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Abstract 22 

Introduction The aim of this study was to perform in-vitro and in -vivo radiopharmacological 23 

characterizations of [18F]2FNQ1P, a new PET radiotracer of 5-HT6 receptors, in rat, pig, non-24 

human primate and human tissues. The 5-HT6 receptor is one of the more recently identified 25 

serotonin receptors in central nervous system and, because of its role in memory and cognitive 26 

processes, is considered as a promising therapeutic target. 27 

Methods In-vitro autoradiography and saturation binding assays were performed in 28 

postmortem brain tissues from rat, pig, non-human primate and human caudate nucleus, 29 

completed by serum stability assessment in all species and cerebral radiometabolite and 30 

biodistribution studies in rat.  31 

Results In all species, autoradiography data revealed high binding levels of [18F]2FNQ1P in 32 

cerebral regions with high 5-HT6 receptor density. Binding was blocked by addition of 33 

SB258585 as a specific antagonist. Binding assays provided KD and Bmax values of 34 

respectively 1.34 nM and 0.03 pmol.mg-1 in rat, 0.60 nM and 0.04 pmol.mg-1 in pig, 1.38 nM 35 

and 0.07 pmol.mg-1 in non-human primate, and 1.39 nM and 0.15 pmol.mg-1 in human caudate 36 

nucleus. In rat brain, the proportion of unmetabolized [18F]2FNQ1P was greater than 99% 5 37 

minutes after iv injection and 89% at 40 minutes. The biodistribution studies found maximal 38 

radioactivity in lungs and kidneys (3.5 ± 1.2% ID/g and 2.0 ± 0.7% ID/g, respectively, 15 min 39 

post-injection).  40 

Conclusion These radiopharmacological data confirm that [18F]2FNQ1P is a specific 41 

radiotracer for molecular imaging of 5-HT6 receptors and suggest that it could be used as a 42 

radiopharmaceutical in humans. 43 

  44 
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 45 

Introduction 46 

Serotonin (5-HT) is a neurotransmitter involved in a variety of central nervous system (CNS) 47 

functions and behaviors, including sleep, cognitive processes, nociception, appetite and 48 

sexuality [1].  49 

Serotonin receptor subtype-6 of (5-HT6) is one of the more recently identified serotonin 50 

receptors, first in rat striatum [2,3] and then in human brain [4]. It is a G-protein-coupled 51 

receptor that has recently emerged as a new target for neuropsychopharmacology. 5-HT6 52 

receptor is expressed in the CNS, playing a vital role in memory and cognitive processes [5,6] 53 

and in the regulation of food intake [7,8], reinforcing its status as an emerging target in 54 

dementia and obesity therapy. 55 

Distribution in humans is mainly in the striatum, but also prefrontal cortex and hippocampus 56 

[9,10]. It was also shown that the 5-HT6 receptor is expressed at neuronal level in striatum, on 57 

astrocytes and pyramidal neurons of the cortex and on pyramidal neurons of the hippocampus. 58 

It therefore seems that the human 5-HT6 receptor is expressed in different cell types 59 

depending on the brain region studied. 5-HT6 receptors in the CNS are exclusively expressed 60 

in regions that play a key role in cognitive processes [11,12]. In preclinical studies, 5-HT6 61 

receptor antagonists were shown to improve cognitive performance [13,14]; recent clinical 62 

studies failed to confirm the pro-cognitive effects of 5-HT6 antagonists idalopirdine and 63 

SAM-760in Alzheimer’s disease [15,16], but other 5-HT6 receptor antagonists are still being 64 

investigated, such as SUVN-502, currently in Phase II trials [17]. Paradoxically, 5-HT6 65 

receptor agonists have also been shown to have cognitive-enhancing properties [18,19]. 66 

In this context, the development of a new 5-HT6 radiopharmaceutical for positron emission 67 

tomography (PET) seems relevant. PET is an imaging modality used in nuclear medicine to 68 
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study the function and neurochemistry of the human brain that relies on injection of a specific 69 

radiotracer [20–22]. PET provides incomparable molecular specificity and sensitivity in 70 

imaging, shedding light on pathophysiological mechanisms involving serotoninergic receptors 71 

or evaluating the pharmacological action of new drug candidates [23–26]. Several PET 72 

radiotracers have already been developed for serotonin receptor imaging, but there are as yet 73 

no in-vivo biomarkers that unequivocally distinguish serotonin receptor subtype 6. Some 74 

teams addressed this by synthesizing different compounds: [18F]12ST05 is non-specific for 75 

5HT6R [27] and [11C] GSK215083 is not selective (with affinity for 5-HT2A) [28]. 76 

[11C]399885 has low cerebral penetration [29], which makes it incompatible with peripheral 77 

injection. Currently, no specific fluorinated radiotracer is available for PET imaging of 5-HT6 78 

receptors in humans [30]. A specific radiotracer suitable for routine medical use could 79 

confirm 5-HT6 receptor involvement in cognitive disorders and many pathologies [31], 80 

enabling monitoring of disease progression, to optimize future treatments. Our laboratory 81 

recently proposed a radiotracer-candidate, 2FNQ1P, inspired by the quinolone core of 82 

GSK215083 and proposed as the first 18F-labeled radiotracer capable of specific and selective 83 

binding to 5HT6R. In initial studies, the cerebral distribution of [18F]2FNQ1P was analyzed in 84 

several animal models[23,32,33]. The present article completes the radiopharmacological and 85 

pharmacokinetics knowledge of [18F]2FNQ1P and provides new experimental data obtained 86 

in postmortem rat, pig, non-human primate and human caudate tissues. 87 

 88 

Materials and Methods 89 

[18F]2FNQ1P radiosynthesis 90 

2FNQ1P precursor was synthesized in the Institute of Chemistry and Biochemistry (Lyon, 91 

France), and radiolabeling was performed in the radiopharmacy unit of the CERMEP imaging 92 
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platform, according to our recently published protocol [32,33]. Quality control consisted in 93 

determining radiochemical purity and molar activity by analytical HPLC assay of an aliquot 94 

of the radiolabeled product, with comparison to the calibration curve generated from solutions 95 

at known concentrations. 96 

 97 

Drugs 98 

Cyclosporin (Sandimmun®), used to inhibit the P-glycoprotein (P-gp), was obtained from 99 

Novartis. SB258585 hydrochloride, a 5-HT6 serotonin receptor antagonist, was obtained from 100 

Sigma-Aldrich.  101 

 102 

Animals and human tissues 103 

Adult male Sprague-Dawley rats (Charles River Laboratories; 250g ± 50 g) and two pigs (30-104 

35 kg) were used. Two healthy male cynomolgus monkeys (Macaca fascicularis), 4 and 5 105 

years old (young adults) and weighing 4 and 7 kg respectively, were used. All studies were 106 

carried out in accordance with European Communities Council Directive (2°10/63/EU) and 107 

the recommendations of the French National Committee (2013/113) and local animal ethics 108 

committee (CELYNE, C2EA-43). For the in-vitro part of the study, following the “3Rs” rule 109 

(Reduction, Refinement, and Replacement) rule for animal experimentation, frozen tissues 110 

from previous studies were used [23,33]. 111 

Fresh tissues and adjacent unstained frozen slides (30µm-thickness) from healthy human 112 

caudates were obtained respectively from the Medical Research Council (Lyon) bank 113 

(CardioBioTec, Lyon Hospitals) and Medical Research Council (London) Neurodegenerative 114 

Diseases Brain Bank after approval by the hospital department’s review committee.  115 
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 116 

In-vitro autoradiography 117 

In-vitro autoradiography study was performed on brain tissues from rats (n=2), pigs (n=2), 118 

non-human primates (n=2) and human caudates (healthy controls, n=3). Briefly, adjacent 30 119 

µm-coronal brain slices unfixed by paraformaldehyde were mounted on glass slides, and 120 

allowed to air-dry before storage at -80°C until use. On the day of radiotracer synthesis, the 121 

slides were allowed to reach room temperature and were then incubated for 60 min in a buffer 122 

containing 50 mM Tris-HCl, 10 µM pargyline, 5 mM MgCl2, 5 mM ascorbate and 0.5 mM 123 

EDTA (pH 7.4), and 37 kBq/mL [18F]2FNQ1P. For competition experiments, the slides were 124 

placed in the same buffer supplemented with SB258585 at a concentration of 1 µM. After 125 

incubation, slides were dipped in cold buffer (4°C), then in cold distilled water (4°C), and 126 

dried and placed on a phosphor imaging plate for 60 min (BAS-5000; Fujifilm).  127 

 128 

In-vitro binding assays 129 

Caudate tissues from adult rat (n=1), pig (n=2), non-human primate (n=1) and healthy 130 

controls (n=3) were used. Tissues were preserved in phosphate-buffered saline (PBS) EDTA 131 

0.1% with buffer (50 mM Tris-HCl pH 7.4 at 25°C). Homogenates were centrifuged for 20 132 

minutes at 35,000 g (Discovery M150 SE ultracentrifuge, Hitachi). The pellet was 133 

resuspended in 50 mM Tris-HCl (pH 7.4 at 25°C) and incubated for 15 minutes at 37°C. 134 

Following two further centrifugation steps (as above), the membranes were finally 135 

resuspended and stored at -80°C until use. Brain tissues were preserved in a buffer containing 136 

50 mM Tris-HCl, 10 µM pargyline, 5 mM MgCl2, 5 mM ascorbate and 0.5 mM EDTA (pH 137 

7.4). Binding assay used 50 µL displacing compound (SB258585 1µM) or buffer, 100 µL 138 

membrane suspension (corresponding to approximately 60 µg protein per well of brain tissue) 139 

and 50 µL [18F]2FNQ1P (molar activity, 59.2 GBq/µmol). [18F]2FNQ1P was used at a 140 
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concentration of 0.05 to 10 nM. Membranes were incubated with the radioligand at 25°C for 141 

60 minutes. Bound radiolabeled tracer was separated from free tracer by filtration under 142 

reduced pressure (Multiscreen HTS-FB, Millipore). Filters were washed 6 times with 200 µL 143 

PBS. Washed filters were assayed for radioactivity by γ-counter (Gamma Wizard 2480, 144 

Perkin Elmer).  145 

 146 

Serum stability study  147 

The serum stability study was carried out using a procedure similar to that described by 148 

Kronauge et al. [34]. In all species, 3.0-3.7 MBq of [18F]2FNQ1P in 20 µL 10% ethanol/PBS 149 

was added to 200 µL of serum in a borosilicate culture tube equilibrated to 37°C in a water 150 

bath. The tubes were shaken and the samples were placed back in the water bath. At time 151 

points t=0 and t=2h, enzymatic hydrolysis was stopped by addition of cold (4°C) absolute 152 

ethanol (1 mL); the samples were cooled in an ice bath to precipitate serum proteins and 153 

centrifuged (15 min, 2500×g, 4°C), and the supernatant was analyzed by HPLC.  154 

 155 

Brain metabolite analysis  156 

Rats (n=2 per step) were anesthetized by intraperitoneal injection of urethane (1.25 g/kg) and 157 

a catheter was inserted in the caudal vein. The rats were pre-injected with cyclosporin (50 158 

mg/kg i.v., 30 min prior to administration of 15.0 ± 0.5 mg [18F]2FNQ1P). The rats were 159 

killed by decapitation 5, 10, 20 or 40 min after bolus injection of [18F]2FNQ1P (36 ± 2 MBq). 160 

The brains were carefully removed; each hemisphere was homogenized in 400 µL perchloric 161 

acid at 0.4 mol/L and centrifuged at 1,000 g for 10 min. The supernatant was neutralized by 162 

120 µL 4 M potassium acetate and filtered (0.45 µm) before HPLC. The HPLC system 163 

consisted of a C-18 reversed phase column (C18 Nucleodur 5 µm, 4.6 × 250 mm column; 164 
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elution with H3PO4 (20 mM) 77%/THF 23%) at a flow rate of 0.9 mL.min−1. During elution, 165 

1-min fractions were collected and counted for radioactivity with an automated γ-counter 166 

(Gamma Wizard 2480, Perkin Elmer).  167 

 168 

Biodistribution studies 169 

Rats (n=4 per step) were anesthetized by intraperitoneal injection of urethane (1.25 g/kg) and 170 

a catheter was inserted in the caudal vein. 56 ± 19 MBq were injected per rats (represented 171 

0.65 ± 0.22 nmol of radiotracer). Rats were euthanized at selected times up to 1 h after 172 

injection (15, 30, 45 min and 1h) by decapitation, and blood was immediately collected by 173 

cardiac puncture. Different samples from each rat were measured with a γ-counter (Gamma 174 

Wizard 2480, Perkin Elmer). 175 

 176 

Data analysis 177 

In radioligand binding studies, KD and Bmax values were calculated using GraphPad Prism 178 

software (Graph Pad Software, Prism 6). Bmax values were expressed in pmol of [18F]2FNQ1P 179 

per mg of protein. Data were expressed as mean ± standard error of mean (SEM) of at least 180 

three separate experiments. 181 

 182 

Results 183 

[18F]2FNQ1P radiosynthesis and quality controls 184 

Automated radiolabeling of 2FNQ1P leading to [18F]2FNQ1P was performed from its nitro-185 

precursor at 150°C in DMSO, on a Neptis synthesizer, with a radiochemical yield range of 186 
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25-36% corrected for decay and 72-78 min radiosynthesis time (including HPLC purification 187 

and formulation) (Fig.1). No radioactive by-products were observed and the HPLC conditions 188 

ensured good separation of the radiotracer from its nitro-precursor, as confirmed on quality 189 

control. Radiochemical purity was better than 99% and [18F]2FNQ1P molar activity was 190 

between 264 and 372 GBq/µmol, corrected at end of synthesis. 191 

 192 

In-vitro autoradiography  193 

The autoradiography experiments revealed [18F]2FNQ1P binding to various brain regions in 194 

postmortem tissues for all species (Fig. 2).  195 

In rat and non-human primate, binding levels were especially high in the frontal cortex, 196 

cingulate cortex, basal ganglia, hippocampus and thalamus. In pig, binding levels were high in 197 

the frontal cortex and high-to-moderate in putamen and hippocampus. In these three species, 198 

binding levels were lower in other cortical regions. In human caudate, autoradiography data 199 

showed wide-scale binding. Uptake was substancially diminished from 20 to 40 % in all 200 

regions after competition with SB258585 at 1µM (Fig. 2). These results demonstrated the 201 

sensitivity of [18F]2FNQ1P toward 5-HT6 receptors.  202 

 203 

In-vitro binding assays 204 

[18F]2FNQ1P bound with high affinity to 5-HT6 receptors localized in various caudate 205 

membranes in rats, pigs, non-human primates and healthy controls. Saturation analysis of 206 

[18F]2FNQ1P binding to native 5-HT6 receptors revealed a single binding site in all species 207 

(Fig.3). Non-specific binding was shown in presence of SB258585 at 1 µM. Radioligand 208 

equilibrium dissociation constants (KD) were 1.34 nM in rat, 0.60 ± 0.09 nM in pig, 1.38 nM 209 
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in non-human primate, and 1.39 ± 0.46 nM in healthy controls. Total receptor density (Bmax) 210 

in the various tissues was 0.03 pmol.mg-1 in rat, 0.04 ± 0.01 pmol.mg-1 in pig, 0.07 pmol.mg-1 211 

in non-human primate, and 0.15 ± 0.05 pmol.mg-1 in healthy controls. Examples of saturation 212 

binding curves and Scatchard plots are shown in Fig.3.  213 

 214 

Serum stability study 215 

The data clearly showed that [18F]2FNQ1P was not hydrolyzed at t=2h in comparison with 216 

t=0 in rat, pig, non-human primate and human sera. Stability in human serum at each time 217 

point is seen in the chromatogram in Figure 4. As expected, there was no decomposition of 218 

the control sample in PBS. 219 

 220 

Brain metabolite analysis  221 

With pre-injection of cyclosporin, the radiochromatograms of brain activity in rat plasma at 222 

various times (5, 10, 20 and 40 min) after injection of [18F]2FNQ1P showed negligible 223 

amounts of radioactive metabolite. The amount of radioactivity from unmetabolized 224 

[18F]2FNQ1P was greater than 99.5% at 5 min and decreased to 98.8% at 10 min, 95.5% at 20 225 

min and 88.6% at 40 min (Fig.5). 226 

 227 

Biodistribution studies 228 

The concentration of radioactivity in rat tissues (%ID/g) at selected times after i.v. injection of 229 

[18F]2FNQ1P (44.5 ± 9 MBq) is shown Fig.6. Concentration was highest in the lungs (up to 230 

3.5 ± 1.2%ID/g) and kidneys (up to 2.0 ± 0.7%ID/g) at 15 minutes post-injection, but 231 

decreased over a 60 minute period to 0.7 ± 0.1%ID/g and 0.9 ± 0.1%ID/g, respectively. The 232 
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next highest concentrations were in the spleen, liver and intestines (1.3 ± 0.1%ID/g, 1.2 ± 0.5 233 

%ID/g, and 0.8 ± 0.2 %ID/g at 15 minutes post-injection, respectively), and were stable after 234 

60 minutes. There was no accumulation of radioactivity in bone (0.3 to 0.2%ID/g). Uptake 235 

was low (≤ 0.1%ID/g) in the brains of healthy rats at all time points. 236 

 237 

 238 

Discussion 239 

There is currently no specific fluorinated antagonist of 5-HT6 receptors available for clinical 240 

PET imaging. In this context, our team developed [18F]2FNQ1P as the first 5-HT6 antagonist 241 

PET radiotracer for imaging [33]. The initial strategy was to select [18F]2FNQ1P for its 5-HT6 242 

receptor affinity and selectivity toward 5-HT2A receptors, as determined on CHO cells [32]. It 243 

is now necessary to have more in-vitro data in order to better understand the characteristics of 244 

this radiopharmaceutical candidate, particularly with a view to future use in humans. 245 

The present study systematically evaluated the pharmacokinetics of [18F]2FNQ1P and 246 

explored its potential for PET imaging in different species and human tissues. Results 247 

confirmed that [18F]2FNQ1P is a high-affinity reversible radioligand for 5-HT6 receptors. In 248 

rat, pig, non-human primate brain and human caudate, autoradiography assay showed 5-HT6 249 

receptor distributions similar to those in the literature [35–37]. The few differences in binding 250 

site concentrations in the present study may be attributable to the poorer resolution of the 251 

autoradiographic assay in comparison with immunohistochemistry. To further confirm the 252 

binding specificity of [18F]2FNQ1P for 5-HT6 receptors, in-vitro displacement experiments 253 

were performed by treatment with unlabeled SB258585 as a selective 5-HT6 receptor 254 

antagonist. A previous study had demonstrated that [125I]SB258585 binding matched the brain 255 
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localization of 5-HT6 receptors reasonably closely [38]. The present study showed strong 256 

displacement, indicating high binding specificity of [18F]2FNQ1P for 5-HT6 receptors. 257 

[18F]2FNQ1P’s high affinity for 5-HT6 receptors was confirmed on in-vitro binding assay. 258 

Pharmacokinetic analysis showed that [18F]2FNQ1P binds with nanomolar affinity (KD ≃1 259 

nM) to a single binding site in membranes prepared from rat, pig, non-human primate and 260 

healthy controls. These results confirmed those previously obtained with recombinant human 261 

5-HT6 receptors (Ki=0.9 nM) [32]. In addition, the binding site density in a sample of healthy 262 

control caudate tissue was concordant with the 5-HT6 receptor density reported in the 263 

literature [38,39].  264 

The pharmacological profile of [18F]2FNQ1P as a novel 5-HT6 receptor PET radiotracer did 265 

not show any notable differences between rat, pig, non-human primate and human tissue, 266 

suggesting that the radiopharmacological properties of the 5-HT6 receptor are conserved 267 

between species. The 5-HT6 subtype is one of the most recently cloned serotonin receptors 268 

[2,3,40], with 89% amino acid sequence homology between humans and rats [4]. In the serum 269 

stability study, [18F]2FNQ1P was stable in all species in vitro. 270 

Brain metabolite analyses are a crucial step in the development of a new radiotracer. In the 271 

case of [18F]2FNQ1P, our previous study revealed a lack of brain penetration in the rat model 272 

[33]. We proposed that blood-brain P-gp interacts with [18F]2FNQ1P and strongly regulates 273 

its brain penetration [41]. The lack of brain penetration in the rodent model is not 274 

disqualifying for future radiopharmaceutical application, given the evidence of good brain 275 

penetration in larger animals, including non-human primates [20,23,33]. It was nevertheless 276 

useful to check whether the radiotracer tends to be found in metabolized form in the brain. 277 

Because of the invasiveness of ex-vivo measurement in brain tissue, this approach can only be 278 

used in small animals. We therefore pretreated rats with cyclosporin, used here as a P-gp 279 
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inhibitor [41], in order to reach a significant concentration of [18F]2FNQ1P in the brain. The 280 

amount of total radioactivity was found to correspond mainly to unmetabolized [18F]2FNQ1P, 281 

even at the latest time point of 40 min post-injection, ruling out any significant contribution of  282 

radiometabolites to brain uptake. These results showed that [18F]2FNQ1P is also very stable 283 

in the brain, more than 88% being intact even 40 min after probe injection. This indicates that 284 

[18F]2FNQ1P radiometabolites in plasma do not greatly cross the BBB, a characteristic 285 

favourable to the specificity of brain targeting. 286 

In the whole body biodistribution study, the bone radioactivity accumulation of a fluorinated 287 

radiotracer is a very sensitive index of defluorination [42,43]. In the present case, there was no 288 

in-vivo bone accumulation of radioactivity between 15 and 60 minutes post-injection (0.29 to 289 

0.16% ID/g). Biodistribution studies highlighted tissue-dependent [18F]2FNQ1P accumulation 290 

rates. The highest radioactivity concentrations were found in kidney and liver, probably due to 291 

their involvement in the metabolism and excretion of the injected exogenous compound. 292 

Tracer fixation in lung can be explained by the presence of 5-HT6 receptors in this organ. A 293 

study demonstrated high expression of 5-HT6 receptors in the murine airway, tracheal muscle, 294 

main bronchus and lung [44]; the brain showed a very low tissue concentration, confirming 295 

that [18F]2FNQ1P was not able to penetrate rat brain (0.11 to 0.05%ID/g).  296 

Finally, these encouraging results, added to those of a previous PET study in non-human 297 

primate [23], confirm the selectivity of [18F]2FNQ1P toward 5-HT6 receptors and reinforce 298 

the idea that this radiotracer has a pharmacological profile suitable for in-vivo study in 299 

humans. [18F]2FNQ1P could be useful tool for studying 5-HT6 receptor density and 300 

distribution in animal disease models and in human brains from patients suffering from 301 

schizophrenia or Alzheimer’s disease. 302 

 303 
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Conclusions 304 

The interest of the development of a new PET radiotracer for 5-HT6 receptors no longer needs 305 

to be demonstrated [45]. According to the experimental data available on [18F]2FNQ1P, it 306 

may be useful for imaging 5-HT6 receptors. The present study described the characterization 307 

of [18F]2FNQ1P, which selectively binds to native 5-HT6 receptors with high affinity. Future 308 

experiments, such as in-vivo radiometabolite analyses with input functions and imaging 309 

studies in non-human primates or humans, should demonstrate the suitability of [18F]2FNQ1P 310 

as a new PET radiotracer. 311 
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Fig. 1. Synthesis of [18F]2FNQ1P 457 

 458 

Fig. 2. Representative in-vitro autoradiograms of [18F]2FNQ1P binding in rat (A), pig (B), 459 

non-human primate (C) and human brain tissues (D) (sagittal brain sections for pig, coronal 460 

brain sections for rat and non-human primate, and caudate sections for healthy controls). 461 

[18F]2FNQ1P distribution in cerebral regions was processed under baseline condition (total 462 

binding) and in presence of cold SB258585 (non-specific binding) (at 1µM). Arrows show 463 

frontal cortex (FC), cingulate cortex (Cg), caudate (Cd), putamen (Pu) and hippocampus 464 

(HIP). 465 

 466 

Fig. 3. In-vitro binding assays in rat (A), pig (B), non-human primate (C), and human caudate 467 

(D). Examples of saturation binding curves and Scatchard plots of [18F]2FNQ1P binding to 468 

caudate membrane. 469 

 470 

Fig. 4. Human serum stability. HPLC analysis of [18F]2FNQ1P following in-vitro incubation 471 

at 37°C at t=0 (red curve) and at t= 2h (blue curve) showed radiotracer stability for up to 2h in 472 

human serum. 473 

 474 

Fig.5. Brain metabolite analysis. Radiochromatogram of radioactivity from 5 to 40 min after 475 

intravenous pre-injection of cyclosporin and injection of [18F]2FNQ1P in rat. The main 476 

amount of radioactivity was eluted between 6 and 7 min, corresponding to the unmetabolized 477 

radiotracer (n=2). 478 

 479 
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Fig.6. Biodistribution of [18F]2FNQ1P in rat at selected times up to 1 h after i.v. injection (tail 480 

vein) expressed as percentage injected dose per gram of tissue (%ID/g, mean and standard 481 

deviation, n=4). 482 
















