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Assessment of an anisotropic coarse-grained model for
cis-1,4-polybutadiene: a bottom-up approach†

Ioannis Tanis,a Bernard Rousseau,b Laurent Soulard,a,c and Claire A. Lemarchand,∗a,c

The spherical representation usually utilized for the coarse-grained particles of soft matter systems
is an assumption and pertinent studies have shown that both structural and dynamical properties
can depend on anisotropic effects. On these grounds, we develop coarse-grained equations of motion
which take into account explicitly the anisotropy of the beads. As a first step, this model incorporates
only conservative terms. Inclusion of the dissipative and random terms is in principle possible but
is beyond the scope of this study. The translational dynamics of the beads is tracked using the
position and momentum of their center of mass, while their rotational dynamics is modeled by
representing their orientation through the use of quaternions, similarly to the case of rigid bodies.
The associated force and torque controlling the motion are derived from atomistic molecular dynamics
(MD) simulations via a bottom-up approach and define a coarse-grained potential. The assumptions
of the model are clearly stated and checked for a reference system of a cis-1,4-polybutadiene melt. In
particular, the choice of the angular velocity as a slow variable is justified by comparing its dynamics
to atomic vibrations. The accuracy of this approach to reproduce static structural features of the
polymer melt is assessed.

1 Introduction
Coarse-grained (CG) simulations of simple liquids, polymers and
biomolecular systems are a powerful tool to obtain structural
and even dynamical properties more efficiently than full atomistic
simulations. This is due to the fact that CG simulations reduce the
number of degrees of freedom to be considered and allow for a
larger time step to be used1–3. Among the coarse-graining strate-
gies, bottom-up approaches are appealing because they root the
whole coarse-graining framework on the more reliable atomistic
simulations explicitly. The derivation of the full coarse-grained
equations of motion from the atomistic equations of motion has
been the subject of a detailed study4 and relies on a good time
scale separation between slow CG variables and fast atomic vi-
brations. The full coarse-grained equations involve a conserva-
tive force which is exactly the force on a bead averaged over the
atomic degrees of freedom and which depend in principle on all
the CG degrees of freedom2,4. This many-body potential is not
easy to compute and many approximations need to be made to
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obtain a CG potential tractable to calculate2. Different sets of
approximations exist but none of them is able to satisfy at the
same time the following features: accuracy on different structural
properties, efficiency and transferability2. Different bottom-up
approaches are utilized to evaluate the CG potential, such as the
iterative Boltzmann technique5,6, the force matching method7–9,
and the more recent trajectory mapping method10–12. In this
work, we chose the force matching method also used in Ref.4

in its derivation of the full CG equations of motion, and for which
the approximations are clearly stated. The full CG equations of
motion also contain dissipative and random forces which can be
obtained from a bottom-up approach. The friction coefficient of
the dissipative forces can be evaluated in constrained atomic sim-
ulations where the CG variables are kept constant and only the
atomic degrees of freedom are allowed to relax. The use of this
bottom-up friction coefficient allows one to obtain not only struc-
tural properties comparable to those obtained in atomistic simu-
lations but also to describe accurately the dynamics13–16.

Prior to the establishment of the full CG equations of motion
from the atomistic simulations and of the ensuing approximations
made to calculate a tractable CG potential and friction coefficient,
the CG variables themselves need to be selected2. Usually the CG
variables are chosen to be the positions and velocities of the bead
centers of mass2,4. Nevertheless, this is not always sufficient to
fully describe the system both structurally and dynamically2. The
anisotropy of the bead in particular is an obvious complemen-
tary coarse-grained variable when beads are clearly anisotropic,
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like ellipsoidal colloids17–20. Anisotropic CG potentials have been
derived in a bottom-up approach for example for amino acids
in proteins21,22 and for monomers in polystyrene23,24 or semi-
flexible ring polymers25,26. In these studies, the improvement of
the structural properties of the CG system when the anisotropy is
taken into account has been tested by using CG Monte-Carlo sim-
ulations. In cis-1,4-polybutadiene also, the beads, whether they
correspond to one or several monomers, are anisotropic11 and
this anisotropy appears to have an important impact on the CG
potential16 and consequently on the structural properties. More-
over, it has been argued that taking into account the bead orien-
tation as a CG variable can improve the calculation of the dynam-
ical properties in cis-1,4-polybutadiene16. Indeed, following the
bottom-up approach of Ref.4, Lemarchand and coworkers16 eval-
uated the friction coefficient in constrained simulations where the
bead positions and velocities are fixed and noticed that the relax-
ation of the bead orientation slows down dramatically compared
to unconstrained simulations. This implies a coupling between
translational and rotational degrees of freedom which cannot be
considered as slow independently. It also suggests that the calcu-
lation of the friction coefficient in these constrained simulations
neglects the effect of the slow relaxation of the bead orientation.
The latter can have a strong impact on the dynamical properties.

For the aforementioned reasons, this work tackles the problem
of applying the theoretical framework proposed in Ref.4 to the
case where the coarse-grained variables include not only the po-
sitions and velocities of the bead centers of mass but also their
orientations. As a first step in that direction, this work aims at ex-
pressing explicitly the CG bead orientation in terms of atomistic
variables, deriving the full atomic equations of motion for the
previously defined CG variables, and obtaining the corresponding
CG equations of motion including only conservative forces. The
derivation of the dissipative and random forces will be the subject
of a future study. The earlier mentioned coarse-graining method-
ology is applied to a cis-1,4-polybutadiene melt, a usual reference
system to test coarse-graining procedures16,27–30. The validity of
all the approximations made to derive the CG equations of mo-
tion is tested on this system. The obtained CG anisotropic model
is implemented and the corresponding CG dynamical simulations
are performed. The structural properties of the system obtained
in atomistic simulations, isotropic CG simulations and anisotropic
CG simulations are compared.

The paper is organized as follows. Methods and technical
details for atomistic and CG dynamical simulations are given
in Sec. 2. Section 3 describes the coarse-graining methodol-
ogy and presents the anisotropic CG potential. The locally
anisotropic structural properties of the melt obtained in atom-
istic and anisotropic CG simulations as well as the more common
radial distribution functions and chains dimensions obtained in
atomistic, isotropic CG and anisotropic CG simulations are com-
pared in Sec. 4. Finally, the approximations done in Sec. 3 are
carefully tested and discussed in Sec. 5 Section 6 contains a sum-
mary and a conclusion.

2 Methods
2.1 Molecular dynamics simulation details
The molecular dynamics (MD) simulations were conducted using
the STAMP code31,32, a code developed at CEA and parallelized
using MPI. Polymer chains are represented by united-atoms (UA)
and the system comprises 200 chains of 12 monomers each. An
illustration of a chain is displayed in Fig. 1. The force field used
is that developed by Harmandaris33, the latter being based on an
earlier model by Smith34,35. Its detailed parameters have been
given in16. The cutoff distance used for the van der Waals inter-
actions is of 10 Å. The simulations can be carried out in the mi-
crocanonical (NVE) ensemble, in the canonical ensemble (NVT)
with a Nose-Hoover thermostat using a coupling constant of 0.1
ps or in constant pressure-constant temperature (NPT) ensemble
using a Nose-Hoover thermostat and barostat36 with the same
coupling constant for the thermostat and a coupling constant of
2.6 fs for the barostat. Long-range corrections to the energy and
the pressure are added using the approximation that the radial
distribution functions are equal to unity beyond the cutoff. The
integration algorithm is velocity Verlet and the time step is 1 fs.

Fig. 1 Illustration of a single chain of cis-1,4-polybutadiene of 12
monomers.

The state point simulated is the same as that chosen in16 and
corresponds to a temperature of 500 K and ambient pressure. The
average density obtained in the MD simulation is 0.772 g/cm3,
while the experimental density of cis-1,4-polybutadiene for high
molecular weights of Mw = 2− 3.105 kg/mol is around 0.78137,
a difference of about 1%. Furthermore, the density of a melt
of cis-1,4-polybutadiene chains of 12 monomers described by a
united-atom potential is known to exhibit a difference of only 5%
compared to the density of a melt of very long chains38. The
structural properties of the melt described in this work are conse-
quently expected to be very close to those of a melt with longer
chains.

At an initial stage, the melt sample is relaxed for 2 ns in the
NPT ensemble. Then, to obtain the data necessary to construct
the coarse-grained potential, simulations are carried out in the
NVT ensemble for 10 ns and the position, velocity and force of
each atom is saved every 0.1 ps. To obtain the data necessary to
calculate autocorrelation functions, simulations are carried out in
the NVE ensemble for 1 ns with a frame-saving period of 0.01ps.

2.2 Coarse-grained simulations
The coarse-grained (CG) simulations were also conducted using
the STAMP code. The algorithm used to carry out the CG simu-
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λ CG iso CG aniso
total time

1 39 29
2 105 71
3 172 122

time per particle per iteration
1 1.0 0.7
2 1.3 0.9
3 1.4 1.0

Table 1 Factor by which the execution time (total time and time per
particle and iteration) of the CG simulations is divided compared to an
equivalent MD simulation for different levels of coarse-graining λ

lations is a simple adaptation of an algorithm used to integrate
the equations of motion of rigid molecules. The rigid molecule
algorithm is that described in Ref.39 as a modified version of the
leap-frog algorithm where an iterative loop on the quaternion at
half step is performed to obtain the angular velocity at the next
step. It was simply adapted to use the derivative with respect to
the distance and the derivative with respect to the angle of a tab-
ulated potential as the force and torque on a bead, respectively.
The time step in the CG simulations is of 10 fs, ten times larger
than that used in the MD simulations. The cutoff distance of the
tabulated potential is of 20 Å. The simulations are carried out in
the NVT ensemble using a Langevin thermostat with a friction co-
efficient of 1012 s−1. An isotropic version of the CG simulations
using a potential depending only on the distance and not calcu-
lating any torque is also implemented for comparison purposes.

The CG simulations are carried out for the same system at the
same state point as that simulated in MD, using initial CG con-
figurations obtained from equilibrated MD configurations. The
CG simulations also last 10 ns and the frame-saving period in CG
simulations is of 1 ps.

2.3 Comparative performances
The performances of the MD, isotropic and anisotropic CG simu-
lations are compared on the same system and the same machine
for different levels of coarse-graining λ, number of monomers per
bead. The factor by which the total execution time and the time
per particle and iteration is divided in CG simulations compared
to the corresponding time in MD is listed in Table 1 for all cases.
The gain in the total execution time in CG simulations has three
origins: (i) the larger time step allows for a brute gain of a fac-
tor 10, (ii) the lower number of particles enables a direct gain
of 4 λ, (iii) the lower number of particles also leads to a smaller
particle density which decreases the execution time per iteration
and particle. However, the larger cutoff distance in CG simula-
tion tend to increase the execution time per iteration and particle
compared to its MD counterpart. In total, the CG simulations are
1 to 2 orders of magnitude faster than the MD simulations. The
anisotropic CG simulations are always a bit slower than the cor-
responding isotropic simulations, but the gain in speed compared
to MD is similar in both cases.

3 Formulation of the anisotropic model
3.1 Choice of the slow variables

Taking into account the bead orientation in CG simulations of
polymer melts seems necessary for two main reasons, (i) beads
can be anisotropic11,16 and this can impact the structural prop-
erties of the melt and (ii) the dynamics of the bead orientation
seem correlated to those of the bead velocity usually chosen as a
slow variable16. Before deriving the CG equations of motion for
the bead orientation, we need to verify that it is indeed a slow
variable. To do so we compare its characteristic relaxation time
to that of the usual slow variables, positions and velocities of the
beads’ centers of mass, and the usual fast variables, total forces
on the beads4.

3.1.1 Bead orientation.

To quantify the bead orientation, we propose to use the well-
known eigenvectors of the bead inertia tensor, similarly to what is
done for rigid bodies. More specifically, the inertia tensor of bead
µ is defined as:

Iµ =
∑
i∈µ

mi

(
(∆ri ·∆ri)E−∆ri⊗∆ri

)
, (1)

where mi is the mass of atom i, ∆ri = ri−Rµ, the position of
atom i with respect to the center of mass Rµ of bead µ, E the
identity matrix, and⊗ the tensor product. The eigenvectors of the
inertia tensor at time t are denoted uµ,1(t), uµ,2(t), and uµ,3(t).
The index µ is dropped for easy readability when possible.

To qualitatively compare the relaxation times of the first eigen-
vector uµ,1(t) to those of known slow and fast variables, we com-
pare their normalized autocorrelation functions (ACF). The nor-
malized autocorrelation function of a vector Xµ(t) depending on
time t and bead µ is defined as:

ACF(t) =
〈Xµ(t0 + t) ·Xµ(t0)〉µ,t0
〈Xµ(t0) ·Xµ(t0)〉µ,t0

, (2)

where 〈·〉µ,t0 denotes an average over all beads and all initial
times t0 and · is the usual dot product. The ACFs are obtained
in the NVE ensemble to prevent any artefact from a thermostat.
The variables are evaluated every 10 fs to characterize rapidly
relaxing variables. The normalized ACF of the first eigenvector
u1 is compared to those of the velocity V and the force F of a
bead in Fig. 2 (a) for different levels of coarse-graining, from 1
to 6 monomers per bead. The ACFs of the force F are starting
at 1 and fluctuating around 0 after only a couple of points for all
levels of coarse-graining. The results are nearly identical whether
the average is done on a 500 ps time span or a 1 ns time span (not
shown) indicating that the fluctuations seen are not due to noise
but are significant. As points are separated by 10 fs, the order
of magnitude of the force relaxation time should be around this
value. This shows that the fluctuations of the force are indeed
sensitive to fast atomic vibrations, which time scale is short and
does not change as the level of coarse-graining increases. This
result has been shown before on different systems4,16. On the
contrary, the ACFs of the bead velocity V are still decaying af-
ter 10 ps. Moreover, it is decaying more and more slowly as the
level of coarse-graining increases. For these two reasons, it can
be safely considered as a slow variable. This has also been shown
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previously on different systems4,16. The ACFs of the eigenvector
u1 have very similar features to those of the bead velocity V: it
is still decaying after 100 ps, an even longer time than that of the
velocity ACF, and it is decaying more and more slowly as the level
of coarse-graining increases. Very similar trends are obtained for
the two other eigenvectors (not shown). The bead orientation,
defined as the eigenvectors of the inertia tensor, is consequently
a slow variable and a complete coarse-graining description of the
system cannot ignore this slow variable. The fact that the relax-
ation of the bead orientation is quite slow and slows down even
more as the level of coarse-graining increases is not new in itself
but its direct comparison to the relaxation of usual CG slow vari-
ables is. The fact that it is a slow variable in the same sense as
the bead velocity is the first main result of the paper.

3.1.2 Angular velocity.

To elaborate a coarse-graining model which takes into account the
bead orientation, we will need to follow its dynamics. We conse-
quently define the angular velocity ωωω associated to the eigenvec-
tors of the bead inertia tensor as the unique vector satisfying:

u̇i(t) = ωωωµ(t)×ui(t), (3)

where ṫ denotes the time derivative and × the usual cross prod-
uct. For rigid bodies this equation can be applied to any atomic
position with respect to the bead center of mass. In the general
case of non-rigid bodies considered here, this can only be applied
to the basis of eigenvectors of the inertia tensor. Mirroring what
is done for the center of mass position and velocity in coarse-
graining strategies, both the eigenvectors and the angular velocity
will be considered as slow variables and their equations of motion
need to be derived and averaged over fast atomic variables. The
equation of motion for ωωω can be written as:

dI(t)ωωω(t)
dt

= T(t). (4)

For rigid bodies the vector T(t) is exactly the torque on bead µ.
For non-rigid bodies, which is the general case studied here, the
vector T(t) is not the torque and is related to the force, posi-
tion and velocity of each atom in a much more complicated way.
However as the inertia tensor I and the angular velocity ωωω(t) are
clearly defined in terms of atomic variables, this relation does ex-
ist. By analogy to the case of rigid bodies, vector T will be named
the effective torque. A useful and practical expression for the ef-
fective torque T is obtained by rearranging Eq. 4 as shown in the
ESI†, Sec. S1:

T ′i = Iiω̇
′
i+ İiω

′
i−ω

′
i−1ω

′
i+1(Ii+1− Ii−1) for i ∈ 1,2,3, (5)

where T ′i are the components of the effective torque T in the
current basis of eigenvectors, Ii is the ith moment of inertia and
with the convention that i+ 1 and i−1 are the indices following
and preceding i in a circular permutation, respectively.

We have now defined three new types of variables per bead, the
eigenvectors u1, u2 and u3, the angular velocity ωωω and the effec-
tive torque T. This is done in the idea that these new quantities
have a similar role to play in the coarse-graining model as the
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Fig. 2 (a) Time evolution of the normalized autocorrelation function
(ACF), as defined in Eq. 2, of the velocity V, force F and eigenvector
u1 of a bead for different coarse-graining levels λ. The unit of the y-axis
is arbitrary. The ACF of the velocity V is multiplied by 50 so that the
evolution at long time is clearly visible on the same scale as the other
ACFs. (b) Same as (a) for seven quantities the bead velocity V, force
F, eigenvectors u1, u2, u3, angular velocity ωωω, and effective torque T
for a level of coarse-graining λ = 1. The ACF of the angular velocity ωωω
is multiplied by 100 and the noise on this quantity is reduced using a
moving average of size 10. These modifications are done only to improve
visibility. (c) Same as (a) and (b) for the angular velocity ωωω at different
levels of coarse-graining λ.
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center of mass position R, the center of mass velocity V and the
force F, respectively. Before going into the details of the coarse-
graining model, we need to check that the angular velocity ωωω

can indeed be considered as a slow variable in the same sense as
the velocity V and that the effective torque T is sensitive to fast
atomic vibrations as the force F. Figure 2 (b) shows the normal-
ized ACF of the angular velocity ωωω and the effective torque T for
a level of coarse-graining λ of 1 monomer per bead. The ACFs
of V, F, u1, u2 and u3, visible in Fig. 2 (a) are also reproduced
in Fig. 2 (b) to facilitate the comparison. The ACF of the effec-
tive torque T has a very similar behavior as that of the force F, it
fluctuates around 0 after only a few tens of femtoseconds and can
safely be considered as a fast variable like the force. The ACF of
the angular velocity ωωω relaxes more quickly than that of the veloc-
ity V, however it is still relaxing around 1 ps, when both the ACFs
of the force F and the effective torque T are fluctuating around 0.
Thus, the angular velocity seems to be the fastest relaxing of all
the slow variables but can still be considered as a slow variable.
This is the second main result of this paper.

The variation of the relaxation of the angular velocity ωωω with
the level of coarse-graining is displayed in Fig. 2 (c). Except for
the case of λ = 1 for which the angular velocity seems to be the
most slowly relaxing, the angular velocity relaxes more and more
slowly as the degree of coarse-graining increases, reinforcing the
results that it is a slow variable in the same sense as the velocity
of the center of mass.

3.2 Full equations of motion in terms of atomic variables
As explained in Sec. 3.1, we choose as slow variables the cen-
ter of mass position Rµ and velocity Vµ of bead µ and also the
eigenvectors uµ,1, uµ,2 and uµ,3 of the inertia tensor of bead µ
and its angular velocity ωωωµ. These variables are illustrated on a
chain of cis-1,4-polybutadiene in Fig. 3 (a). Before deriving the
coarse-grained equations of motion for these slow variables, it is
necessary to make them explicit at the atomistic level.

The equations of motion for the center of mass position Rµ and
velocity Vµ are straightforward and read

Ṙµ = Vµ (6)

MµV̇µ = Fµ, (7)

where Mµ =
∑
i∈µmi is the mass of bead µ and Fµ =

∑
i∈µ fi is

the sum of all forces fi
To get the equations of motion for the eigenvectors uµ,1, uµ,2

and uµ,3 and the angular velocity ωωωµ a bit more work is neces-
sary. The equation of motion of the eigenvectors can be expressed
in a much more compact way using the corresponding quaternion
Qµ as is done in the case of rigid bodies. More specifically, there is
a single rotation which transforms the reference basis (e1,e2,e3)
of the laboratory frame into the current basis (u1(t),u2(t),u3(t)).
Its transpose, which corresponds to the opposite rotation, is de-
noted C(t) and satisfies:

ωωω′(t) = C(t)ωωω(t) (8)

where ωωω(t) is a vector, for example the angular velocity, which

components are expressed in the reference basis (e1,e2,e3)
and ωωω′(t) is the same vector expressed in the current basis
(u1(t),u2(t),u3(t)). The rotation matrix C(t) is associated to
the quaternion Q by

C(t) =

Q2
0 +Q2

1−Q2
2−Q2

3 2(Q1Q2 +Q0Q3) 2(Q1Q3−Q0Q2)
2(Q1Q2−Q0Q3) Q2

0−Q2
1 +Q2

2−Q2
3 2(Q2Q3 +Q0Q1)

2(Q1Q3 +Q0Q2) 2(Q2Q3−Q0Q1) Q2
0−Q2

1−Q2
2 +Q2

3

 ,
(9)

where the index µ is dropped for clarity and Qi for i ∈ 0,1,2,3
are the four components of the quaternion Q. By construction
quaternion Q has norm

∑3
i=0Q

2
i = 1.

Fig. 3 (a) Illustration of the slow variables Rµ, Vµ, uµ,1, uµ,2, uµ,3,
and ωωωµ on a chain of cis-1,4-polybutadiene. (b) Illustration of the vari-
ables Rµν and φµν relevant for the coarse-grained pair potential.

As shown in the ESI†, Sec. S2, and in a similar way to what is
done for rigid bodies40, the equation of motion of the quaternion
is:

Q̇µ = 1
2Aw′(t) (10)

where matrix A is

A =


Q0 −Q1 −Q2 −Q3
Q1 Q0 −Q3 Q2
Q2 Q3 Q0 −Q1
Q3 −Q2 Q1 Q0

 (11)

and the quaternion w′(t) is linked to the vector ωωω′(t) by

w′(t) =


0
ω′1
ω′2
ω′3

 (12)

where ω′i for i ∈ 1,2,3 are the components of the angular velocity
ωωω(t) in the current basis (u1(t),u2(t),u3(t)). Note here that a
quaternion is denoted with a sans serif character like Q while the
usual convention of using bold characters for denoting vectors
and matrices is used.

The equation of motion for ωωω can be derived from Eq. 5 defin-
ing the effective torque:

ω̇′i = T ′i
Ii
− İiω

′
i

Ii
+ω′i+1ω

′
i−1

(Ii+1− Ii−1)
Ii

for i ∈ 1,2,3, (13)
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3.3 Coarse-grained equations of motion

Eqs 6, 7, 10, and 13 are the full equations of motion for the rele-
vant variables. They still depend on all atomic variables through
the force, the effective torque and the inertia tensor of a bead.
They need to be averaged under suitable approximations to in-
tegrate out effectively the atomic vibrations and keep only a de-
pendence on the relevant variables. This work is thoroughly done
for any relevant variable in Ref.4. Under the Markovian approxi-
mation, the relevant variables evolve much more slowly than the
fast atomic vibrations. The generalized Langevin equation cor-
responding to Eq. (25) of Ref.4 obtained under the Markovian
approximation is for any set of slow variables α:

dααα(t)
dt

= ν(ααα(t)) +M(ααα(t))∂S
∂ααα

(ααα(t)) +kB
∂M

∂ααα
(ααα(t)) + R(t),

(14)
where M is a memory kernel, S the entropy of the system, R a
random white noise, and where

ν(ααα) = 1
Ω(ααα)

∫
LA(z)ρeq(z)δ(A(z)−ααα)dz (15)

and
LA(z) = ∂a

∂t
(t,z), a(0,z) = A(z) (16)

where z is the vector of all the microscopic variables and a(t,z)
and A(z) are the slow variables expressed in terms of the micro-
scopic variables z. The two notations do and do not highlight the
time dependence, respectively. Vector ααα is the considered set of
values for the slow variable. L is the Liouville operator control-
ling the equation of motion of the slow variables and ρeq is the
equilibrium probability density of the microscopic system. With
words, Eq. 15 just means that ν(ααα) is the average of the deriva-
tive ∂a/∂t with respect to time of the slow variable a(t,z) over
the fast degrees of freedom z for the fixed values ααα of the slow
variables A(z) at equilibrium. This average is denoted 〈∂a/∂t〉
in the following. By construction, in Eq. 14 all functions depend
only on the slow variables ααα and the effect of the fast variables
is present only through the noise R, which satisfies a fluctuation
dissipation theorem:

〈R(t)R(s)〉= kBM(α)δ(t−s), (17)

where kB is the Boltzmann constant.

When there is a good time scale separation between the posi-
tion Rµ and velocity Vµ of the bead center of mass and all other
atomic variables, Eq. 14 reduces to4:

Ṙµ = Vµ (18)

MµV̇µ = 〈Fµ〉+
∑
ν

γγγµν(Vµ−Vν) +kBT
∑
ν

∂γγγµν
∂(MµVµ) + F̃µ,

(19)

where 〈Fµ〉 is the average of the force on bead µ for fixed values
of all the slow variables Rν and Vν over the fast variables as

defined in Eq. 15, γγγµν is the friction tensor, and F̃µ is a white
noise. This leads after some more approximations to the DPD
equations of motion4.

In Sec. 3.1, we have shown that the bead orientation and angu-
lar velocity are also slow variables. In this work, we consequently
assume that a good time scale separation is achieved when the
slow variables are the positions Rµ, velocities Vµ, quaternions
Qµ and angular velocity ωωωµ of bead µ. To simplify Eq. 14 further,
we neglect the dissipative forces, in other words the memory ker-
nel M is set to zero. As a consequence of Eq. 17, the noise is also
zero. The corresponding equation will only be able to reproduce
part of the structural properties of the atomic system but not its
dynamical properties. Under those assumptions, Eq. 14 amounts
to an average over the fast variables of the four equations of mo-
tion Eqs 6, 7, 10, and 13. This leads to:

Ṙµ = Vµ, (20)

MµV̇µ = 〈Fµ〉, (21)

Q̇µ = 1
2Aw′, (22)

ω̇′µ,i = 〈
T ′µ,i
Ii
〉−〈

İµ,iω
′
µ,i

Ii
〉+ω′µ,i+1ω

′
µ,i−1〈

(Ii+1− Ii−1)
Ii

〉 for i ∈ {1,2,3},

(23)

where the matrix A is defined in Eq. 11. To get Eq. 23 from
the average of Eq. 13, we used the fact that the average of the
sum is the sum of the average and that the angular velocity ωωω′µ
expressed in the current basis is a slow variable, because ωωωµ is
a slow variable by definition and the current basis is also a slow
variable by definition.

We then make additional assumptions which drastically sim-
plify Eq. 23. We assume that 〈T ′µ,i/Ii〉 = 〈T ′µ,i〉/〈Ii〉 and that
the moments of inertia 〈Ii〉 do not depend on the slow vari-
ables and are always equal to their average value. To avoid any
confusion between the average 〈·〉 which usually depends on all
the slow variables, we denote the average moments of inertia
Īi. We, then assume, that the second term on the right-hand
side of Eq. 23 〈İµ,iω′µ,i/Ii〉 can be neglected, which is consis-
tent with the assumption that the moments of inertia are con-
stant. In particular, they do not depend on time. Finally, for
the third term on the right-hand side of Eq. 23, we assume that
〈(Ii+1− Ii−1)/(Ii)〉= (Īi+1− Īi−1)(Īi). The equation of motion
of the angular velocity reads:

ω̇′µ,i =
〈T ′µ,i〉
Īi

+ω′µ,i+1ω
′
µ,i−1

(Īi+1− Īi−1)
Īi

for i∈ 1,2,3. (24)

To calculate the averages 〈·〉 in Eqs. 21 and 24, we make fur-
ther assumptions. For the average force 〈Fµ〉, these assumptions
are usual and similar to those done in Ref.16. Under the pair
approximation, the force on bead µ is

〈Fµ〉=
∑
ν 6=µ

〈Fµν〉, (25)

where 〈Fµν〉 is the average force due to bead ν on bead µ. We
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further assume that the force 〈Fµν〉 derives from a potential W
which depends only on the distance Rµν between bead µ and
ν and the angle φµν between the principal directions of bead µ

and ν. The angle φµν is chosen more specifically as the angle be-
tween the eigenvectors of the two beads associated to the lowest
eigenvalue of the inertia tensor:

cosφµν = uµ,1 ·uν,1. (26)

We neglect the dependence on the positions, velocities and orien-
tations of all other beads. The variables Rµν and φµν relevant for
the pair force are illustrated in Fig. 3 (b). The proposed poten-
tial W is close to the popular Gay-Berne potential41,42 but a little
simpler: it depends only on one distance Rµν and one angle φµν
whereas the Gay-Berne potential depends on these two variables
and also on two angles φµ and φν , defined as the angles between
the vector linking the two centers of mass and the main direction
of bead µ and ν, respectively. This simplification allows the force
to be in the same direction as in the isotropic case of a potential
depending only on the distance, but with a different magnitude.
Indeed, bearing in mind that ∂φµν/∂Rµ = 0, one can show that

〈Fµν〉=− ∂W

∂Rµν
(Rµν ,φµν)eµν , (27)

where eµν = (Rµ−Rν)/|Rµ−Rν |.
To extract the average effective torque 〈T′µ〉 of Eq. 24, we ex-

press it back into the reference basis:

〈Tµ〉=
3∑
i=1
〈T ′µ,i〉uµ,i. (28)

The following assumptions are then made. The pair approxima-
tion for the effective torque leads to

〈Tµ〉=
∑
ν 6=µ

〈Tµν〉. (29)

Moreover, and similarly to the case of rigid bodies43,44, we as-
sume that the torque 〈Tµν〉 derives from the same potential as
the force and depends only on the distance and angle between
the bead principal directions through:

〈Tµν〉=− ∂W

∂ cosφµν
uµ,1×uν,1. (30)

3.4 Computation of the coarse-grained anisotropic potential
W

To obtain the coarse-grained potential W from atomistic simula-
tions, we obtain its derivative with respect to the distance through
Eq. 27 and its derivative with respect to the angle through Eq. 30.
For the derivative with respect to the distance, one has

∂W

∂Rµν
=−〈Fµν〉 ·eµν , (31)

and for the derivative with respect to the angle, one has

∂W

∂ cosφµν
=− 1

sin2φµν
〈Tµν〉 · (uµ,1×uν,1), (32)

where the average 〈·〉 is done for fixed values of the slow vari-
ables. The calculation of the average pair force 〈Fµν〉 and the
average pair effective torque 〈Tµν〉 is detailed in the ESI†, Sec.
S3.

Once the two partial derivatives of the potential are obtained,
the potential can be computed. This can be done by integration
over the distance first and the angle then or the reverse. Integrat-
ing over the distance first and the angle then leads to

W (R,cosφ) =
∫ R

Rc

dR′
∂W

∂R
(R′,cosφ)+

∫ cosφ

0
dC′

∂W

∂ cosφ (Rc,C′),

(33)
where the bound in distance is chosen to be the cutoff radius Rc
of the potential and the bound in cosφ is chosen arbitrarily to be
zero. Integrating over the angle first and the distance then and
choosing the same bounds leads to

W (R,cosφ) =
∫ cosφ

0
dC′

∂W

∂ cosφ (R,C′) +
∫ R

Rc

dR′
∂W

∂R
(R′,0).

(34)
If the potentialW is an exact differential, Eqs. 33 and 34 will lead
to the same result.
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Fig. 4 (a) Variation of the non-bonded potential W nb with the distance
R for different values of cosφ using the two integration paths given
in Eq. 33 (solid lines) and Eq. 34 (dotted lines) for a level of coarse-
graining λ of 1 monomer per bead. The thick black lines correspond to
the isotropic potential. (b) Same as (a) for the variation with cosφ for
different values of the distance R.

The results of the two integrations are compared for the repre-
sentative case of the non bonded potentials W nb in Fig. 4 for a
level of coarse-graining λ of 1 monomer per bead. Figure 4 (a)
shows the result of the two integrations versus the distance R for
different values of cosφ, and Fig. 4 (b) shows the same results
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versus cosφ for different values of R. In both figures, one can see
that there is a difference between the two integration paths. This
difference increases for larger values of cosφ because they lead to
very close results at the bound value cosφ = 0. In the same way,
the difference between the two integration paths decreases as the
distance gets closer to the bound value of R = Rc. Despite the
differences seen between the two integration paths, the position
of the peaks and the general trend of the potential versus R and
cosφ are the same. We decided to keep the potential obtained
by integration over the distance first and the angle then, because
it appears the smoothest when plotted against R and is still rea-
sonably smooth when plotted against cosφ, whereas the other
integration paths leads to more noisy results when the potential
is plotted against R. Another important lesson learnt from Fig. 4
is that the effect of the relative orientation on the non-bonded
potential is significant. In particular the relative first minimum
around 5 Å is still positive and purely repulsive for low values of
cosφ but becomes negative and attractive for cosφ > 0.68. The
energy difference between the lowest and highest values of cosφ
for this distance is of 0.65 kBT . The isotropic potential also dis-
played in Fig. 4 (a) and obtained without taking into account the
relative orientations of the beads, is only slightly negative at this
distance around −0.05 kBT .

The integrated potential is then smoothed within empirically
chosen bounds and extended to a continuous and differentiable
function beyond the bounds. The empirically chosen bounds are
useful to prevent smoothing regions scarcely visited in the course
of a MD simulation where the noise is extremely high. This is true
in particular for small distances for the non-bonded potential. The
full smoothing procedure is described in the ESI†, Sec. S4, and
enables us to get a smoother function of both R and cosφ still
very close to the raw data.

The full procedure to obtain the potential has just been outlined
for the non bonded potential W nb. We apply the same proce-
dure to intramolecular interactions. We consider two types of in-
tramolecular interactions, those associated to two bonded beads
and those associated to three consecutive bonded beads. The first
type of interaction is usually a pair potential and depends on the
bond length. It is straightforward to generalize it to a pair interac-
tion depending on the distance R between the two bonded beads
and the angle φ between their two relative orientations. The re-
sults of the final smoothed and extended bonding potentialW bond

depending on both R and cosφ is shown in Fig. 5 (a) and (b) for
a level of coarse-graining λ of 1 monomer per bead. The effect
of the relative orientation on the bonding potential is tremendous
and non-trivial. From cosφ= 0 to cosφ= 1, the bonding potential
plotted against R evolves from a shape with a single central mini-
mum around R= 3.5 Å, to a shape with two local minima around
R = 3 Å and R = 4.5 Å, and to a shape with a single minimum
around R = 4.5 Å. At this distance the potential varies of more
than 10 kBT between the lowest and highest values of cosφ. The
isotropic bonding potential, also displayed in Fig. 5 (a) has a large
flat minimum between R= 3 Å and R= 4.5 Å.

For intramolecular interactions between beads separated by
two bonds, we computed the usual bending potential W bend from
the angle distribution function g(cosθ), where θ is the bending
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Fig. 5 (a) Variation of the bonding potential W bond with the distance
R for different values of cosφ. The thick black lines correspond to the
isotropic potential. The results are shown after the smoothing and ex-
tension procedures have been applied. (b) Same as (a) for the variation
with cosφ at different values of R. (c) Variation of the classical bending
potential W bend with cosθ, where θ is the bending angle, for a level of
coarse-graining λ of 1 monomer per bead.

angle between the three consecutive beads, as done in many
works16,45,46. The effect of the anisotropy on the bending po-
tential is not considered in this work. The final results after the
smoothing procedure is shown in Fig.5 (c) for a level of coarse-
graining λ of 1 monomer per bead. As can be expected, this po-
tential favors wide bending angles, as wide as 180o and disfavors
acute bending angles.

Once all non bonded and intramolecular potentials have been
derived, the full coarse-grained potential WCG can be expressed:

WCG =
∑
µν,nb

W nb(Rµν ,cosφµν) +
∑

µν,bond

W bond(Rµν ,cosφµν)

+
∑

µνo,bend

W bend(cosθµνo),

(35)
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where
∑
µν,nb and

∑
µν,bond denote the sums on pairs of beads

which are non bonded and directly bonded, respectively and
where

∑
µνo,bend is the sum over triplets of particles in a bending

angle and θµνo the corresponding bending angle.
The equations of motion Eqs. 20- 22 and 24 and the CG poten-

tial defined by Eqs.31-33 form the anisotropic CG model. Note
that a complementary approach to the one presented in this work
has been very recently developed by Martzel et al47, also in the
idea to take into account the bead anisotropy. Similarly to our
choice of the inertia tensor, they use the tensor of gyration to
describe the bead anisotropy. In contrast to our approximations,
they keep the eigenvalues of the deviatoric part of the tensor of
gyration and not its eigenvectors as the relevant variables. They
choose an ad hoc expression for the anisotropic CG potential en-
ergy, fitted to the atomistic probability of each eigenvalue. Using
this expression, they derive the conservative, dissipative and ran-
dom contributions of the CG equations of motion for the center
of mass position and the tensor of gyration. Compared to the
work of Martzel et al47, our approach does not rely on any ad
hoc expression for the CG potential, which allows us to test thor-
oughly the validity of all the approximations made to obtain the
CG model. This is the purpose of Sec. 5. Nevertheless, the ex-
pressions proposed for the dissipative and random contributions
to the equations of motion in Ref.47 are insightful and including
them in our approach is an exciting perspective for future work.

4 Comparison of structural properties in MD
and CG simulations

As the dissipative and random forces have been neglected in the
derivation of the coarse-grained equations of motion 20, 21, 22,
24, the coarse-grained simulations can only be expected to repro-
duce the structural properties of the underlying atomistic simu-
lations. Two kinds of structural properties are compared, struc-
tural properties defined at the atomic level such as the usual ra-
dial distribution functions and the radial and angular distribution
functions, and structural properties of the polymer chains such
as their end-to-end distances and radii of gyration. For all these
structural properties the comparison is carried out at three levels
of coarse-graining from 1 to 3 monomers per bead.

4.1 Radial and angular distribution functions

To check that the anisotropic CG procedure is able to reproduce
the locally anisotropic structure of the polybutadiene melt, we
compare the non-bonding radial and angular distribution func-
tion gnb(R,cosφ) obtained in MD and in anisotropic CG simula-
tions. The distribution function gnb(R,cosφ) is defined as:

gnb(R,cosφ) = P (R,cosφ)/N(R,cosφ), (36)

where P (R,cosφ) is the probability, calculated in a simulation,
that two particles are at a distance R and have a relative orien-
tation of cosφ and N(R,cosφ) is the same probability in a ho-
mogeneous mixture. In a homogeneous mixture, the distribution
in cosφ is uniform, so that for all cosφ one has N(R,cosφ) ∼
Vshell(R), where Vshell(R) is the volume of the shell centered on a
particle and bounded by the two spheres of radii R and R+dR,

respectively, for the chosen binning dR. The term "non-bonding"
refers to pairs of particles which are considered non-bonded by
the coarse-grained potential, which are, in our case, particles in
different molecules and particles in the same molecule beyond
and including 1,4 interactions. The non-bonding distribution
function gnb(R,cosφ) obtained in MD and anisotropic CG sim-
ulations are displayed for the three levels of coarse-graining λ in
Fig. 6. The differences between each CG result and the corre-
sponding MD result are also displayed at the bottom of each fig-
ure. The anisotropic CG simulations are able to reproduce quite
well the huge differences observable as cosφ increases from 0 to
1 on the radial distribution functions gnb(R,cosφ) obtained in
MD simulations, without any fitting parameter. This is the third
main result of the paper. Even if the agreement between MD
and anisotropic CG simulations is generally good when it comes
to the non-bonding distribution function gnb(R,cosφ), there are
some differences. For all levels of coarse-graining, the difference
is always the highest around the first peak for cosφ= 1, when par-
ticles are parallel to each other. This configuration is always over-
represented in the anisotropic coarse-grained simulations. This
difference between MD and CG results tend to increase as the
level of coarse-graining increases. In contrast, the too large over-
lap seen in CG simulations between beads at short distances, es-
pecially for λ= 3, is mainly due to small values of cosφ≤ 0.5. For
cosφ = 1, the difference with the MD results at short distances
R< 4 Å is zero.

4.2 Radial distribution functions

Now that we have checked that the anisotropic CG simulations
are indeed able to reproduce the structural properties which they
are designed to model, we can compare their predictions with
those of the more usual isotropic CG simulations. The non-
bonding radial distribution function is defined as usual as:

gnb(R) = P (R)/N(R), (37)

where P (R) is the probability, calculated in a MD or CG sim-
ulation, that two particles are at a distance R, and N(R) is a
normalization factor equal to the probability to find two particles
at that distance in a homogeneous mixture. One has for all φ,
N(R,cosφ) =N(R) and consequently

gnb(R) = 1
Nφ

∑
φ

gnb(R,cosφ), (38)

where Nφ is the number of bins in cosφ. The non-bonding ra-
dial distribution functions gnb(R) obtained in MD and in isotropic
and anisotropic CG simulations are displayed in Fig. 7 for the
three different levels of coarse-graining λ. The unfortunate re-
sult shown in Fig. 7 is that the non-bonding radial distribution
functions obtained in isotropic and anisotropic CG simulations are
quasi-identical. On can notice a small difference between the two
results at very small distances where the radial distribution func-
tion varies a lot and the statistics decreases. One can also notice a
very slight difference, which just exceeds the noise level, around
the first peak, for all levels of coarse-graining. This is illustrated
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Fig. 6 (a) Non-bonding radial and angular distribution functions
gnb(R,cosφ) obtained in MD and anisotropic CG simulations for a coarse-
graining level of λ= 1 as a function of the distance R between two beads
and for different values of cosφ. The MD results are displayed using
symbols, the corresponding CG result are displayed using a solid line of a
darker shade of the same color. To improve readability the results have
been gradually shifted up from cosφ= 0 (the lowest curves) to cosφ= 1
(the highest curves). The bottom figure displays the difference between
each anisotropic CG result and the corresponding MD result for a given
value of cosφ. The color code is the same as that in the main figure.
(b) and (c) same as (a) for a level of coarse-graining λ of 2 and 3,
respectively.

in the zoomed plots in the insets of Fig. 7. In any case, the dif-
ference between the two CG radial distribution functions is much
smaller than that between the CG and the MD distribution func-
tions. This leads us to conclude that the discrepancy between the
MD and CG gnb(R) is not due to the anisotropy, at least not in the
way it was taken into account in this work.

To investigate further the reason why the anisotropic CG sim-
ulations lead to the same radial distribution functions as the
isotropic ones whereas the effect of the orientation on the poten-
tial is important, we study the conditional probability PR(cosφ)
for two particles to have a relative orientation cosφ given that
they are at a distance of R. The conditional probability satisfies:

PR(cosφ) = P (R,cosφ)
P (R) , (39)

= gnb(R,cosφ)
gnb(R)

. (40)

Equation 40 is obtained using the fact that the normalization con-
stants are the same: N(R,cosφ) = N(R), for all φ. Equation 40
yields a practical way to compute the conditional probabilities in
MD and anisotropic CG simulations. They are displayed as a func-
tion of the distance R for different values of cosφ for the three
levels of coarse-graining λ in Fig. 8. The differences between the
MD and anisotropic CG results are also displayed at the bottom
of each figure. It is clear from this figure that the differences be-
tween the MD and anisotropic CG results are smaller and less sys-
tematic for the conditional probability PR(cosφ) than for the dis-
tribution function gnb(R,cosφ). The differences between MD and
anisotropic CG results for the conditional probability PR(cosφ)
are on the order of the noise level on this quantity and no clear
bias as a function of R or cosφ is visible. There are a few excep-
tions however: for λ = 1 and cosφ = 1 the difference between
the two results is on the order of magnitude of the difference
between the distribution functions gnb(R,cosφ); for λ = 2 and
cosφ ≤ 0.25, and for λ = 3 and cosφ = 1 also. These exceptions
are very contained and globally the anisotropic CG simulations
are able to reproduce extremely well the conditional probability
PR(cosφ).

The fact that anisotropic CG simulations are so good at re-
producing the conditional probability PR(cosφ) explains why the
isotropic and anisotropic coarse-grained gnb(R) are nearly identi-
cal in the framework considered in this work to take into account
the anisotropy. A short proof follows. In anisotropic CG simu-
lations, the average non-bonding force 〈F aniso〉 is calculated as
described in Sec. 3.4:

〈F aniso〉(R,cosφ) =

∑
(µ,ν)(R,cosφ)F

MD
µν

Npairs(R,cosφ) , (41)

where FMD
µν = Fµν ·eµν is the norm of the force obtained in the

MD simulation between beads µ and ν in a given configuration,∑
(µ,ν)(R,cosφ) is a sum over all pairs of beads, observed in the

course of an MD simulation, located at a distance R of each other
and with the relative orientation cosφ, and Npairs(R,cosφ) is the
number of such pairs encountered during the whole MD simula-
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Fig. 7 (a) Non-bonding radial distribution functions gnb(R) obtained
in MD (black circles), isotropic (orange solid line) and anisotropic (blue
dashed line) CG simulations for a coarse-graining level of λ = 1 as a
function of the distance R between two beads. The inset is a zoom
around the first two peaks. The bottom figure displays the difference
between the isotropic CG result and the MD result (orange solid line),
the anisotropic CG result and the MD result (blue dashed line) and the
two CG results (green dotted line). (b) and (c) same as (a) for levels of
coarse-graining λ of 2 and 3, respectively.

tion. In the same way, the isotropic average non-bonding force
〈F iso〉 is:

〈F iso〉(R) =

∑
(µ,ν)(R)F

MD
µν

Npairs(R) , (42)

where
∑

(µ,ν)(R) is a sum over all pairs of beads located at
a distance R of each other, and Npairs(R) is the number of
such pairs encountered during the whole MD simulation. Ob-
viously, as the same MD simulation is used to derive the isotropic
and anisotropic CG forces, the same forces FMD

µν are used in
both cases. Moreover, by definition of the two sums, we have∑

(µ,ν)(R) =
∑

cosφ
∑

(µ,ν)(R,cosφ), where
∑

cosφ is a sum over
all possible bins of cosφ. Thus, we can express the isotropic CG
force defined in Eq. 42 in terms of the anisotropic one:

〈F iso〉(R) = 1
Npairs(R)

∑
cosφ

∑
(µ,ν)(R,cosφ)

FMD
µν , (43)

= 1
Npairs(R)

∑
cosφ

∑
(µ,ν)(R,cosφ)F

MD
µν

Npairs(R,cosφ) Npairs(R,cosφ),

(44)

=
∑
cosφ

∑
(µ,ν)(R,cosφ)F

MD
µν

Npairs(R,cosφ)
Npairs(R,cosφ)
Npairs(R) (45)

=
∑
cosφ

〈F aniso〉(R,cosφ)PMD
R (cosφ), (46)

by definition of the anisotropic CG force Eq. 41 and where
PMD
R (cosφ) is the conditional probability obtained in the MD sim-

ulations for two beads to have a relative orientation of cosφ given
that they are at a distance R. Now, if we write down the equa-
tions of motion for the velocity of a bead in the isotropic CG sim-
ulations, we get:

MV̇µ =
∑
ν

〈F iso〉(Rµν)eµν , (47)

=
∑
ν

(∑
cosφ

〈F aniso〉(Rµν ,cosφ)PMD
Rµν (cosφ)

)
eµν , (48)

according to Eq. 46, and in the anisotropic simulations, we have:

MV̇µ =
∑
ν

〈F aniso〉(Rµν ,cosφµν)eµν . (49)

If in the anisotropic CG simulations the probability for two beads
to have a relative orientation cosφ given that they are at a dis-
tance R of each other is the same as in the MD simulations, then
on average all beads describe the same trajectories in the (R,V)
space in the isotropic and anisotropic CG simulations. As a con-
sequence the radial distribution functions in both cases are the
same. This is what happens in this work.

A slightly different situation would occur if the anisotropy was
taken into account in a different way. As done in the Gay-
Berne potential41,42, we could assume that the anisotropic po-
tential also depends on the angles φµ and φν defined as cosφµ =
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uµ,1 · eµν and cosφν = −uν,1 · eµν . This has been done in dif-
ferent coarse-grained anisotropic potentials designed over the
years23–25,48,49. This assumption, changes the orientation of the
force, which now have contributions along ∂ cosφµ/∂Rµ and
∂ cosφν/∂Rµ, and not only along eµν . We kindly refer the reader
to Sec. 5.5 where the main directions of the force and torque are
further tested and discussed.
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Fig. 8 Same legend as Fig. 6 for the conditional probability PR(cosφ).

4.3 Chain dimensions

To complement the comparison between the structural proper-
ties obtained in MD, isotropic and anisotropic CG simulations, we
also looked at the end-to-end distance and radius of gyration of
the chains. The end-to-end distance and radius of gyration are
calculated for each level of coarse-graining using the position of
the bead center of mass both in CG simulations, where it is the

λ [Å] MD CG iso CG aniso
〈Ree〉

1 20.00±0.05 21.33±0.04 21.3±0.1
2 18.86±0.05 18.21±0.02 18.27±0.04
3 17.57±0.04 16.63±0.02 16.46±0.03

〈Rg〉
1 8.29±0.01 8.52±0.01 8.51±0.03
2 8.01±0.01 7.59±0.01 7.60±0.01
3 7.70±0.01 7.25±0.01 7.18±0.01

Table 2 Values of the average end-to-end distance 〈Ree〉 and radius of
gyration 〈Rg〉 obtained in MD, isotropic and anisotropic CG simulations
for different levels of coarse-graining λ. Each simulation lasts 10 ns and
is sampled every 100 fs in MD and every 1 ps in CG simulations. The
indicated error is the plateau value of the standard error on the mean
evaluated for different numbers of blocks from 5 to 500

only possible thing to do, and in MD simulations, as defined in
Ref.16 to obtain directly comparable results. These results are
given in Table 2. Similarly to the results on the radial distribution
functions, one can notice two things. The first is that the isotropic
and anisotropic CG simulations lead very close structural proper-
ties of the chains. The results are barely distinguishable within
error bars. This is likely due the same reason as that explain-
ing the similarity of the radial distributions functions obtained in
both CG simulations : the average trajectories in the (R,V) space
of the beads are similar in isotropic and anisotropic simulations.
The second thing to notice is that the difference between the CG
and MD results changes sign as the level of coarse-graining λ in-
creases: the chain dimensions are larger in CG simulations than in
MD simulations for a level of coarse-graining of 1 but are smaller
than in MD for higher levels of coarse-graining. The smallest dif-
ference is obtained for λ = 2 as was already noticed in16. The
results on the chain dimensions confirms the conclusion drawn
from the radial distribution functions, the anisotropy of the bead,
although important, is not the reason for the discrepancy seen
between MD and CG results, at least not in the way it was taken
into account in this work.

5 Verification of the approximations and lim-
its of the model

To justify and apprehend the limits and possible improvements of
the model developed in Sec. 3 we carefully check and discuss the
approximations made to derive it. We do so in the order in which
the approximations are made from the first and most important
one to the last and most easily adaptable one.

5.1 Markovian approximation

The Markovian approximation is primordial as the whole frame-
work of the model relies on it. It assumes that there is a clear
time scale separation between the slow and fast variables. In the
case of the anisotropic coarse-grained simulations, the slow vari-
ables are the position Rµ and velocity Vµ of the bead center of
mass and its quaternion Qµ and angular velocity ωωωµ. The fact
that these variables are indeed slow was checked prior to the de-
velopment of the CG model in Sec. 3.1
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5.2 Derivative of the principal moments of inertia with re-
spect to time

The second most important assumption, is that Eq. 24 holds.
This enables us to use any algorithm developed for rigid bodies
to integrate the CG equations of motion. To show that Eq. 24
holds, we should show that the derivative with respect to time of
the moments of inertia can be neglected before the derivative of
the angular velocity. To improve readability, we define the two
vectors W and εεε as

Wi = ω̇′µ,i (50)

εi =
İµ,iω

′
µ,i

Ii
, for i ∈ 1,2,3. (51)

for any bead µ. We want to show that εεε can be neglected be-
fore W. To do so, we calculate the two averaged quantities:
(W− εεε)2/W2 and εεε2/W2, during an NVT trajectory of 500 ps.
The results are shown in Table 3 for all levels of coarse-graining.
Clearly (W− εεε)2/W2 tends to 1 and εεε2/W2 tends to 0 at all lev-
els of coarse-graining, showing that neglecting the derivative with
respect to time of the moments of inertia is meaningful. The re-
sults are even improved for larger levels of coarse-graining. This
the fourth main result of this work.

λ (W− εεε)2/W2 εεε2/W2

1 0.991 9.0×10−3

2 0.9998 4.5×10−5

3 0.9997 2.9×10−5

Table 3 Values of the quantities (W− εεε)2/W2 and εεε2/W2 defined in
Eqs. 50 and 51 for different levels of coarse-graining λ

5.3 Bead shape

Since we make the assumption that the coarse-grained potential
depends mainly on the distance between two beads and the an-
gle defined as cosφµν = uµ,1 ·uν,1, where uµ,1 and uν,1 are the
eigenvectors of the two beads associated to the lowest eigenvalue
I1, we need to check that selecting this specific orientation is
meaningful. The three principal moments of inertia are sorted
so that: I3 > I2 > I1. If DI corresponds to the diagonal matrix
whose non-zero elements are the moments of inertia, the equa-
tion

rTDIr = 1 (52)

defines the ellipsoid enveloping the bead of principal radii 1/
√
I1,

1/
√
I2 and 1/

√
I3. Thus, if one eigenvalue is significantly larger

than the two others, one principal radius is significantly smaller
than the others, implying that the particle is rather flat. In con-
trast, if one eigenvalue is significantly smaller than the two oth-
ers, the bead is rather elongated. We have calculated the eigen-
values of the inertia tensor from an NVT trajectory of 500 ps and
averaged over all beads and time. Results show that I1 < I2 ∼ I3
as can be seen in Table 4 for all levels of coarse-graining. In par-
ticular, the aspect ratio I3/I1 is between 5 and 7 depending on the
level of coarse-graining. It shows that the coarse-grained particles
are elongated in the direction of the eigenvector associated to the

smallest eigenvalue I1, this is why choosing this eigenvector as
representative of the bead orientation appears meaningful.

λ [kg/mol.Å2] I1 I2 I3
1 0.020 0.081 0.10
2 0.092 0.57 0.62
3 0.27 1.6 1.8

Table 4 Values of the three moments of inertia for different levels of
coarse-graining λ obtained in an NVT simulation

5.4 Pair approximation

Strictly speaking, the framework developed in this work does
not verify the pair approximation as three-body interactions are
present in the bending potential. To test indirectly the validity
of the pair approximation, we also implemented a version of the
anisotropic CG simulations where the intramolecular 1,3 interac-
tions between beads linked by two consecutive bonds is described
by a pair potential depending on the distance Rµo between the
two beads and on their relative orientation cosφµo and not on
the bending angle cosθµνo as was done in Eq. 35. In this version
of the model, the CG potential reads:

WCG =
∑
µν,nb

W nb(Rµν ,cosφµν) +
∑

µν,bond

W bond(Rµν ,cosφµν)

+
∑
µo,1,3

W intra1,3(Rµo,cosφµo),

(53)
where

∑
µν,nb and

∑
µν,bond are sums on pairs of beads,

which are non-bonded and directly bonded, respectively, as
in Eq. 35 and where

∑
µo,1,3 denotes the sum on pairs of

beads separated by two bonds. The anisotropic CG potential
W intra1,3(Rµo,cosφµo) is obtained in the same way as that de-
scribed in Sec. 3.4 and is displayed in the ESI†, Sec. S5 for the
level of coarse-graining λ = 1. The non-bonding radial distribu-
tion functions obtained with isotropic and anisotropic CG simula-
tions using this potential are compared to their MD counterparts
in Fig. 9 for the three levels of coarse-graining. They are also com-
pared to the radial distributions functions obtained in anisotropic
CG simulations using the bending potential W bend(cosθ). The
difference between each CG result and the corresponding MD re-
sult is plotted at the bottom of each figure. Figure 9 contains
many pieces of information. The first one is that as in the case
of the CG simulations with the bending potential, the isotropic
and anisotropic CG simulations using the intramolecular 1,3 pair
potential lead to quasi-identical non-bonding radial distribution
functions. The reason is also the same (not shown). The sec-
ond piece of information is that at the coarse-graining level λ= 1
the radial distribution function obtained in CG simulations using
the intramolecular 1,3 pair potential W intra1,3(R,cosφ) is further
away from its MD counterpart than that obtained in CG simu-
lations using the more classical bending potential W bend(cosθ).
However, and this is the third piece of information, as the level
of coarse-graining increases this statement is reversed. Surpris-
ingly, the radial distribution function obtained in CG simulations
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using the intramolecular 1,3 pair potential W intra1,3(R,cosφ) is
closer to its MD counterpart before and around the first peak,
than that obtained in CG simulations using the bending potential
W bend(cosθ). In particular the too large overlap between beads
at short distances seen in CG simulations is reduced when the
intramolecular 1,3 pair potential W intra1,3(R,cosφ) is used. The
fact that the ability of the CG simulations to reproduce the MD
result changes as the level of coarse-graining increases when ei-
ther the bending potential or the intramolecular 1,3 potential is
used is consistent with the fact that none of these potentials is
really good. On the first hand, the intramolecular 1,3 potential
W intra1,3(R,cosφ) is a pure pair potential and lacks three-body
contributions. On the other hand, the usual bending potential,
which has the advantage of incorporating three-body interactions
through the bending angle dependence, assumes that the bend-
ing angle is independent of the bond lengths for the two bonds
involved. There is very probably a coupling between the bond
distance and the bending angle as can be considered for exam-
ple in class II force field50 and this could be deduced from MD
simulations in a bottom-up approach. To conclude, one should
say that adding many body terms, in particular intramolecular
three-body terms, constitutes a possible way to refine the model
without putting into question the general framework developed
in Sec. 3.

5.5 Main direction of force and effective torque

To show that the main direction of the force between beads µ
and ν is indeed the unit vector eµν linking the two beads and
that the main direction of the effective torque between the two
beads is the cross product uµ,1×uν,1 between the principal direc-
tions of the two beads, we compare the force and effective torque
projected in these directions to their counterparts projected in a
perpendicular direction. A unit vector perpendicular to eµν is de-
noted e⊥µν and a unit vector perpendicular to uµ,1×uν,1 is simply
uµ,1. The force and torque projected in these different directions
are displayed in Fig. 10. As can be seen in Fig. 10 (a), the force
projected onto e⊥µν is much smaller than onto eµν for any value
of the distance R and the angle cosφµν , where the force is non-
zero. This is not surprising as the isotropic force, depending on
the distance alone, has already been shown to be mainly in direc-
tion eµν 16. Figure 10 (b) shows that the assumption stating that
the effective torque is mainly in direction uµ,1×uν,1 also holds
rather well. It is especially true for high values of cosφµν and
small values of Rµν where the effective torque is non-zero. How-
ever, this type of test does not account for contributions in the
perpendicular direction which would cancel each other on aver-
age for the same value of cosφµν and Rµν . This could be the
case if the CG potential was better described by the functional
form of the Gay-Berne potential which also depends on the angle
cosφµ = uµ,1 · eµν and cosφν = −uν,1 · eµν . Nevertheless, this
layer of assumption is introduced later in the derivation of the
CG model compared to the approximations tested successfully in
Secs. 5.1 to 5.3 and can be easily raised without questioning the
general framework of the model. Thus, considering a more re-
fined non-bonding pair potential, depending on more variables,
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Fig. 9 Same as legend as Fig.7 for CG simulations done with the
intramolecular 1,3 pair potential W intra1,3.
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is another natural perspective of this work.
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Fig. 10 (a) Variation of the force F between beads µ and ν projected
onto eµν (solid lines) and e⊥µν (dotted lines) with the distance R be-
tween the two beads and for different values of the angles φ between the
orientations of the two beads. (b) Same as (a) for the effective torque
T projected onto uµ,1×uν,1 (solid lines) and uµ,1 (dotted lines). To
improve readability the effective torque projected onto the perpendicular
direction uµ,1 has been shifted down but is indeed fluctuating around
zero.

6 Summary and conclusion
In this work, we developed a model which takes into account the
relative orientation between beads in coarse-grained (CG) simula-
tions and derived the corresponding CG potential from atomistic
simulations in a bottom-up approach. The CG variables chosen to
do so are the usual center of mass position and velocity, but also
the quaternion associated to the rotation from the reference ba-
sis to the basis of the eigenvectors of the bead inertia tensor and
the corresponding angular velocity. As an initial step, the model
is developed for conservative forces only, while the derivation of
dissipative and random forces will be the subject of a subsequent
study. There are two types of results in this work. First, the main
assumptions on which the CG model relies are shown to hold
quiet well for a cis-1,4-polybutadiene melt. The quaternion and
angular velocity of a bead are indeed slow variables in the same
sense as the position and velocity of its center of mass while the
force and effective torque on a bead are very sensitive to atomic
vibrations. The term involving the time derivative of the principal
moments of inertia in the equation of motion of the angular ve-
locity is shown to be negligible with respect to other terms in this
equation. This reduces the CG equations of motion to rigid-body
equations of motion, whose implementation is well documented.
Second, the anisotropic CG simulations based on the anisotropic

CG model are able to reproduce well the locally anisotropic struc-
ture of the polymer melt. The radial and angular distribution
functions obtained in molecular dynamics (MD) and anisotropic
CG simulations are globally close at all levels of coarse-graining
tested, from 1 to 3 monomers per bead, and for any distance and
orientation between the two considered beads.

This work also proposes several directions for improving the
anisotropic CG model. Indeed, in its present state the anisotropic
CG model predicts the same radial distribution function and same
chain dimensions as a more usual isotropic CG model and these
are more and more different from their MD counterparts as the
level of coarse-graining increases. This is unfortunate and is due
to two facts: (i) the anisotropic and isotropic CG pair forces have
the exact same direction along the vector linking two centers of
mass, (ii) our anisotropic CG simulations reproduce well the con-
ditional probability that two beads have a certain relative orien-
tation given that they are at a specified distance. To increase
the agreement between the MD and anisotropic CG structural re-
sults, a natural perspective opened by this work is to consider a
CG anisotropic potential depending on more terms and leading
to perpendicular contributions in the force, like the Gay-Berne
potential functional form. This can easily be done while keep-
ing the model general framework. Another direction to improve
the structural properties of the anisotropic CG model is to change
the intramolecular potential made of the sum of a bonding and
bending term into a single three-body intramolecular potential
coupling the two bond lengths and the bending angle involved.

Finally, the coarse-graining methodology presented in this work
opens the way for the derivation of full anisotropic DPD equations
where the conservative, dissipative and random forces can be de-
duced in a bottom-up approach. Indeed, the chosen CG variables
are explicitly given in terms of atomic variables so that the expres-
sions of the memory kernel and random noise given in Ref.4 can
in principle be used. This should allow for an accurate calculation
of the dynamic and transport properties, after determination of a
good friction coefficient for dissipative forces using constrained
molecular dynamics simulations4. Note, however, that such con-
strained simulations are not straightforward to implement as the
quaternion and angular velocity of a bead are not linear combi-
nations of the atomic positions and velocities.
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13 D. Kauzlarić, P. Español, A. Greiner and S. Succi, Macromol.

Theory Simul., 2011, 20, 526–540.
14 P. Español and I. Zúñiga, Phys. Chem. Chem. Phys., 2011, 13,

10538–10545.
15 Z. Li, X. Bian, B. Caswell and G. E. Karniadakis, Soft Matter,

2014, 10, 8659.
16 C. A. Lemarchand, M. Couty and B. Rousseau, J. Chem. Phys.,

2017, 146, 074904.
17 S. N. Fejer, D. Chakrabarti and D. J. Wales, Soft Matter, 2011,

7, 3553–3564.
18 Z.-W. Li, Y.-L. Zhu, Z.-Y. Lu and Z.-Y. Sun, Soft Matter, 2016,

12, 741–749.
19 M. Deng, W. Pan and G. E. Karniadakis, J. Comput. Phys.,

2017, 336, 481–491.
20 Z.-W. Li, Y.-L. Zhu, Z.-Y. Lu and Z.-Y. Sun, Soft Matter, 2018,

14, 7625–7633.
21 N.-V. Buchete, J. E. Straub and D. Thirumalai, J. Chem. Phys.,

2003, 118, 7658.
22 N.-V. Buchete, J. E. Straub and D. Thirumalai, Polymer, 2004,

45, 597–608.
23 A. Srivastava and S. Ghosh, Phys. Rev. E, 2012, 85, 026702.
24 T. K. Haxton, R. V. Mannige, R. N. Zuckermann and S. White-

lam, J. Chem. Theory Comput., 2015, 11, 303–315.
25 P. Poier, C. N. Likos, A. J. Moreno and R. Blaak, Macro-

molecules, 2014, 48, 4983–4997.
26 P. Poier, P. Bacová, A. J. Moreno, C. N. Likos and R. Blaak, Soft

Matter, 2016, 12, 4805–4820.
27 K. Kempfer, J. Devémy, A. Dequidt, M. Couty and P. Malfreyt,

Macromolecules, 2019, 52, 2736–2747.
28 G. Maurel, B. Schnell, F. Goujon, M. Couty and P. Malfreyt, J.

Chem. Theory Comput., 2012, 8, 4570–4579.
29 G. Maurel, F. Goujon, B. Schnell and P. Malfreyt, RSC Adv.,

2015, 5, 14065–14073.
30 P. Gao and H. Guo, Polymer, 2015, 69, 25–38.
31 J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P. S. Lom-

dahl, T. C. Germann and B. L. Holian, Phys. Rev. E, 2000, 63,

016121.
32 C. A. Lemarchand, D. Bousquet, B. Schnell and N. Pineau, J.

Chem. Phys., 2019, 150, 224902.
33 V. A. Harmandaris, M. Doxastakis, V. G. Mavrantzas and D. N.

Theodorou, J. Chem. Phys., 2002, 116, 436.
34 G. D. Smith and W. Paul, J. Phys. Chem. A, 1998, 102, 1200–

1208.
35 G. D. Smith, W. Paul, M. Monkenbusch, L. Willner, D. Richter,

X. H. Qiu and M. D. Ediger, Macromolecules, 1999, 32, 8857–
8865.

36 S. Melchionna, G. Ciccotti and B. L. Holian, Mol. Phys., 1993,
78, 533–544.

37 P. Zoller and D. Walsh, Standard Pressure-Volume-Temperature
Data for Polymers, Technomic Publishing, Lancaster, 1995.

38 P. Gestoso, E. Nicol, M. Doxastakis and D. N. Theodorou,
Macromolecules, 2003, 36, 6925–6938.

39 M. P. Allen and D. J. Tildesley, Computer simulation of liquids,
Clarendon Press, Oxford, 1989.

40 D. C. Rapaport, J. Comp. Phys., 1985, 60, 306–314.
41 D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev.

E, 1996, 54, 559–567.
42 P. A. Golubkov and P. Ren, The Journal of Chemical Physics,

2006, 125, 064103.
43 M. Allen and G. Germano, Mol. Phys., 2007, 104, 3225–3235.
44 P. M. Rodger, A. Stone and D. Tildesley, Mol. Sim., 1992, 8,

145–164.
45 D. Reith, H. Meyer and F. M uller-Plathe, Macromolecules,

2001, 34, 2335–2345.
46 X. Li, D. Kou, S. Rao and H. Liang, J. Chem. Phys., 2006, 124,

204909.
47 N. Martzel, A. Dequidt, J. Devémy, R. Blaak, S. Garruchet,

B. Latour, F. Goujon, E. Munch and P. Malfreyt, Adv. Theory
Simul., 2020, 2020, 2000124.

48 M. Babadi, R. Everaers and M. R. Ejtehadi, J. Chem. Phys.,
2006, 124, 174708.

49 C. Law, D. J. Ashton, N. B. Wilding and R. L. Jack, J. Chem.
Phys., 2016, 145, 084907.

50 H. Sun, J. Phys. Chem. B, 1998, 102, 7338–7364.

16 | 1–16Journal Name, [year], [vol.],

Bernard Rousseau

Bernard Rousseau


	Introduction
	Methods
	Molecular dynamics simulation details
	Coarse-grained simulations
	redComparative performances

	Formulation of the anisotropic model
	redChoice of the slow variables
	redBead orientation.
	redAngular velocity.

	Full equations of motion in terms of atomic variables
	Coarse-grained equations of motion
	Computation of the coarse-grained anisotropic potential W

	Comparison of structural properties in MD and CG redsimulations
	Radial and angular distribution functions
	redRadial distribution functions
	Chain dimensions

	Verification of the approximations redand limits of the model
	Markovian approximation
	Derivative of the principal moments of inertia with respect to time
	Bead shape
	Pair approximation
	Main direction of force and effective torque

	Summary and conclusion

