are locally bidimensional (d =
2), and that can be therefore approximated by complexes with dimension h =
2. The methodology in 3.2 is applied to time series obtained for a set of Np =
145 particle trajectories initiated at different positions, sparsely distributed in the
spatial domain. Particle trajectories with their respective time series are shown in
Figure 9. The homology computations produce the following results:

(a) Standard strip: H0(K1)∼ Z, H1(K1)∼ Z, H2(K1)∼ /0,

(b) Three-handle structure with a torsion: H0(K2)∼ Z, H1(K2)∼ Z3 with one
orientability chain, H2(K2)∼ /0,

(c) Torus: H0(K3)∼ Z, H1(K3)∼ Z2, H2(K3)∼ Z,

(d) Moebius strip: H0(K4) ∼ Z, H1(K4) ∼ Z with one orientability chain,
H2(K4)∼ /0

Four topology classes are identified. Figure 10 shows the results obtained for
the four time series of Figure 9. The topology grids for the Bickley Jet are shown
in Figure 11. The connection between the topological classes and the transport
properties of the flow is again apparent when juxtaposing the topological grid with
the streakline snapshot. The fourth topological class presents subclasses, which
are not identified in this work, as explained in subsection 4.1. Let us remark
that the topological grid is consistent with the patterns unveiled using coherent
structure coloring in [29, 59].

4.3. Compared results
Let us briefly consider the similarities and differences in the BraMAH results

between the two kinematic flows considered above. In all cases, the embedding
dimension from the FNN tests is m = 4 and the local dimension of the finite-time
branched manifolds found in the patch decomposition of the point clouds is d = 2.
As a consequence, all cell complexes have dimension h = 2.

Considering the time series collection of the two kinematic flows, a total of
five non equivalent topological classes are detected, and some of them are present
in the two flow case studies. A topological correspondence exists between the
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Figure 11: Streakline associated to the Bickley Jet flow at ts = 40 days with injection locations at
p = (x1,x2) / x1 = 1× 106 ∧ x2 ∈ [−4 : 0.05 : −2]× 106 ∪ [2 : 0.05 : 4]× 106, juxtaposed with
the topological grid where (a) K1 (4), (b) K2 (©) , (c) K3 (�) and (d) K4 (∗). Length units are
measured in meters.

sinuous jet of the Bickley flow and the triangular regions of the driven Double
Gyre: all these regions are topologically represented by a standard strip. The same
statement holds between the vortices in the Bickley Jet and the circular driven
Double Gyre regions, that are identified with Moebius strips. In the particular case
of the Moebius strips, there are subclasses which are not being analyzed in detail
in this work. Notice that the similarities and differences between the topological
features associated to the two kinematic flow models would not be necessarily
manifest through a spectral analysis.

In both systems, all particles in the background flow possess a topological
structure that is richer than the one encountered in the Lagrangian islands or al-
leys. Inside the islands, smaller islands can be found with their own topological
description. The driven Double Gyre background flow has a higher complexity
–measured in terms of the number of handles– with respect to the Bickley Jet
results.
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5. Conclusions

This work explores the topology of dynamical reconstructions from Lagrangian
time series using Branched Manifold analysis through Homologies (BraMAH).
The study is carried out in the context of nonlinear kinematic flow models using,
for demonstration purposes, two models that are canonical in Lagrangian studies:
the driven Double Gyre and the Bickley Jet.

Applying BraMAH to a collection of time series associated to individual tra-
jectories of sparse fluid particles, distinct topological classes are identified. Topo-
logical grids are built to show how the topological classes are distributed in the
flow domain. The arrangement of the topological classes in these grids are found
to be related with the regions attained (or not) by a continuously injected tracer
(streakline). These results suggest that particles moving in regions with poorly-
mixing properties have a dynamics that differs, through their state-space topology,
from those in the surrounding fluid.

To conclude, this work shows that the BraMAH approach can be used to clas-
sify fluid particles in terms of the topology of the finite-time branched manifolds
associated to them. No prior knowledge on the fluid flow is necessary, and the
individual particle trajectories need not be closely spaced. The time series chosen
for the analysis must exhibit some kind of recurrent behavior, that needs not be
periodic. The sampling rate and the time-window length must be large enough for
the dynamical reconstruction to be possible. For datasets in which these techni-
cal requirements are met, BraMAH constitutes a complement of other sparse flow
characterization methods, with promising perspectives in Lagrangian studies.
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