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Per-Vehicle Coverage in a Bus-Based
General-Purpose Sensor Network

Pedro Cruz, Rodrigo Couto, Luı́s Henrique M. K. Costa, Anne Fladenmuller, and Marcelo Dias de Amorim

Abstract—Vehicle-based sensing is a valuable paradigm to
serve third-party applications, but understanding the coverage
of such networks is not trivial. For urban buses, trajectories
are spatially predictable, but traffic conditions can hinder data
timeliness. In this paper, we propose a metric to quantify the
contribution of individual buses to the coverage of different
applications. We apply this metric to bus mobility traces from
Rio de Janeiro for applications of waste management, air quality,
and noise monitoring, ranking buses accordingly. We show that
bus contribution is strongly related to the application – 23%
of buses change more than 2,000 places in different application
rankings.

Index Terms—Smart cities, Internet of things, vehicular-based
wireless sensor networks.

I. INTRODUCTION

Throughout their paths, buses could carry sensors and
collect relevant data of a city, delivering it when reaching
communication gateways [1]. The efficiency of such a system
is inherently related to several parameters. For example, each
bus line covers a subset of the city streets, providing partial
coverage of the city. Also, buses of the same line may ex-
perience various traffic conditions, potentially causing drastic
variations of their data delivery delays. Therefore, each bus is
likely to have a different contribution in terms of city coverage,
depending on the smart city application under consideration.

In the literature, several papers have investigated the
coverage of bus-based mobile wireless sensor networks
(MWSNs) [1]–[3]. Those studies set different coverage metrics
for different classes of applications. A class of smart city
applications is defined by its constraints, such as the minimum
required frequency for data collection or the freshness of
the collected data. These studies also show that bus-based
MWSNs can disclose new applications or improve existing
ones, depending on the existing bus network. These previous
works identify the coverage of a bus-based network but lack an
estimation of individual bus contribution in a multi-application
scenario. Moreover, some works analyze the mobility of buses
for smart city applications [4]–[6]. These works focus on the
transport system itself. We use similar ideas to analyze the
behavior of the bus network for third-party applications that
can leverage bus mobility for city-wide sensing.

Quantifying individual bus contributions can help identify-
ing which buses are critical to the sensing tasks. This infor-
mation allows operators to deploy a more efficient network
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by, for example, dismissing some buses from sensing tasks.
Therefore, it is possible to lower the global costs in terms of
sensing equipment, data transmission, and data mining.

In this paper, we investigate the contribution of each bus to
the coverage of a city sensed by a fleet of urban buses. We
propose a metric to quantify such contribution, verifying if it
is more influenced by the contributing bus or the application.
We apply this metric to real GPS traces from Rio de Janeiro
to rank each bus based on its importance to the applications
of waste management, air quality, and noise monitoring. Our
results reveal that the contribution of each bus highly depends
on the application. For instance, we show that 23% of buses
change more than 2,000 positions in rankings from different
applications. More than this, half of the 5,856 buses have
a rank that differs more than 1,000 positions for different
applications. Based on these observations, one can choose
buses to dismiss from sensing tasks, either to reduce costs
or for maintenance reasons.

II. COVERAGE CONTRIBUTION METRIC

We denote B the set of buses sensing the city and A the
set of applications served by the MWSN. Each bus bi ∈ B
may follow a different path or face different traffic conditions,
while each application aj ∈ A has its own requirements.

We classify smart city applications in terms of data collec-
tion requirements [7]. In this paper, we use the requirements
of maximum delivery delay and minimum measurement fre-
quency (see Section III). We define the coverage contribution
of bi ∈ B for a single application aj ∈ A as:

Kbi
a j
=

CBa j
− C {B−bi }

a j

CBa j

, (1)

where Kbi
a j

is the individual coverage contribution of bus
bi to the application aj , CBa j

is the coverage obtained for
application aj using all the buses in B (Section III shows how
to obtain CBa j

), and C {B−bi }
a j

is the coverage obtained by the
MWSN when bi is removed from the network. In a nutshell,
coverage is the proportion of the city that can be sensed by
the considered MWSN. Note that the contribution metric is a
real number between 0 and 1.

Bus ranking. To decide which buses of the MWSN are
the most or least important for a given application, we
rank buses according to their contributions. The utility of
a MWSN increases when it can serve several applications
at the same time. In this configuration, the problem is that
these applications have different requirements in terms of data
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TABLE I
DATA REQUIREMENT AND COVERAGE FOR DIFFERENT APPLICATIONS.

Application Requirements Coverage Length
Fmin (day−1) Dmax (s) (%) (km)

Waste 24 1,800 32.5 4,494management
Air quality 48 300 23.8 3,292
Noise 144 300 17.4 2,416monitoring

collected. Therefore, we expect that the same bus has different
contributions depending on the application. This means that
some buses can be dismissed from the sensing task for some
applications, but must remain in the network because they are
required by some other applications. In the next section, we
present the coverage model we use.

III. COVERAGE MODEL AND BUSES CONTRIBUTIONS

To compute the city coverage C thanks to the buses in
B, we first discretize the route map of the target city into
street sections. A street section is a segment of road with a
single entrance, a single exit, and a single path linking both.
In a nutshell, the discretization procedure generates a graph
in which vertices represent points of interest such as street
intersections or steep curves. An edge exists in the graph if a
road segment connects the vertices (see Section IV) [1], [3].

Let S be the set of all street sections of a city and l(s) be a
function that returns the length of street section s ∈ S. When
a bus drives through a street section s, it collects data from
s. Since the path of a bus is a sequence of street sections,
it collects data from all those sections throughout its journey.
The bus stores the data it collects until it makes a connection
to a gateway. We consider that, each time a bus makes contact
with a gateway, it delivers all the data collected since its last
contact with a gateway. The fact that buses store and carry data
until they encounter a gateway introduces some delay before
that data gets delivered. We define the delivery delay as the
time elapsed between the instant when a bus collects data and
the instant when it delivers this data to a gateway. Often, data
is only useful to the application if it arrives within a certain
maximum delivery delay [7], which is application-specific. We
denote the maximum tolerated delivery delay by Dmax.

It is likely that multiple buses cover the same street section.
We define the measurement frequency of a street section s ∈ S
as the number of times buses gather and deliver data within
Dmax per unit of time. Different smart city applications might
require different measurement frequencies. We denote Fmin as
the minimum measurement frequency of an application. The
values Dmax and Fmin characterize the requirements of a smart
city application [7].

We say that street section s is covered if and only if, during
a period of time T , buses take at least n measurements and
deliver their data before Dmax, such that n/T ≥ Fmin. We
define Sa j as the subset of street sections that are covered by
B, respecting the tolerated delay and frequency requirements
for the target application aj . We can now compute the city
coverage for aj as:

TABLE II
PARAMETERS OF BUS DATASET OF RIO DE JANEIRO.

Parameter Value
GPS coordinates before filtering 208,345,262
GPS coordinates after filtering 81,217,403
Total length of paths 38,479,109 km
Total matched sections visits 752,899,893
Total number of matched gateway contacts 38,647,268

Ca j =

∑
s∈Saj

l(s)∑
s∈S l(s)

· (2)

In a general-purpose MWSN, sensors may have different
sensing ranges. We assume that a sensor collects data from a
certain street if and only if the carrier bus passes by this street.
For simplicity, we consider that streets are one-dimensional,
and thus the coverage is related to street length. Of course,
this coverage metric is applicable to sensors whose range is
at least the street width. We further explore this metric in [8].

IV. DATA-DRIVEN ANALYSIS

We use a real-world scenario to verify the variability of
buses contributions with respect to different applications. We
consider three applications, namely waste management, air
quality monitoring, and noise monitoring. The data require-
ments Dmax and Fmin of these applications are summarized
in Table I, as defined by Zanella et al. [7]. We also extract
the street sections S and their lengths from a map of Rio de
Janeiro provided by OpenStreetMap [9].

To obtain bus mobility traces and assess their contacts with
gateways, we use the coordinates of each bus stop and a dataset
containing the GPS coordinates of urban buses, both offered
by the city administration of Rio de Janeiro1. The coordinates
of each bus stop are set and remain static, while the GPS
coordinates of the buses are updated once a minute. We have
collected data from November 1st to November 30th , 2018,
obtaining GPS coordinates generated by 5,856 buses.

To acquire the bus routes in terms of street sections, we filter
the GPS coordinates to remove noise and then obtain the most
likely route followed by each bus using the matching function
of the Open-Source Routing Machine (OSRM)2. This function
returns the route of each bus as a path on the graph. Every two
consecutive vertices are connected by an edge; therefore, the
transformation to street sections is straightforward. The main
characteristics of this dataset are shown in Table II.

We need then to obtain the instants when buses collect and
deliver data. Therefore, we interpolate, from the timestamps of
GPS entries, the instants when buses visit each vertex in their
paths. We consider that the vertices that are less than 10 m
away from a bus stop are within the radio communication
range of the gateway. As a result, we obtain the records of
the instants when the bus has passed by the street sections, as
well as the records of the moment it encountered the gateways.

1http://dadosabertos.rio.rj.gov.br/apitransporte/apresentacao/pdf/
documentacao gps.pdf

2http://project-osrm.org/

http://dadosabertos.rio.rj.gov.br/apitransporte/apresentacao/pdf/documentacao_gps.pdf
http://dadosabertos.rio.rj.gov.br/apitransporte/apresentacao/pdf/documentacao_gps.pdf
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Fig. 1. CDF of the bus contributions K
bi
a j

from Rio de Janeiro.

Therefore, the delivery delay is the time elapsed between the
instant a bus enters a street section (i.e., the bus visits the
first edge of the street where it is about to gather data) and
the instant when this bus visits a covered edge (which, we
assume, provides Wi-Fi connectivity to the buses).

Meegahapola et al. and Liu et al. show that it is possible to
rebuild bus routes in Singapore and London, even when GPS
traces are not available [4]–[6]. This means that, with some
adjustments, the methods used in this paper can be replicated
to these cities. Since our coverage metric considers the delivery
delay, it is expected that buses can achieve better coverage in
cities with higher bus density and faster traffic.

A. Coverage contribution

Using the data obtained in the previous steps, it is possible
to evaluate the coverage obtained by all the buses or by a
subset of them for each considered application, as shown on
Table I. More specifically, we calculate C {B−bi }

a j
, the coverage

for an application aj when bus bi is not present, for every
bus and every application. As a reference, the set of all buses
can cover 50.0% of the city for an application with no delay
or frequency restrictions. This represents a total of 6,929 km
of streets. The total length of streets of Rio de Janeiro is
13,852 km. In our results, we note that there is a maximum
difference of 0.04% in coverage when removing a single bus
for the application of waste management, 0.02% for air quality,
and 0.01% for the application of noise monitoring. In terms
of the covered distance, this means a maximum of 5.8 km,
2.3 km, or 1.8 km of difference, respectively. These results set
a maximum coverage loss threshold per removed bus, a useful
value for scheduling maintenance, for instance.

Figure 1 illustrates the cumulative distribution of buses
contributions for the applications of waste management, air
quality, and noise monitoring, obtained using Equation 1
for each application. Figure 1 also illustrates the cumulative
distribution of the average contribution of each bus over those
three applications. The graph shows that the curve for the
average contribution has much fewer buses with very low
contributions than the curves for each application. It also
shows that distributions depend on the applications, suggesting
that applications are relevant to the contribution.

We also obtain the average speed of buses and the total
coverage for each day. Considering the 30 days, the correlation
between average speed and coverage is 0.834, 0.878, and
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Fig. 2. Average of the daily bus contributions K
bi
a j

from Rio de Janeiro, for
region and bus proportion between center and suburbs.

0.882 for the applications of waste management (i.e., the least
restrictive one), air quality, and noise monitoring (i.e., the most
restrictive one), respectively. A less restrictive application,
with Fmin = 1/day and Dmax = 24 h would have a Pearson
coefficient of 0.788. This indicates that more restrictive appli-
cations receive more influence from the traffic conditions.

City coverage is not spatially homogeneous [8]. To measure
this effect to the contributions of the buses, we divide buses
in two groups: center buses, which visit city center at least
once, and suburb buses, which never visit the center. Figure 2
shows, for each day, the average contribution of each group,
for each considered application. It also shows, in the right
axis, the ratio between suburb and center buses. We indicate
Sundays and holidays with an “×” mark. We note that, when
the center has fewer buses, they are more important.

B. Contribution ranking

To quantify the impact of the influence of the application
to the contribution, in the next experiment, we rank the buses
for each application by ordering their coverage contributions,
and also for the average of their contributions. After that, we
measure the ranking difference of the same bus, for all of the
considered applications, and also with respect to their average
contributions.

Figure 3(a) shows, on the horizontal axis, the rank of each
bus when ranked by their average contribution, for the top 10
average contributors. In the vertical axis, Figure 3(a) shows
the contribution rank for the analyzed applications. Therefore,
every vertical section represents the ranks of the same bus.
Buses represented more to the left have a higher average
contribution. We note that the most relevant buses tend to
have high contributions for every application, but this tendency
does not hold for all the 10 most relevant buses. The 10th bus
in the average ranking is in 2, 387th , 564th , and 1st places
for waste management, air quality, and noise monitoring,
respectively. To study the whole dataset, Figure 3(b) extends
the information in Figure 3(a) for all the buses in the dataset.
It is possible to observe that, except for the buses with the
lower average contribution, there is low stability of positions
between rankings. This means that, in our dataset, there are not
many buses that are important to every application, but there
is a significant number of buses that have a low contribution
to all the applications. To quantify the stability between
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(a) Contribution rank as a function of average contribution rank, for
different applications, for the 10 largest average contributions.
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different applications.

Fig. 3. Contribution ranking of buses from Rio de Janeiro.
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Fig. 4. Contribution ranking difference of the same bus for an application
compared to its contribution rank for another application.

rankings, Table III shows the Kendall correlation coefficients
of the contribution rankings of the considered applications. A
Kendall coefficient of 1 means that rankings are correlated
and thus independent of the application, while a coefficient
of 0 means that rankings are uncorrelated. The small values
of Kendall coefficients confirm that the applications have a
strong influence over bus importance.

Figure 4 shows the cumulative distribution of the ranking

TABLE III
KENDALL COEFFICIENT OF BUS CONTRIBUTIONS RANKING.

Application Kendall coefficient
Waste management × Air quality 0.21
Waste management × Noise monitoring 0.20
Air quality × Noise monitoring 0.17

difference of the same bus between its position in the con-
tribution rankings of different applications. We observe that,
in every case, more than 40% of the 5,856 buses change at
least 1,000 places in the ranking. This means that the proposed
contribution metric is highly related to the target application.
Moreover, some changes in the application requirements can
also change the way buses contribute to the coverage. The
proposed metric made it possible to discover and quantify the
difference in each bus importance to the city coverage.

V. CONCLUSION

In this paper, we investigate the role of individual buses to
the coverage of different applications in a city-wide MWSN.
We propose a contribution metric to individual buses that takes
into account the coverage lost for a single application when
a bus is not performing sensing tasks. Using a delay-aware
coverage metric, we apply the metric to GPS traces of buses
in the city of Rio de Janeiro, considering the applications of
waste management, air quality, and noise monitoring. We also
rank the buses in terms of their city coverage contributions for
each application and compare the rankings of each one. With
the results, a developer can build a more efficient network,
deciding which buses are crucial to each application.

As future work, we plan to use our metric to propose an
optimization of the buses coverage when we have a limited
number of vehicles, determining the equipment and network
costs that can be saved. We also intend to improve the coverage
of the network by replacing certain buses by static sensors. In
both cases, the contribution of each bus can serve as the basis
for heuristics for the optimizations.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. It was also supported by CNPq,
FAPERJ, and FAPESP Grant 15/24494-8.

REFERENCES

[1] P. Cruz, R. S. Couto, L. H. M. K. Costa, A. Fladenmuller, and M. Dias de
Amorim, “On the coverage of bus-based mobile sensing,” Sensors,
vol. 18, no. 6, pp. 1–12, 2018.

[2] Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, and
C. Chen, “Mosaic: A low-cost mobile sensing system for urban air quality
monitoring,” in INFOCOM, 2016, pp. 1–9.

[3] A. Marjovi, A. Arfire, and A. Martinoli, “High resolution air pollution
maps in urban environments using mobile sensor networks,” in DCOSS,
2015, pp. 11–20.

[4] L. Meegahapola, T. Kandappu, K. Jayarajah, L. Akoglu, S. Xiang, and
A. Misra, “Buscope: Fusing individual & aggregated mobility behavior
for “live” smart city services,” in MobiSys, 2019, pp. 41–53.

[5] L. Meegahapola, N. Athaide, K. Jayarajah, S. Xiang, and A. Misra,
“Inferring accurate bus trajectories from noisy estimated arrival time
records,” in IEEE ITSC, 2019, pp. 4517–4524.

[6] X. Liu, Y. Zhou, and A. Rau, “Smart card data-centric replication of
the multi-modal public transport system in singapore,” J. Transp. Geo.,
vol. 76, pp. 254–264, 2019.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp.
22–32, 2014.

[8] P. Cruz, R. S. Couto, L. H. M. K. Costa, A. Fladenmuller, and M. Dias de
Amorim, “A delay-aware coverage metric for bus-based sensor networks,”
GTA,UFRJ, Tech. Rep. GTA-19-16, Jun. 2019. [Online]. Available:
https://www.gta.ufrj.br/ftp/gta/TechReports/CCC19.pdf

[9] OpenStreetMap contributors, “Dump retrieved from https://download.
geofabrik.de/south-america.html ,” https://www.openstreetmap.org, 2017.

https://www.gta.ufrj.br/ftp/gta/TechReports/CCC19.pdf
https://download.geofabrik.de/south-america.html
https://download.geofabrik.de/south-america.html
 https://www.openstreetmap.org 

	Introduction
	Coverage contribution metric
	Coverage model and buses contributions
	Data-driven analysis
	Coverage contribution
	Contribution ranking

	Conclusion
	References

