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Abstract

For marketing or power grid management purposes, many studies based on the
analysis of the total electricity consumption curves of groups of customers are now
carried out by electricity companies. Aggregated total or mean load curves are es-
timated using individual curves measured at fine time grid and collected according
to some sampling design. Due to the skewness of the distribution of electricity con-
sumptions, these samples often contain outlying curves which may have an important
impact on the usual estimation procedures. We introduce several robust estimators
of the total consumption curve which are not sensitive to such outlying curves. These
estimators are based on the conditional bias approach and robust functional methods.
We also derive mean square error estimators of these robust estimators and finally, we
evaluate and compare the performance of the suggested estimators on Irish electricity
data.

Keywords: bootstrap, conditional bias, functional data, modified band depth, spherical
principal component analysis, survey sampling, wavelets.

1 Introduction and context

Many studies carried out by electricity companies are based on the analysis of total electric-
ity consumption curves measured at fine time scales (often half-hourly) for one or several
groups of clients sharing some common characteristics (e.g. customers from the same elec-
tricity provider, having a particular electric equipment or living in a given geographic area).
The aim of these studies can be for example to assist the power grid manager in maintain-
ing the balance between electricity consumption and production at every instant on the
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power grid. The total consumption curves can also be used to help the Sales Division to
quantify the impact of a specific electric use or equipment on the electricity consumption,
to build new innovative pricing strategies or to create new services based on customers
consumption analysis.

In order to avoid technical and budgetary constraints due to limited bandpass or storage
cost of huge databases, or in order to preserve privacy, the strategy of selecting a sample
of individual curves from the whole datasets is often employed. The total consumption
curve or the load curve of each population of interest is then estimated by using the
curves of the customers belonging to the sample. The estimation with survey sampling
techniques of parameters of interest such as the total or the mean, the median or the
principal components when the data are curves has been developed over the last years:
Cardot et al. (2010), Cardot and Josserand (2011), Cardot et al. (2013a) and Chaouch
and Goga (2012). Several sampling designs and estimators have been compared by means
of simulation on real electricity data set in Cardot et al. (2013b) and some asymptotic
properties have been established in Cardot et al. (2013c) and Cardot et al. (2014). We cite
also Degras (2014) for the Horvitz-Thompson estimation with optimal rotation of samples.
A recent review of research works in this area is given in Lardin-Puech et al. (2014).

We address here the estimation of the total consumption curve in presence of outly-
ing curves. Following Chambers (1986), we consider only representative outlying curves,
namely curves which are representative for some non-sampled units and that do not come
from measurement errors. With electricity data, it is not unusual to have units with con-
sumption electricity much higher than the rest of the population (see Figure 1). Such
outlying curves may have a huge impact on the estimation and it is very important to
detect and treat them correctly. In order to detect such outlying curves, we use the notion
of depth of a curve introduced by López-Pintado and Romo (2009).

In a finite population setting, stratification is a good method to reduce the potential
impact of outlying curves. More exactly, the population is divided into disjointed subpopu-
lations called strata and units from the same stratum are as similar as possible according to
several criteria. Unfortunately, due to wrong classifications or sudden changes some units
may be very different from the other units belonging to the same stratum. These units are
influential and deteriorate the stratum homogeneity and the variance of the usual estima-
tors for the total or the mean will be large. More generally, a unit is considered influential
if, in a given configuration: study population and variable, parameter, estimator and sam-
pling design, its value has a great impact on the variance of the estimator (Favre-Martinoz
(2015)).

Several robust estimators not sensitive to influential units have been suggested in the
survey sampling setting for real data, that are not curves. We can cite for example Cham-
bers (1986), Gwet and Rivest (1992), Rivest (1994), Kokic and Bell (1994), Welsh and
Ronchetti (1998). Broadly speaking, these estimators are based on winsorization tech-
niques which consist in down-weighting the influence of outlying units. This is performed
by considering a thresholding function depending on a tuning constant whose value must
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be chosen carefully. The reader is referred to Chapter 11 of Pfeffermann and Rao (2009) for
a detailed presentation of the main methods dealing with outliers in survey data. Recently,
Beaumont et al. (2013) considered a new robust estimator for finite population totals. This
new approach is based on the notion of conditional bias introduced by Muñoz-Pichardo
et al. (1995) to measure the influence of a unit and is closely related to the estimator of
Chambers (1986). Besides, the conditional bias approach does not require to introduce
a superpopulation model. Another popular approach for building robust estimators for
survey data is the one suggested by Kokic and Bell (1994). The use of Kokic and Bell’s
method would require the knowledge of a model for the probability distribution for func-
tional data. Such superpopulation models are generally very complex in our curve data
framework and cannot generally be reduced to parametric models with a small number of
parameters. A recent comparison of robust estimation strategies in a finite population by
Deroyon and Martinoz (2018) has also shown that a misspecification of the superpopula-
tion model can deteriorate much the accuracy of the robust estimator based on Kokic and
Bell’s approach. For these two reasons, we did not consider further the Kokic and Bell’s
approach in the present work.

The aim of this paper is to build robust design-based estimators of the total consump-
tion curves which are less sensitive to influential curves. Since generally the curve data
are observed at a finite number of time instants, the easiest and most intuitive way to
construct such a robust estimator is to apply the method suggested by Beaumont et al.
(2013) at each instant of time. Unfortunately, this method does not take into account
possible temporal correlations. In order to deal with this issue, we can transform the data
by using dimension reduction methods such as functional principal component analysis or
projection of the data onto basis functions. We suggest in this paper to perform a robust
principal component analysis (PCA) as introduced by Locantore et al. (1999) in order to
obtain uncorrelated real principal components. The total consumption curve may be then
approximated in a smaller dimensional space spanned by robust eigenfunctions. Then, the
coordinates in this new robust basis can be robustified by using the method of Beaumont
et al. (2013) and a second robust estimator for the total consumption is then obtained.

Instead of using robust PCA, one may also project the data onto a basis functions,
such as wavelets, which are known to be effective to deal with irregular temporal signals
such as individual electricity load curves (see e.g. Mallat (1998)). A third robust estimator
for the total consumption is then obtained by robustifying the coordinates in the wavelet
basis.

The choice of a positive cut-off constant c is required to build these estimators. Choos-
ing an adequate value is crucial since a trade-off between bias and variance must be made.
We suggest in this paper a new criterion for choosing this tuning constant based on the qth
power of the conditional bias. We also introduce a functional truncation method based on
the concept of depth of curves (López-Pintado and Romo (2009)) as a functional measure
of outlyingness. This method consists in finding a zone which entirely contains the condi-
tional biases considered as “inliers” and to use the upper and lower bounds of this zone as
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truncation limits. A fourth estimator may then be constructed.

This paper is organized as follows: in Section 2, we describe the estimation of totals
with sampling designs from a finite population of curves and we extend the definition of the
conditional bias for functional data. In Section 3, we apply point-wisely the approach of
Beaumont et al. (2013) for building a robust estimator for the total curve and we use their
minimax criterion for choosing the tuning constant as well as a new one based on the qth
power of the conditional bias. We introduce in Section 4 two robust estimators based on
dimension reduction techniques and in Section 5, a robust estimator built for the functional
truncation method based on the modified band depth as suggested by López-Pintado and
Romo (2009). In Section 6, we address the question of the estimation of pointwise mean
square error. Due to confidentiality reasons the electricity data from EDF can not be
used for publication. We illustrate, in Section 7, the performances of the different robust
approaches on the estimation of the total curve on Irish electricity consumption curves.
Concluding remarks are given in brief Section 8 and some proofs are postponed in an
Appendix.
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Figure 1: A sample of five load electricity curves measured every half an hour over a period
of one week.
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2 Robust estimation in a finite population of curves

2.1 Notations and framework

Let U be a population of interest of known size N . To each unit i of the population
we associate a (load) curve defined over a time interval [0, T ]: for each unit i we have a
function of time Yi(t), t ∈ [0, T ], where the continuous index t represents time.
Our goal is to estimate the total curve tY over the population:

tY =
∑
i∈U

Yi, (1)

with value tY (t) =
∑

i∈U Yi(t) for each instant t ∈ [0, T ]. In practice, the curves are
not observed continuously for t ∈ [0, T ] but only for a set of D measurement instants
0 = t1 < t2 < ... < tD = T which are generally supposed to be equi-spaced and the same
for all units. Under weak assumptions on the number of discretization points, the regularity
of the trajectories and the sampling design, it can be shown that the approximation error
due to linear interpolation or kernel smoothing is negligible compared to the sampling error
(see Cardot and Josserand (2011) and Cardot et al. (2013a)).

To evaluate and compare the different approaches, we consider in this work a test
population composed of N = 3994 electricity consumption curves extracted from the Irish
Commission for Energy Regulation (CER) Smart Metering Project that was conducted in
2009-2010 (CER, 2011)1. The electricity consumptions are recorded during one week, from
the 18th to the 24th of January 2010, we have D = 336 points in time (see Section 7 for
more details). We display in Figure 1, the electricity consumption curves for five smart
meters selected from that population.

A sample s of size n is selected from U according to a random sampling design p(·).
We denote by Ii the sample membership indicator of unit i which is equal to 1 if the unit
i belongs to the sample s and zero otherwise. The probability that unit i will be included
in a sample is denoted by πi = P (Ii = 1) =

∑
s,i∈s p(s) and the probability that both

of the units i and j will be included is denoted by πij = P (IiIj = 1) =
∑

s,(i,j)∈s p(s).

The first-order inclusion probabilities πi and the second-order inclusion probabilities πij
are assumed to be known and strictly positive. We also assume that πi and πij do not
depend on time t.

We will particularly be interested by two simple sampling designs, simple random
sampling without replacement (SRS) and stratified sampling with simple random sampling
within strata (STR). In STR, units with similar characteristics (according to some auxiliary
information) are grouped into disjointed strata Uh of size Nh for h = 1, . . . ,H. A simple
random sampling without replacement sh of size nh is selected from Uh and the selection
in one stratum is independent of the selection in all other strata. Note also that in the
following, inference is made under the design-based approach in a finite population setting.
This means that the sample membership indicators Ii, i ∈ U are binary random variables

1The data are available on request at the address:
http://www.ucd.ie/issda/data/commissionforenergyregulation/
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and the values of the variable of interest Yi are treated as being deterministic. In this
context, the total curve tY can be estimated by the Horvitz-Thompson estimator,

t̂Y (t) =
∑
i∈s

diYi(t), t ∈ [0, T ], (2)

where di = 1/πi, i ∈ U are the sampling weights. The Horvitz-Thompson estimator t̂Y is
a random curve, with covariance function given by

Cov(t̂Y (r), t̂Y (t)) =
∑
i∈U

∑
j∈U

(πij − πiπj)
Yi(r)

πi

Yj(t)

πj
, for all r, t ∈ [0, T ].

A unit i with a large sampling weight di and a large value of Yi at some time instant t
is influent for the Horvitz-Thompson estimator given in (2) since it increases considerably
the covariance of the Horvitz-Thompson estimator given above.

2.2 Conditional bias when the data are curves

In order to construct robust estimators, Beaumont et al. (2013) have used the conditional
bias as a tool for quantifying the influence of sampled and non sampled units on an esti-
mator. The conditional bias, as defined by Beaumont et al. (2013) is, in a design-based
approach, the expectation of the estimator conditionally to the inclusion indicator Ii of
the unit i. In our context, the conditional bias of a sampled unit is a function of time t,

BHT
1i (t) = Ep(t̂Y (t)|Ii = 1)− tY (t) =

∑
j∈U

(
πij
πiπj

− 1

)
Yj(t), t ∈ [0, T ], (3)

and for a non-sampled unit:

BHT
0i (t) = Ep(t̂Y (t)|Ii = 0)− tY (t) = − 1

di − 1
BHT

1i (t), t ∈ [0, T ], (4)

where Ep is the expectation with respect to the sampling design p. For simple random
sampling without replacement (SRS), the conditional bias have the following expression,

BHT
1i (t) =

N

N − 1

(
N

n
− 1

)
(Yi(t)− Y U (t)), i ∈ U, t ∈ [0, T ],

where Y U (t) =
∑

i∈U Yi(t)/N, and for stratified sampling with SRS within each stratum
(STR), the conditional bias of a sampled unit i belonging to the stratum Uh is

BHT
1i (t) =

Nh

Nh − 1

(
Nh

nh
− 1

)
(Yi(t)− Y Uh

(t)), i ∈ Uh, t ∈ [0, T ],

where Y Uh
(t) =

∑
i∈Uh

Yi(t)/Nh is the mean curve within stratum h. We can see that
for stratified sampling, a unit i ∈ Uh has a large influence if its value Yi(t) is far from
the mean stratum Y Uh

(t) and its influence is even larger if it is associated with a large
sampling weight Nh/nh.
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We can see from (3) that the conditional bias BHT
1i (t) is unknown and must be esti-

mated. A conditionally design-unbiased estimator of BHT
1i (t), given Ii = 1, is:

B̂HT
1i (t) =

∑
j∈s

(
πij − πiπj
πjπij

)
Yj(t), for all t ∈ [0, T ]. (5)

In the case of SRS sampling, the conditional bias can be estimated by

B̂HT
1i (t) =

n

n− 1

(
N

n
− 1

)
(Yi(t)− Y s(t)), i ∈ U, t ∈ [0, T ],

where Y s(t) =
∑

i∈s Yi(t)/n and for STR sampling, it can be estimated by

B̂HT
1i (t) =

nh
nh − 1

(
Nh

nh
− 1

)
(Yi(t)− Y sh), i ∈ Uh, t ∈ [0, T ], (6)

where Y sh =
∑

i∈sh Yi/nh is the sample mean of Y -values within the stratum h.

Consider again the test population of Irish electricity consumption curves. Two esti-
mated conditional bias curves, with simple random sampling of size n = 200, are drawn
in Figure 2. We can remark on this small example how different, in shape and values, the
conditional bias can be from one individual to another and also, from one instant of time
to another.

Following the lines of Beaumont et al. (2013), we obtain in our functional setting:

t̂Y (t)− tY (t) =
∑
i∈s

BHT
1i (t) +

∑
i∈U−s

BHT
0i (t) +

(∑
i∈s

diAi(t)−
∑
i∈U

Ai(t)

)
, t ∈ [0, T ], (7)

where

Ai(t) =
−1

1− πi

∑
j∈U,j 6=i

πij − πiπj
πj

Yj(t).

The inclusion probabilities not varying with time, it is straightforward to see, as in
Beaumont et al. (2013), that the term in parentheses at the right-hand side of (7) is
zero for Poisson sampling. Moreover, as shown in the Appendix, under broad assumptions
upon the inclusion probabilities which are satisfied by the simple random sampling without
replacement and fixed-size high-entropy designs, the term in parentheses at the right-hand
side of (7) is negligible in the sense that

sup
t∈[0,T ]

∣∣∣∣∣∑
i∈s

diAi(t)−
∑
i∈U

Ai(t)

∣∣∣∣∣ = Op(n
−1/2).

Thus, we can consider that

t̂Y (t) ' tY (t) +
∑
i∈s

BHT
1i (t) +

∑
i∈U−s

BHT
0i (t), t ∈ [0, T ]. (8)

The first term at the right-hand side of previous approximation is not random. Conse-
quently, the precision of the estimator will be influenced only by the two other terms in (8).
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Figure 2: Two conditional bias curves estimated with simple random sampling of size
n = 200.

The conditional bias of a particular unit can thus be interpreted as the contribution of this
unit to the sampling error. An influential unit is defined as a unit with a large conditional
bias and the idea is to downplay the impact of such units at the right-hand side of (7). A
new challenge, compared to the univariate framework studied in Beaumont et al. (2013)
comes from the fact that the conditional bias is now a function of time and as we can note
in Figure 2, the shape and the values of the conditional bias can be very different from
one individual, or time instant, to another. Different ways of dealing with this issue are
developed in the following.

3 Point-wise robust estimators

A first possibility is to directly apply the method of Beaumont et al. (2013) at theD instants
t1, . . . , TD. Considering the Huber function, ψc(z) = sgn(z)min(|z|, c) which depends on
the tuning constant c > 0, with sgn(z) = 1 if z ≥ 0 and −1 otherwise, we can construct
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the following point-wise robust estimator of tY (t):

t̂
(R1)
Y (t) = t̂Y (t) +

∑
i∈s

ψc(t)
(
BHT

1i (t)
)
−
∑
i∈s

BHT
1i (t) (9)

= t̂Y (t) + ∆(c(t)), for all t ∈ [0, T ]. (10)

So, for a given value c(t) those conditional bias BHT
1i (t) larger than c(t) will be cut-off

at c(t) in the second-term at the right-hand side of (9). Clearly, the efficiency of the
robust estimator depends on the choice of the tuning constant c(t). As c(t) increases, the
estimator becomes closer to the non robust estimator. The new estimator t̂(R1)

Y (t) is biased
but of smaller variance than that of the non robust one, so we hope to improve the global
precision measured by the mean squared error. The trade-off between variance and bias is
controlled again by the tuning constant c(t): a large value for c(t) implies small bias but
large variance and a small value for c(t) implies large bias and small variance.

3.1 Minimax approach for choosing the optimal tuning constant

We determine the optimal tuning constant in a pointwise manner, namely we determine
for each t, the optimal value copt(t) is chosen according to the minimax approach suggested
by Beaumont et al. (2013). The value copt(t), that is not necessarily unique, satisfies

copt(t) = argmin
c≥0

max
i∈s

∣∣∣B̂RHT
1i (c(t))

∣∣∣ , (11)

where B̂RHT
1i (c(t)) is the estimator of the conditional bias of the robust estimator t̂Ry (t).

Using relation (10), the conditional bias of the robust estimator is BRHT
1i (c(t)) = BHT

1i (t)+

Ep(∆(c(t))|Ii = 1) and can be estimated by

B̂RHT
1i (t) = B̂HT

1i (t) + ∆(c(t)).

Following Beaumont et al. (2013), the optimal value of ∆(c(t)) is

∆ (copt(t)) = −1

2

(
B̂HT
min(t) + B̂HT

max(t)
)
,

where B̂HT
min(t) = mini∈sB̂HT

i (t) and B̂HT
max(t) = maxi∈sB̂HT

i (t) are the minimum and
respectively, the maximum of the estimated absolute conditional biases B̂i(t) over the
sample. The optimal robust estimator is therefore, at each instant t,

t̂RY opt(t) = t̂Y (t) + ∆(copt(t))

= t̂Y (t)− 1

2

(
B̂HT
min(t) + B̂HT

max(t)
)
. (12)

Remark that the optimal tuning constant copt(t) varies over time, but there is not
need to compute it in order to construct the optimal robust estimator. Note also that
this method is essentially univariate since it deals independently with the different points
in time and thus does not necessarily preserve the correlations between instants in the
estimated total curves. We can think that some information is lost by not making use
of the strong temporal correlations between the values of Y at different times. A robust
estimator which takes into account such possible correlations is presented in Section 4.1.
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Figure 3: An estimated conditional bias (red solid line) and the same conditional bias
truncated (red dotted line) for cut-off limits (blue lines) defined point-wisely.

3.2 A new criterion for choosing the optimal tuning constant

We suggest minimizing the sum over the sample of the qth power of the absolute value of
B̂RHT

1i (c(t)), the conditional bias of the robust estimator. This means that, for all t, we
look for the optimal constant c(t) satisfying the following criterion:

caltopt(t) = argmin
c≥0

∑
i∈s

∣∣∣B̂RHT
1i (c(t))

∣∣∣q ,
= argmin

c≥0

∑
i∈s

∣∣∣B̂HT
1i (c(t)) + ∆(c(t))

∣∣∣q , (13)

where ∆(c(t)) is given in (10) and q is a positive constant. The optimal solution may be
found by numerical algorithms such as Newton-Raphson.

By using this criterion, we penalize the conditional bias computed for the whole sample
of individuals not only the maximum and the minimum of B̂RHT

1i (c(t)) as in Beaumont
et al. (2013). In this way, each

∣∣∣B̂RHT
1i (c(t))

∣∣∣ for i ∈ s will contribute to the optimisation
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research and as a consequence, the presence in the sample at one instant t of a unit with
very high influence will not cause a sudden change in the function c(t) as it was the case
with the minimax approach.

Large values of q will penalize large absolute values of |B̂RHT
1i (c(t))| while values of

q between 0 and 1 will penalize small conditional bias |B̂RHT
1i (c(t))|. So, for large q, this

new criterion will be close to the minimax criterion but with better regularity properties
allowing the use of bootstrap methods in order to estimate the variance. To obtain robust
estimates we thus advise to consider large values of q (q ≥ 4) that will ensure that high
values of the conditional bias are sufficiently penalized. Note that for q = 1, we obtain the
median conditional bias curve which is not of interest here because it is robust to outlying
(extremely large or small) values. As a consequence, it will not be affected by these values
and it can not be used to truncate outlying values.

4 Robust estimation based on dimension reduction

In a functional data setting, it is very common to use dimension reduction methods. In
this paper, we use robust functional principal analysis and projection on basis functions
such as wavelet function in order to transform the functional robust estimation issue into
a series of univariate robust estimation issues.

4.1 Spherical principal components analysis

Principal components analysis is a popular tool to explore and to represent graphically the
variations around their barycenter of multivariate and functional data (see Jolliffe (2002)
and Ramsay and Silverman (2005) as well as Cardot et al. (2010) for a presentation in a
finite population setting). The aim is to build new non-correlated variables, called principal
components, that are linear combinations of the initial variables and of maximum variance.
The principal components are obtained via the eigenfunctions of the covariance function
γ of the data Yi, i = 1, . . . , N,

γ(r, t) =
1

N

N∑
i=1

(Yi(r)− Y U (r))(Yi(t)− Y U (t)), r, t ∈ [0, T ],

where Y U = N−1
∑

i∈U Yi is the mean, or the center, of the data. However, it is well known
that the mean and the covariance are highly sensitive to outlying units and consequently,
principal components are also known to be highly non robust.

We consider now a robust version of PCA named spherical PCA (see Locantore et al.
(1999)) that has nice properties (see Gervini (2008)) and is easy to compute. It consists
in considering the eigenfunctions of the following sphericised “covariance” function

Γ(r, t) =
1

N

N∑
i=1

Yi(r)−mN (r)

||Yi −mN ||
· Yi(t)−mN (t)

||Yi −mN ||
, r, t ∈ [0, T ] (14)
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where mN is a robust indicator of location and ‖.‖ denotes the L2[0, T ]-norm (‖Y ‖2 =∫ T
0 Y 2(t)dt). Considering the unit norm functions (Yi(t) −mN (t))/‖Yi −mN‖ instead of
Yi(t)−Y U (t), we perform a kind of winsorisation of the outlying curves Yi. As in Locantore
et al. (1999), we use the geometric median (see Kemperman (1987) or Small (1990)) as a
robust location parameter of a set of points belonging to the space L2[0, T ]. With a finite
population point of view, the median curve of the elements Y1, . . . , YN , is defined by:

mN = arg min
y∈L2[0,T ]

N∑
i=1

‖Yi − y‖. (15)

The relation (15) arises as a natural generalization of the well-known characterization of
the univariate median. It is also called the spatial median (Brown (1983)) because, from
a geometric point of view, the median is the point that minimizes the sum of distances to
the points in the population. The names L1-median (Small (1990)) and geometric median
(Chaudhuri (1996)) have been also employed for mN .

If we assume that Yi, for i = 1, . . . , N, are not concentrated on a line, the median exists
and is unique (see Kemperman (1987)). If mN 6= Yi for all i = 1, . . . , N, then it is the
unique solution of the following estimating equation:

N∑
i=1

Yi(t)−mN (t)

||Yi −mN ||
= 0, t ∈ [0, T ] (16)

and it may be computed by using fast iterative algorithms such as Weiszfeld’s algorithm (see
Weiszfeld (1937) and Vardi and Zhang (2000)) for multivariate data or gradient algorithms
(see Gervini (2008)) for sparse functional data.

Then, performing spherical PCA consists in computing the eigenvalues λj and the
corresponding orthonormal eigenfunctions vj of the covariance Γ of these projected data
instead of the initial data. As for the location estimate, the influence of the outlying obser-
vations can be greatly reduced. Furthermore Gervini (2008) shows that if the distribution
of Yi is symmetric, then the covariance γ and the spherical covariance Γ have the same
orthonormal eigenfunctions vj , j = 1, . . . , N .

The curves Yi in the population can also be approximated, in this new orthonormal
basis, leading to a kind of robust Karhunen-Loeve expansion, that allows to get the best
approximation of Yi(t)−mN (t) in a finite K-dimensional space (see Ramsay and Silverman
(2005)):

Yi(t) = mN (t) +

K∑
k=1

〈Yi −mN ,vk〉vk(t) + εi(t), for i ∈ U, (17)

where εi(t) = Yi(t)−mN (t)−
∑K

k=1〈Yi−mN ,vk〉vk(t) is a remainder term and 〈·, ·〉 is the
inner product in L2[0, T ]. Here, 〈Yi−mN ,vk〉vk(t) is the projection of the centered curve
Yi −mN onto the rank one space generated by function vk. For our purpose, we consider
the same (large enough) value of K for all the curves Yi to keep most of the variation in
the data.
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With these considerations, the approximation of the total curve in a finiteK-dimensional
space is given by

tY (t) ≈ NmN (t) +
K∑
k=1

Fkvk(t), (18)

where

Fk =
∑
i∈U
〈Yi −mN ,vk〉, for k = 1, . . . ,K,

is the population total of the projections on vk of the "centered" data Yi−mN . So, we can
write the finite population total tY as the sum of a robust location parameter, the median
mN , and the sum of K products between the robust eigenfunctions vk(t) and the real
coordinates Fk in this new basis. The interest of considering decomposition (18) is that
the total of a function with a continuous time index is decomposed into a new multivariate
problem in which robustification techniques can be applied to each real component.

4.1.1 Estimation of the robust principal components

In order to estimate tY , we need to estimate first the median and the eigenfunctions vk for
all k = 1, . . . ,K. A natural estimator of the geometric median mN is given by the solution
m̂ of the following non linear estimating equation (see Chaouch and Goga (2012)),∑

i∈s
di
Yi(t)− m̂(t)

||Yi − m̂||
= 0, t ∈ [0, T ]. (19)

Numerically, the solution is generally reached in a few iteration of a weighted version
Weiszfeld’s algorithm.

The spherical covariance function given in (14) is estimated as follows

Γ̂(r, t) =
1

N

∑
i∈s

di
(Yi(r)− m̂(r))

||Yi − m̂||
· (Yi(t)− m̂(t))

||Yi − m̂||
, for all r, t ∈ [0, T ], (20)

where m̂ is the estimator of the medianmN given in (19). Then, estimators of the eigenval-
ues λj of Γ with the associated eigenfunctions v̂j , j = 1 . . . , N are obtained by the spectral
decomposition of the estimated covariance Γ̂(r, t).

A natural estimator of the approximation of tY given in (18) is obtained by replacing
the unknown quantities with their estimators:

t̂
(2)
Y (t) = Nm̂(t) +

K∑
k=1

F̂kv̂k(t), (21)

where F̂k =
∑

i∈s di〈Yi − m̂, v̂k〉 is the substitution estimator for Fk. Note that even if
m̂(t) and v̂k(t) are robust estimates, the estimator given in (21) is not robust because the
coordinates F̂k, k = 1, . . . ,K are not robust.
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4.1.2 Robustifying the coordinates in the spherical PCA basis

We suggest to build the following robust estimates of the coordinates

F̂Rk = F̂k −
∑
i∈s

B̂F
1i,k +

∑
i∈s

ψck(B̂F
1i,k), k = 1, . . . ,K, (22)

where B̂F
1i,k =

∑
j∈s

(
πij − πiπj
πjπij

)
〈Yj − m̂, v̂k〉 is the estimator of the conditional bias of

F̂k, and ψck is the Huber function depending on the tuning constant ck. An optimal value
for ck may be found by using the minimax criterion or the new criterion defined in (13).
Finally, the second robust estimator of tY is defined as follows

t̂
(R2)
Y (t) = Nm̂(t) +

K∑
k=1

F̂Rk v̂k(t), t ∈ [0, T ]. (23)

4.2 Projection on wavelet basis

Instead of using principal components, we may project data onto a basis of functions
φ1, . . . , φQ which do not depend on the data. Electricity load curves are known to be
irregular, as seen in Figure 1, and natural candidates are wavelet basis (see Mallat (1998)).

The curves Yi, i ∈ U may be expanded as follows

Yi(t) =

Q∑
q=1

aiqφq(t) + εi(t), t ∈ [0, T ],

where ε is an approximation residual. Note that, unlike the principal component analysis,
the functions φ1, . . . , φQ are known and do not need to be estimated. The coefficients aiq,
for q = 1, . . . , Q, depend on Yi and are unknown for the non-sampled individuals. As in
robust principal component analysis, the total curve may be approximated by

tY (t) '
Q∑
q=1

taqφq(t), t ∈ [0, T ], (24)

where taq =
∑

i∈U aiq is the unknown real population total of the coefficients aiq, for
q = 1, . . . , Q. The Horvitz-Thompson estimator of this new approximation of the total tY
is given by

t̂
(3)
Y (t) =

Q∑
q=1

t̂HTaq φq(t), t ∈ [0, T ],

where t̂HTaq =
∑

i∈s diaiq. Robust estimators of t̂HTaq may be built as above. Our third robust
estimator of tY is defined as follows:

t̂
(R3)
Y (t) =

Q∑
q=1

t̂RHTaq φq(t), t ∈ [0, T ], (25)

where t̂RHTaq = t̂HTaq +
∑

i∈s(ψcq(B̂1i,q)− B̂1i,q) is the robust estimator of t̂HTaq , q = 1, . . . , Q,
with B̂1i,q the conditional bias of t̂HTaq and ψcq the Huber function depending on the tuning
constant cq whose value may be determined for each t̂HTaq .
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5 Global functional truncation methods based on statistical
depth

The aim of this section is to introduce a global way of truncating the conditional-bias
curve. In order to do that, we use the notion of statistical depth which allows to define
an order relation in a set of curves, from the most central curve to the most outlying one.
In the context of functional data, the depth may be defined in many different ways: see
for example Cuesta-Albertos et al. (2006), Gervini (2012), Fraiman and Muniz (2001) or
Hyndman and Shang (2010). Many of these notions of depth are rather difficult to put
into practice and are not considered here. In the following, we consider the modified band
depth as defined by López-Pintado and Romo (2009) as well as a depth notion based on the
L2[0, T ] distance from the center of the projected data onto the axis obtained by spherical
PCA.

5.1 Definition of the modified band depth (MBD)

The Modified Band Depth (MBD), studied by López-Pintado and Romo (2009), of a
discretized curve is the number of times (or the proportion of time for continuous time
observations) the curve, within a set of curves, is “lying between a couple of other curves”:

MBDi =
1(
2
n

) ∑
j,k∈s j 6=k

1

D

D∑
d=1

1[min(B̂HT
1j (td),B̂

HT
1k (td))≤B̂HT

1i (td)≤max(B̂HT
1j (td),B̂

HT
1k (td))]

≈ 1(
2
n

) ∑
j,k∈s j 6=k

1

T

∫ T

0
1[min(B̂HT

1j (t),B̂HT
1k (t))≤B̂HT

1i (t)≤max(B̂HT
1j (t),B̂HT

1k (t))] dt.

This indicator takes into account the length of the time interval during which the curve
B̂HT

1i is not lying between each couple of other curves : a curve which is not included
between others during a small time interval will be considered as “less outlying” than
another one which is out during a longer period. So, the more often a curve is included
entirely between others the more it is considered as central and by consequence, a curve
with a high MBD will be considered as central.

5.2 Central area based on MBD and robust estimator

We compute the depth value MBDi of the conditional bias curve B̂HT
1i (t) for all units i

belonging to the sample and let I be the central region containing the 50% of the deepest
curves B̂HT

1i (t), i ∈ s. Let L be the lower functional bound and U the upper functional
bound computed over I, for t ∈ [0, T ]:

L(t) = min
i∈I

B̂HT
1i (t) and U(t) = max

i∈I
B̂HT

1i (t).

The idea of using a 50% central region has been suggested first in the functional bagplot
introduced by Hyndman and Shang (2010) and in the functional boxplot by Sun and
Genton (2011).
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The conditional-bias curves entirely located inside these boundaries will not be modi-
fied whereas the curves taking values outside the central region, for some period of time,
will be truncated by using a truncation function ψ as in the non-functional case. An ob-
vious candidate is the Huber function ψc(y) = max(min(y, c),−c) depending on a tuning
constant c > 0 which can be easily generalized to take into account a region delimited by
a lower and an upper delimiting curves:

ψ(B̂HT
1i (t)) = max

(
min(B̂HT

1i (t), U(t)), L(t)
)

for all t ∈ [0, T ].

Remark that L needs not to be −U . We propose to use the following truncation function,

ψα(B̂HT
1i (t)) = max

(
min

(
B̂HT

1i (t), µB̂(t) + α(U(t)− µB̂(t))
)
, µB̂(t) + α(L(t)− µB̂(t))

)
,

where α is an unknown positive dilatation parameter that controls the size of the central
region (Sun and Genton (2011)) and µB̂ is the mean of the estimated conditional bias over
the sample. In practice, the delimiting curves µB̂(t)+α(U(t)−µB̂(t)) and µB̂(t)+α(L(t)−
µB̂(t)) are smoothed, using a mobile averaging technique, in order to avoid a too irregular
truncation.

Figure 4 displays the mechanism of global truncation based on modified band depth.
The upper (U) and the lower (L) curves delimiting the α central area are plotted in blue.
A conditional bias curve is plotted in red. Parts of this curve lying outside of the central
area, plotted in red dotted line, will be truncated and replaced by the corresponding parts
of the bound curves. We can remark that the central zone constructed in this way reflects
the daily seasonality of the data. In Figure 5, we plot central areas constructed according
to the suggested methods: pointwise, spherical PCA and based on modified band depth.
We can remark on this plot that the central area based on modified band depth is not
symmetric and is much larger than the other two areas.

Using the global truncation function ψα and relation (9), we can construct a new robust
estimator as follows

t̂
(R4)
Y = t̂Y (t) +

∑
i∈s

ψα
(
BHT

1i (t)
)
−
∑
i∈s

BHT
1i (t), t ∈ [0, T ]. (26)

The dilatation factor α allows to control the trade-off between bias and variance: for α
small, the curves are strongly truncated meaning large bias and small variance whereas for
α large, the curves are less truncated meaning less bias and larger variance. To determine
the value of the truncation parameter α, we can use the functional minimax approach:

αopt = argmin
α

max
i∈s

1

D

D∑
d=1

∣∣∣B̂HT
1i (td) + ∆α(td)

∣∣∣
or the qth power criterion introduced in Section 3.2:

αaltopt = argmin
α≥0

1

D

D∑
d=1

∑
i∈s

∣∣∣B̂HT
1i (td) + ∆α(td)

∣∣∣q , (27)
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Figure 4: The upper (U) and the lower (L) curves delimiting the α central area are plotted
in blue. A conditional bias curve is plotted in red and the truncated part of this curve is
plotted in red dotted line.

where

∆α(t) =
∑
i∈s

(
ψα(B̂HT

1i (t))− B̂HT
1i (t)

)
.

The optimum values αopt and αaltopt are obtained numerically by a Newton-Raphson algo-
rithm.

6 Mean square error estimation

In this section, we derive approximate point-wise estimators of the mean square errors of
the robust estimators. For a given time instant t, the mean square error (MSE) can be
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Figure 5: Central areas constructed according to three methods: point-wisely (blue line),
robust PCA (red line) and functional modified band depth (green line).

expressed as

MSEp
(
t̂RY (t)

)
= Vp

(
t̂RY (t)

)
+ Ep

(
t̂RY (t)− t̂Y (t)

)2 − Vp(t̂RY (t)− t̂Y (t)).

Similarly to Gwet and Rivest (1992) and Beaumont et al. (2013), we suggest the following
point-wise mean square error estimator:

M̂SEp(t) = vp
(
t̂RY (t)

)
+ max

[
0,
(
t̂RY (t)− tY (t)

)2 − vp (t̂RY (t)− t̂Y (t)
)]
. (28)

where vp
(
t̂RY (t)

)
and vp

(
t̂RY (t)− t̂Y (t)

)
are design-consistent estimators of Vp

(
t̂RY (t)

)
and

Vp(t̂
R
Y (t)− t̂Y (t)).
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Using relation (9), we can write the robust estimator t̂RY (t) and t̂RY (t)− t̂Y (t) as follows

t̂RY (t) =
∑
i∈s

di(Yi(t) + Zic(t)(t)) and

t̂RY (t)− t̂Y (t) =
∑
i∈s

diZic(t)(t),

where Zic(t)(t) = πi(ψc(t)(B
HT
1i (t)) − BHT

1i (t)). For simple sampling designs for which the
first and second order inclusion probabilities are known, we can use the Horvitz-Thompson
variance estimator,

vp
(
t̂RY (t)

)
=
∑
i∈s

∑
j∈s

πij − πiπj
πij

Yi(t) + Ẑi,c(t)(t)

πi

Yj(t) + Ẑj,c(t)(t)

πj
, (29)

where Ẑic(t)(t) = πi(ψc(t)(B̂
HT
1i (t))− B̂HT

1i (t)). A variance estimator is obtained for t̂RY (t)−
t̂Y (t) by a similar procedure. For the robust estimator t̂(R4)

Y given in (26) (section 5.1)
computed by using functional truncation methods based on depth, a variance estimator
may be computed by using (29) with Ẑiα(t) = πi

[
ψα(B̂HT

1i (t))− B̂HT
1i (t)

]
.

Using linearization techniques, we can write for the robust estimator t̂(R2)
Y given in (23):

N−1
(
t̂
(R2)
Y (t)− tY

)
' N−1

(∑
i∈s

diui −
∑
i∈U

ui

)
+N−1

K∑
k=1

[
(F̂Rk − Fk)vk + (v̂k − vk)Fk

]

where ui = NΓ−1
(

Yi−m
||Yi−m||

)
, i ∈ U is the linearized variable of m (see Chaouch and Goga

(2012)) with Γ given in (14). We also have

N−1
K∑
k=1

(v̂k − vk)Fk ' N−1

(∑
i∈s

di

K∑
k=1

Fkṽi,k −
∑
i∈U

K∑
k=1

Fkṽi,k

)
,

where ṽi,k =
∑
6̀=i < Yk −m,vi >< Yk −m,v` > v`/(λi − λ`)||Yk −m||2 is the linearized

variable of vk obtained with similar arguments as in Cardot et al. (2010). We also have

N−1
K∑
k=1

(F̂Rk − Fk)vk

' N−1
∑
i∈s

di

K∑
k=1

(
< Yi −m,vk > +πi(ψck(BF

1i,k)−BF
1i,k)

)
vk −N−1

∑
i∈U

K∑
k=1

< Yi −m,vk > vk.

The variance estimator can then be computed for

Ẑic(t) = ûi(t) +

K∑
k=1

(
F̂k ˆ̃vi,k+ < Yi − m̂, v̂k > v̂k + πi(ψck(B̂F

1i,k)− B̂F
1i,k)v̂k

)
.

For the third robust estimator t̂(R3)
Y given in (25) based on projection on known basis func-

tion φ1, . . . , φQ, the variance estimator is obtained for Zic(t) =
∑Q

q=1(Yi + πi(ψcq(B̂1i,q)−
B̂1i,q))φq(t).
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Bootstrap

Approximation by bootstrap of the variance estimator vp used in (28) is possible. We
consider the without replacement bootstrap introduced by Gross (1980) for simple random
sampling without replacement and that can be extended easily to stratified simple random
sampling. The method consists in creating a pseudo-population U∗ by duplicating each
unit i ∈ s, di = 1/πi times. Several methods have been proposed to deal with the situation
when di is not integer. We consider here the population bootstrap as suggested by Booth
et al. (1994) which consists in completing U∗ by a simple random sampling of sizeN−[N/n].
From this pseudo-population, we select B replication samples s∗ of size n according to the
initial sampling design. The bootstrap variance estimator of the robust estimator t̂RY (t) is
the empirical variance of t̂RY (t) computed over the replication samples:

vbootp (t̂RY (t)) =
1

B − 1

B∑
b=1

(
t̂R,bY (t)− 1

B

B∑
b=1

t̂R,bY (t)

)2

. (30)

The value of the cut-off tuning parameter c is computed in each replication using the
minimax approach. However, as the robust estimator based on the minimax approach is
built using minima and maxima (which are "non linearizable" functions), we may have
poor results for estimates based on population bootstrap.

We also consider the generalized bootstrap studied by Bertail and Combris (1997).
For this bootstrap method, the sample of individuals is kept unchanged but the sampling
weights are replicated. More precisely, we generate random weights w∗bi with b = 1, . . . , B

and B large, such as E(w∗bi ) = N−1, Var(w∗bi ) = (1 − πi)N
−2 and Cov(w∗bi , w

∗b
j ) =

(1 − πiπj/πij)N−2, i 6= j. In practice, w∗bi may be simulated from a multivariate normal
law with moments given above. The parameters of interest are written as functions of
means and means of type µY =

∑
i∈U Yi/N , that estimated at each replication b by µ̂bY =∑

i∈sw
∗b
i diYi. Formula (30) is next used to obtain a variance estimator of the robust

estimators suggested in this paper.

7 An illustration with real dataset

The methods and estimators studied in this paper are illustrated on data from the Irish
Commission for Energy Regulation (CER) Smart Metering Project that was conducted
in 2009-2010 (CER, 2011)2. This dataset contains thousands of electricity load curves
of residential clients observed every half-hour during one year. We have selected from
this dataset N = 3994 load curves without missing data and the electricity consumption
recorded over one week, from the 18th to the 24th of January 2010. So, we have D = 336

points in time. The interest parameter is the total consumption electricity during this
week.

2The data are available on request at the address:
http://www.ucd.ie/issda/data/commissionforenergyregulation/
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We consider two sampling designs: simple random sampling (SRS) without replacement
and stratified random sampling with SRS within strata (STR). For the stratified sampling,
strata are built by considering the total electricity consumption over the second semester
of 2009. We have built 5 strata, containing respectively 1270, 898, 770, 659 and 397
statistical units. The first strata corresponds to meters with small levels of consumption
whereas the last one is associated to the meters with the largest levels of consumption. In
this scenario, there are no "strata jumpers". We consider two other STR samplings with
10% strata jumpers (STR-SJ10) and respectively, with 20% "strata jumpers" (STR-SJ20).
These "strata jumpers" are simulated by selecting randomly, with equal probabilities,
some units in the population and then affecting them to a wrong stratum, which is also
chosen randomly with equal probabilities. For each scenario, we have considered three
sample sizes: n = 40, 100 and respectively, n = 400 and the sample sizes within strata
are computed according to the optimal allocation taking the consumption of the previous
week as auxiliary information.

7.1 Performance of the suggested robust estimators of the total con-
sumption curve

We evaluate the performances and compare the different estimators presented in previous
sections for various situations: different sampling designs, "strata jumpers" rates, sample
sizes. The estimators considered here are:

• the Horvitz-Thompson (HT) estimator;

• the point-wise robust estimator t̂(R1)
Y given by (9) with the tuning constant c chosen

by the minimax pointwise criterion (minimax pointwise) and the qth (q = 4, 10)

power criteria (qth pointwise);

• the robust estimator t̂(R2)
Y given by (23) and based on spherical PCA with the mini-

max criteria (robust PCA) and K = 5 principal components;

• the robust estimator t̂(R3)
Y given by (25) and based on wavelet expansions with the

minimax criteria (robust wave)3;

• the robust estimator t̂(R4)
Y given by (26) with the global truncation function based

on the modified band depth, minimax criteria (MBD).

We draw I = 5000 samples according to each sampling strategy and for each estimator
t̂Y of tY , we compute the relative bias (RB) and the relative mean square error (RMSE):

RB(t̂Y (td)) = 100
EMC [t̂Y (td)]− tY (td)

tY (td)
, d = 1, . . . , D

RMSE(t̂Y (td)) = 100
MSEMC [t̂Y (td)]

MSEMC [t̂HTY (td)]
, d = 1, . . . , D

3wavelets Daubechies Least Asymetric, 10
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where EMC [t̂Y (td)] =
∑I

i=1 t̂
(i)
Y (td)/I and MSEMC(t̂Y (td)) =

∑I
i=1(t̂

(i)
Y (td) − tY (td))

2/I

are the Monte-Carlo expectation and mean square error of t̂Y (td) computed over the I =

5000 samples and tY (td) is the real value of the total curve at instant td. In order to assess
the global performance, we consider the mean value, over time, of these indicators

RB =
1

D

D∑
d=1

RB(t̂Y (td)) and RMSE =
1

D

D∑
d=1

RMSE(t̂Y (td)).

Estimator SRS (size=) STR J0 (size=) STR J10 (size=) STR J20 (size=)
RB (%) 40 100 400 40 100 400 40 100 400 40 100 400

minimax pointwise -9 -6 -3 -2 -2 -1 -4 -3 -1 -5 -4 -2
4th pointwise -4 -2 -1 -1 -1 0 -2 -1 0 -2 -1 0
10th pointwise -7 -4 -2 -2 -2 -1 -3 -2 -1 -4 -3 -1
Robust PCA -7 -5 -2 -1 -1 0 -3 -2 -1 -3 -3 -1
Robust wave -7 -5 -2 -2 -1 0 -3 -2 -1 -3 -3 -1

MBD -8 -5 -2 0 0 0 -2 -1 -1 -3 -2 -1

Table 1: Relative bias (RB in %).

Estimator SRS (size=) STR J0 (size=) STR J10 (size=) STR J20 (size=)
RMSE (%) 40 100 400 40 100 400 40 100 400 40 100 400

minimax pointwise 74 85 96 97 96 98 89 88 91 84 86 91
4th pointwise 85 92 98 98 97 99 93 94 97 91 93 97
10th pointwise 77 86 96 97 96 98 90 89 92 85 88 93
Robust PCA 73 83 95 97 97 98 87 86 89 82 84 90
Robust wave 72 83 94 94 93 95 85 83 88 81 82 89

MBD 75 86 97 100 99 100 89 87 89 85 85 90

Table 2: Relative MSE (RMSE in %).

The results are reported in Tables 1 and 2. We can note that the use of robust methods
lead to important precision gains particularly when the sample size is small. For the SRS
design and for the best robust method, the global error is reduced by 28% when the
sample size is 40, by 17% when the sample size is 100. Moreover the robust methods never
deteriorate significantly the global precision. The performances of these robust estimators
are quite similar. Nevertheless, the functional methods based on wavelets or spherical
PCA are slightly better, followed by the robust estimator built with the global truncation
function based on the modified band depth.

However, robust methods tend to underestimate the population total curve because
the outliers, whose influence is reduced, are often units with large values. So the robust
methods lead to a negative bias of a few percents. This bias is larger for more imprecise
sampling designs.

For stratified samplings without strata jumpers, the use of robust approaches do not
lead to much improvement. This result is not surprising since a good stratification permits
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to reduce the influence of large units during the sampling phase. We also remark that, in
this situation, the Horvitz-Thompson estimator is nearly as effective as the less accurate
robust approach (MBD). We also note that the relative bias in that case is very small (less
than 2%) which could mean that the conditional biases are almost not truncated.

On the contrary, in presence of strata jumpers, the use of robust methods permits to
improve significantly the precision, especially when the strata jumpers rate is high. The
observed gains are approximately 15% in presence of 10% of strata jumpers.

On this simulation study, the minimax criterion for the choice of the tuning constant
gives better result than the qth power criterion. As expected, the performances of the
robust estimators built on minimax and the qth power criteria are very similar for q large.
We plot in Figure 6, the relative mean square error along time for the suggested estimators
and SRS sample of size n = 100. We can remark that RMSE varies much over time.
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Figure 6: Evolution of the RMSE over time for different methods and SRS of size n = 100

We have also computed the execution time for the suggested methods. The point-wise
robust method is the fastest robust method: for example, for n = 100, its mean execution
time for one simulation is around 6 × 10−2 seconds. The projection methods are slightly
slower but they never take more than 2 × 10−1 seconds and finally, the functional MBD
estimator is around 3×10−1 second always for a sample of 100 individuals. Moreover, this
computation time only moderately increases when the sample size increases.
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7.2 A comparison of the mean square error estimators

We compare the linearization approaches with the population bootstrap and the generalized
bootstrap. For the bootstrap methods, we consider B = 1000 replications. We compute,
by means of I = 5000 simulations, the estimators of MSE for the following total estimators:
t̂HT the usual Horvitz-Thompson estimator, t̂(R1)

HT the point wise estimator robustified via
the minimax criterion, t̂(R1)

HT robustified via the 10th power criterion; t̂(R2)
Y based on robust

PCA and robustified by the minimax criterion, and the total estimators based on a wavelet
expansion, t̂(R3)

Y , robustified via the minimax criterion. The relative bias of the estimators
of MSE are given in Table 3.

SRS STR J10
Gen. Boot. Gross’ Boot. Lin. Gen. Boot. Gross’ Boot. Lin.

HT -1 4 -1 -1 0 -1
Minimax 23 4 -27 20 0 -17
10th power 25 9 -21 23 2 -15
RPCA 24 5 -32 22 2 -26
Wavelet 25 6 -23 25 3 -21

Table 3: Relative Bias of M̂SE for samples of size n = 100, with different MSE estimation
procedures.

We can note that, as expected, all the estimators of the mean squared error provide
reasonable results for the non robust Horvitz-Thompson estimator. We also note that,
in our particular context, the MSE estimators based on linearization lead to a significant
underestimation when the estimator is robust: this underestimation is about 20% when
the tuning constant is determined by the new criterion and about 30% for the minimax
criterion. This was expected because we do not take into account the variability due to the
data driven selection of the value of the tuning constant. On the contrary, we observe a
strong overestimation of the variance of robust estimators for generalized bootstrap whereas
Gross’ bootstrap seems to gives satisfactory results for all the scenarios.

As far as computation time is concerned, the MSE estimation based on linearization is
quite fast, around a few tenth of second, whereas the bootstraps are significantly slower,
around 20 seconds for the generalized bootstrap and 80 seconds for Gross’ bootstrap.

8 Concluding remarks

Three types of robust estimators have been proposed in this work in order to adapt, from
the univariate to the functional case, robust estimation techniques in finite populations:

• Point-wise robust estimators built by truncation of the conditional bias at each in-
stant.

• Robust estimation based on dimension reduction methods.
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• Global functional truncation methods based on statistical depth.

These approaches have been compared on the estimation of totals of load electricity
curves. The comparisons have shown that robust methods lead to a noticeable improve-
ment of the precision, especially when the estimation is the most imprecise (small sample
sizes, sampling designs which do not include any auxiliary information or presence of very
heterogeneous units in a same stratum). When the precision of the non robust estima-
tors is already satisfying (larger sample sizes or relevant stratification), the precision gains
are smaller. However, a very important fact is that robust methods never deteriorate the
quality of the estimation.

We can also rank, in our simulation study, the different approaches according to their
performances. The robust estimators based on wavelets expansion or on robust PCA are
the most effective, followed by pointwise robust estimators and then global functional
truncation based on the notion of depth.

The corresponding mean squared errors can be estimated using linearization or boot-
strap. Gross’ bootstrap seems to give satisfactory results but is computationally intensive
whereas linearization-based techniques are much faster but may lead to noticeable under-
estimations.

We have also proposed a new criterion for choosing the tuning constant based on the qth
power of the conditional bias. Its application on a real dataset showed that the minimax
criterion is more effective than this new criterion.

Since our simulation studies have shown that the use of robust methods seems to be
particularly relevant for small sample sizes, a natural extension of the work presented
here is robust estimation of curves for small areas as considered in the PhD dissertation
of De Moliner (2017). However, robust estimation for small areas is a challenging issue.
Indeed, aggregating robust small domain estimates lead to overall estimators that may
have a large bias, as noted in Rivest and Hidiroglou (2004), Favre-Martinoz et al. (2015)
and Clark et al. (2017). Another difficulty is the fact that aggregated domain estimates
may not be consistent with the population total estimate. To overcome this difficulty,
one can use the approach suggested in Favre-Martinoz et al. (2015) based on a calibration
technique.

Appendix

We suppose that the sample size n and the population size N become large. We consider a sequence
of growing and nested populations UN with size N tending to infinity and a sequence of samples
sN of size nN drawn from UN according to the sampling design pN (sN ). The first and second order
inclusion probabilities are respectively denoted by πkN and πklN . For simplicity of notations and
when there is no ambiguity, we drop the subscript N . To prove our asymptotic results we need to
introduce the following assumptions.

A1. We assume that lim
N→∞

n

N
= π ∈ (0, 1).

A2. We assume that min
k∈U

πk ≥ λ > 0, min
k 6=l∈U

πkl ≥ λ∗ > 0 and
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πkl = πkπl

{
1− (1− πk)(1− πl)

D(π)
[1 + o(1)]

}
uniformly in k and l, where D(π) =

∑
U πi(1− πi).

A3. There are two positive constants C2 and C3 and β > 1/2 such that, for all N and for all
(r, t) ∈ [0, T ]× [0, T ],

1

N

∑
k∈U

(Yk(0))2 < C2 and
1

N

∑
k∈U

(Yk(t)− Yk(r))2 < C3|t− r|2β .

Assumptions A1 and A2 are classical hypotheses in survey sampling and deal with the first
and second order inclusion probabilities. They are satisfied for high entropy sampling designs
with fixed size (see for example Hájek (1964)). They directly imply that cn ≤ D(π) ≤ n, for some
strictly positive constant c. Assumption A3 is a regularity condition on the individual trajectories.
Even if point-wise consistency, for each fixed value of t, can be proven without any condition on
β, this regularity condition is required to get the uniform convergence of the mean estimator (see
Cardot and Josserand (2011)).

Proposition 8.1. Suppose that A1 and A3 are fulfilled and the sampling design is simple random
sampling without replacement or suppose that hypotheses A1-A3 are fulfilled. Then

sup
t∈[0,T ]

∣∣∣∣∣∑
i∈s

diAi(t)−
∑
i∈U

Ai(t)

∣∣∣∣∣ = Op(n
−1/2).

Proof. Recall that, for t ∈ [0, T ],

Ai(t) =
−1

1− πi

∑
j∈U,j 6=i

πij − πiπj
πj

Yj(t).

For simple random sampling without replacement, πi = n/N and πij = n(n− 1)/(N(N − 1))

for i 6= j, and we have that (with di = 1/πi),∑
i∈s

diAi(t)−
∑
i∈U

Ai(t) =
1

N − 1

(
tY (t)− t̂Y (t)

)
(31)

The result is then a direct consequence of Proposition 3.1 in Cardot and Josserand (2011).

Consider now the more general case of fixed-size high entropy sampling designs. Introducing
the approximation to the second order inclusion probabilities in Ai we get after some algebra

∑
i∈s

diAi(t)−
∑
i∈U

Ai(t) ≈
1

D(π)

(∑
U

πi(1− πi)Yi(t)−
∑
s

diπi(1− πi)Yi(t)

)
, t ∈ [0, T ]. (32)

The weighted trajectories πi(1− πi)Yi(t), t ∈ [0, T ] also satisfy assumption A3 and the result is a
consequence of Proposition 3.1 in Cardot and Josserand (2011) (see also Cardot et al. (2014)).

References

Beaumont, J.-F., Haziza, D., and Ruiz-Gazen, A. (2013). A unified approach to robust
estimation in finite population sampling. Biometrika, 100(3):555–569.

26



Bertail, P. and Combris, P. (1997). Bootstrap généralisé d’un sondage. Annales d’Économie
et de Statistique, 46:49–83.

Booth, J. G., Butler, R. W., and Hall, P. (1994). Bootstrap methods for finite populations.
Journal of the American Statistical Association, 89(428):1282–1289.

Brown, B. (1983). Statistical use of the spatial median. Journal of the Royal Statistical
Society, B, 45:25–30.

Cardot, H., Chaouch, M., Goga, C., and Labruère, C. (2010). Properties of design-based
functional principal components analysis. Journal of Statistical Planning and Inference,
140(1):75–91.

Cardot, H., Degras, D., and Josserand, E. (2013a). Confidence bands for Horvitz-
Thompson estimators using sampled noisy functional data. Bernoulli, 19:2067–2097.

Cardot, H., Dessertaine, A., Goga, C., Josserand, É., and Lardin, P. (2013b). Comparison
of different sample designs and construction of confidence bands to estimate the mean
of functional data: An illustration on electricity consumption. Survey Methodology,
39:283–301.

Cardot, H., Goga, C., and Lardin, P. (2014). Variance estimation and asymptotic con-
fidence bands for the mean estimator of sampled functional data with high entropy
unequal probability sampling designs. Scandinavian J. of Statistics, 41:516–534.

Cardot, H., Goga, C., Lardin, P., et al. (2013c). Uniform convergence and asymptotic
confidence bands for model-assisted estimators of the mean of sampled functional data.
Electronic Journal of Statistics, 7:562–596.

Cardot, H. and Josserand, E. (2011). Horvitz-Thompson estimators for functional data:
asymptotic confidence bands and optimal allocation for stratified sampling. Biometrika,
98:107–118.

Chambers, R. L. (1986). Outlier robust finite population estimation. Journal of the Amer-
ican Statistical Association, 81(396):1063–1069.

Chaouch, M. and Goga, C. (2012). Using complex surveys to estimate the L1-median
of a functional variable: application to electricity load curves. International Statistical
Review, 80(1):40–59.

Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer.
Statist. Assoc., 91:862–872.

Clark, R., Kokic, P., and Smith, P. (2017). A comparison of two robust estimation methods
for business surveys. International Statistical Review, 85(2):270–289.

27



Cuesta-Albertos, J. A., Fraiman, R., and Ransford, T. (2006). Random projections and
goodness-of-fit tests in infinite-dimensional spaces. Bulletin of the Brazilian Mathemat-
ical Society, 37(4):477–501.

Deroyon, T. and Favre-Martinoz, C. (2018). Comparison of conditional-bias and Kokic-Bell
methods for Poisson and stratified sampling. Survey Methodology, to appear.

De Moliner, A. (2017). Estimation robuste de courbes de consommation électrique moyennes
par sondage pour de petits domaines en présence de valeurs manquantes (in French). PhD
thesis, Université de Bourgogne Franche-Comté.

Degras, D. (2014). Rotation sampling for functional data. Statistica Sinica, 24(3):1075–
1095.

Favre-Martinoz, C. (2015). Estimation robuste en population finie et infinie. PhD thesis,
Université de Rennes 1, France.

Favre-Martinoz, C., Haziza, D., and Beaumont, J. (2015). A method for determining the
cut-off points for winsorized estimators with application to domain estimation. Survey
Methodology, 41:51 – 77.

Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. Test, 10(2):419–
440.

Gervini, D. (2008). Robust functional estimation using the spatial median and spherical
principal components. Biometrika, 95:587–600.

Gervini, D. (2012). Outlier detection and trimmed estimation for general functional data.
Statistica Sinica, 22:1639–1660.

Gross, S. (1980). Median estimation in sample surveys. In ASA Proceedings of Survey
Research, pages 181–184.

Gwet, J.-P. and Rivest, L.-P. (1992). Outlier resistant alternatives to the ratio estimator.
Journal of the American Statistical Association, 87(420):1174–1182.

Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from
a finite population. Annals of Mathematical Statistics, 35:1491–1523.

Hyndman, R. J. and Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for
functional data. J. Comput. Graph. Statist., 19:29–45.

Jolliffe, I. T. (2002). Principal component analysis. Springer Series in Statistics. Springer-
Verlag, New York, second edition.

Kemperman, J. (1987). The median of a finite measure on a Banach space. In: Dodge,
Y. (Ed.), Statistical Data Analysis Based on the L1 Norm and Related Methods, North-
Holland, Amesterdam, pages 217–230.

28



Kokic, P. and Bell, P. (1994). Optimal winsorizing cutoffs for a stratified finite population
estimator. Journal of Official Statistics, 10:419–419.

Lardin-Puech, P., Cardot, H., and Goga, C. (2014). Analysing large datasets of functional
data: a survey sampling point of view. Journal de la Société Française de Statistique,
155(4):70–94.

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., and Cohen, K. L.
(1999). Robust principal component analysis for functional data. Test, 8:1–73.

López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data.
Journal of the American Statistical Association, 104(486):718–734.

Mallat, S. (1998). A wavelet tour of signal processing. Academic Press, Inc., San Diego,
CA.

Muñoz-Pichardo, J., Munoz-Garcia, J., Moreno-Rebollo, J., and Pino-Mejias, R. (1995).
A new approach to influence analysis in linear models. Sankhyā: The Indian Journal of
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