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ABSTRACT 19 

The impact of non-linear soil behavior on site response may be described by the non-20 

linear to linear site response ratio RSRNL introduced in Régnier et al. (2013). This 21 

ratio most often exhibits a typical shape with an amplitude above one below a site-22 

specific frequency fNL, and an amplitude below one beyond fNL. This paper presents 23 

an investigation of the correlation between this RSRNL ratio and various parameters 24 
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used to characterize the site (Site Condition Proxies: SCPs) and the seismic loading 25 

level (Ground Motion Intensity Measures: GMIMs). 26 

The data used in this analysis come from sites of the Japanese Kiban–Kyoshin (KiK-27 

net) network, for which the nonlinear to linear site-response ratio (RSRNL) is obtained 28 

by comparing the surface/down-hole Fourier spectral ratio for strong events and for 29 

weak events. The five SCPs are VS30, the minimum velocity of the soil profile (Vsmin), 30 

an index of the velocity gradient over the top 30 m (B30), the fundamental frequency 31 

f0HV, as measured from the H/V earthquake ratio, and the corresponding amplitude 32 

A0HV. The seven GMIMs are PGA, PGV, PGV/VS30 (peak strain proxy), IA (Arias 33 

Intensity), CAV (Cumulative Absolute Velocity), arms (Root Mean Square 34 

Acceleration) and Trifunac-Brady Duration (DT). The original data set consists of a 35 

total of 2927 RSRNL derived from KiK-net recordings at 132 sites. To assign an equal 36 

weight to each site, and to avoid any bias linked to sites with many recordings, for 37 

each GMIM, this original data set is grouped in 15 different intervals corresponding to 38 

fixed fractiles of the statistical distribution of the considered GMIM (every 10% from 39 

F10 to F50, and every 5% from F55 to F100). In each group, the average RSRNL-GM 40 

for each site is computed. For each of these seven advanced data sets, a neural 41 

network approach is used to predict the behavior of RSRNL-GM as a function of the 42 

corresponding GMIM, and one or two SCPs. The performance of each model is 43 

quantified through the average variance reduction coefficient µ(Rc) in a fixed 44 

frequency range. This sensitivity study is performed in the normalized frequency 45 

(f/fNL) domain to identify the best combinations (GMIM, SCPs) providing the largest 46 

variance reduction, and then in the absolute frequency domain for the final optimal 47 

combination. The optimal combinations [GMIM, two-SCPs] are triplets [PGV / VS30, 48 

VS30-f0HV; µ(Rc) = 18.6%], [PGV / VS30, VS30-A0HV; µ(Rc) = 18.16%], [PGV, VS30-f0HV; 49 
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µ(Rc) = 17.3%] and [PGA, B30-A0HV; µ(Rc) = 17.2%]. The final absolute frequency 50 

model with the best triplet makes it possible to predict the non-linear response of a 51 

given site knowing its linear, weak-motion response, and two site proxy parameters, 52 

for wide ranges of the considered ground motion parameters. 53 

Keywords: Non-linear site response, site-specific frequency, Site Condition Proxies, 54 

Ground Motion Intensity Measures, neural networks. 55 

1 INTRODUCTION 56 

Although the Non-Linear (so-called NL) behavior of soft soils under large seismic 57 

shaking has been recognized since many decades, accounting for NL site response 58 

in hazard assessment studies is still associated with large uncertainties. The various 59 

benchmarking exercises of NL simulation codes over the last 2 decades, reported in 60 

Kwok et al., (2008), Stewart (2008), Stewart and Kwok (2008, 2009), and Régnier et 61 

al., (2016a, 2018), have repeatedly shown that the prediction of site-specific NL 62 

response may vary significantly even amongst teams with very good expertise in NL 63 

simulation, due to various types of uncertainties linked either to the simulation (code 64 

and numerical method, constitutive model, user) or to the definition and 65 

measurement of soil parameters, together with intrinsic assumptions of the model 66 

(1D site impinged by vertically propagating S waves, with or without pore-water 67 

pressure effects). All these uncertainties lead to a simulation-to-simulation variability 68 

reaching 0.25 (log10 scale), and prediction to observations differences up to 0.25 to 69 

0.35 (log10 scale) especially around the site fundamental frequency.  70 

On another hand, more generic seismic hazard estimates based on GMPEs face 71 

difficulties in accounting for NL site response: amongst the GMPEs that include NL 72 
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site terms, only very few are based exclusively on recorded data (Sandikkaya et al., 73 

2013, Derras et al., 2016, 2017), while most of them constrain the NL site term with 74 

complementary 1D simulations (described in Walling et al., 2008 for NGA models, 75 

and Kamai et al., (2014) and Seyhan and Stewart 2014 for NGA West 2 models). 76 

The resulting site term models are thus also depending a lot on the simulation 77 

assumptions and are impacted by all the corresponding uncertainties. 78 

The global objective of the present study is to propose an alternative, purely 79 

empirical approach, that could be used for both site-specific and generic studies. It 80 

focuses only on one peculiar aspect of NL site response, i.e., the changes in site 81 

response due to the NL behavior of soils. Such modifications have already been 82 

reported many times since the early nineties on individual data sets (e.g., SMART1 83 

array in Taiwan, a few pre KiK-net borehole recordings in Japan, some rock/soil 84 

station pairs in California, and the large set of mainshock/aftershock recordings in the 85 

Los Angeles basin from the Northridge sequence, see Field et al., 1997). The 86 

number of such recordings exhibiting NL response has increased a lot in the last two 87 

decades, especially with the KiK-net data. This led Régnier et al., (2013) to propose 88 

the concept of "non-linear to linear site response ratio" (RSRNL) comparing the 89 

surface/downhole Fourier spectral ratio for strong events and for weak events, and 90 

Régnier et al., (2016a) to present a statistic of such ratios for different groups of sites 91 

and different PGA thresholds. This RSRNL modulation function exhibits a typical 92 

shape with an amplitude above one at low frequency (due to the shift of resonant 93 

frequency associated to shear modulus reduction), and below one at high frequency 94 

(associated to increased damping), with a transition frequency denoted fNL, which is 95 

site-specific, and always larger than or equal to the site fundamental frequency f0. 96 

The main goal of the present study is to go one step further, and to propose a model 97 
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describing the continuous dependence of this RSRNL as a function of the site 98 

parameters (Site Condition Proxies: SCPs) and the seismic loading level (Ground 99 

Motion Intensity Measures: GMIMs). Such empirical modulation functions could then 100 

be used as an alternative to numerical simulation to modify either the linear site 101 

transfer functions (observed or simulated) for site-specific hazard estimates, or the 102 

linear site terms in GMPEs for generic hazard estimates. 103 

The derivation of these empirical modulation functions is described in four main 104 

sections. The first one describes the construction of the RSRNL data sets on the basis 105 

of a subset of KiK-net recordings for sites having at least one strong recording 106 

(surface PGA ≥ 0.1 g), and two weak motion recordings (PGA between 0.1 and 25 107 

cm/s2), grouped within increasing loading level bins considering various ground 108 

motion intensity measures. It also provides an overview of the corresponding 109 

statistical distribution of several site parameters to test their ability to predict the NL 110 

site response. The second section presents the neural network approach adopted for 111 

investigating the dependency of RSRNL on the loading level and various 112 

combinations of site proxies, together with the variance reduction metrics adopted to 113 

compare the performance of various models. The third and fourth sections present 114 

the results of the neural network models, first in a normalized frequency domain 115 

[RSRNL(f/fNL)] to better identify the most relevant SCPs and GMIMs that provide best 116 

predictions (those associated with the largest variance reduction), and then in the 117 

absolute frequency domain [RSRNL(f)] in order to avoid the need to establish a 118 

parallel model predicting fNL for each site. 119 
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2 FROM RAW DATA TO ADVANCED DATA SETS 120 

The present study requires two kinds of data to build prediction models: a set of 121 

linear to non-linear empirical modulation observations, and a set of explanatory 122 

variables related to site conditions and loading levels. Presently, the only network 123 

offering that combination of high-quality data for a large number of sites with 124 

homogeneous site metadata and with a large number of strong enough recordings, is 125 

the Japanese Kiban–Kyoshin Network (KiK-net). The KiK-net network consists of 688 126 

stations with surface and downhole accelerometers (Fujiwara et al., 2004). Most of 127 

the borehole seismic stations are located between 100 and 200 m depth.  128 

We start below with the presentation of the model parameters (site condition proxies 129 

and loading level parameters), and then describe the building of the empirical non-130 

linear modulation ratios. 131 

2.1 Model parameters 132 

From this KiK-net database and for the purpose of this analysis we extracted two 133 

kinds of parameters which may be considered as useful proxies to characterize the 134 

non-linear site response: Ground Motion Intensity Measures (GMIMs) related to the 135 

loading level from the earthquake recordings, and Site-Condition Proxies (SCPs) 136 

related to the site (elastic) properties. Both types of proxies are detailed below.  137 

2.1.1 Ground-motion intensity measures (GMIMs) 138 

We considered seven different intensity measures to characterize the level of 139 

loading: PGA (Peak Ground Acceleration), PGV (Peak Ground Velocity), PGV/VS30 140 

(proxy for peak strain, CAV (Cumulative absolute Velocity), IA (arias Intensity), Arms 141 

(Root Mean Square Acceleration), and DT (5%-95% Trifunac-Brady Duration, 142 
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Trifunac and Brady 1975). The first two are very well known and involve only peak 143 

values reached only once during the whole duration of the shaking. The third one is 144 

more and more used in the geotechnical earthquake engineering community (see 145 

Idriss, 2011), because of its simple and robust physical basis: for a non-dispersive 146 

waveform f(t-x/c) propagating along direction x with a propagation speed c, the strain 147 

(i.e., the spatial derivative of the motion), is equal to the particle velocity (time 148 

derivative of the signal) divided by the propagation speed c. Despite the actual of 149 

complexity of seismic wave fields (consisting of multiple waves propagating in 150 

various direction with different velocities), the proxy PGV/VS30 has been shown to 151 

provide a reasonable estimate of peak strains, at least for vertically propagation 152 

shear waves (see Chandra et al., 2016; Guéguen et al., 2019), and as long as the 153 

soil is not driven too far in the non-linear domain leading to major changes in the 154 

propagation velocity and frequency content. The last four GMIMs are derived directly 155 

from time domain integration of the acceleration time histories: CAV is obtained by 156 

integrating the absolute value of the acceleration time series over the strong motion 157 

phase, while lA, Arms and DT are derived from the "Husid" plot describing the time 158 

dependence of the integral of the square of the acceleration time series (Trifunac & 159 

Brady, 1975). CAV, IA and Arms combine information on both amplitude and 160 

duration, while DT only keeps the duration information.  161 

 162 

2.1.2 Site-condition proxies (SCPs) 163 

We considered five parameters partially describing the site conditions : VS30 (the 164 

widely used travel-time average shear wave velocity over the first 30 m of soil), Vsmin 165 

(the minimum shear wave velocity of the soil profile, generally located at the very 166 
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surface but not always in case of velocity inversion at some depth), B30 describing a 167 

power-law dependence of Vs with depth, over the top 30m, as defined in Régnier et 168 

al. (2013) and Régnier et al (2014), f0HV that is the fundamental resonance frequency 169 

picked on the Horizontal to vertical Fourier spectral ratio of surface earthquake 170 

recordings, and A0H/V the corresponding amplitude.  171 

These five proxies provide different kinds of information on the underground 172 

structure. The VS30 and VSmin parameters provide both an indication on the soil 173 

softness at shallow depth. For thin deposits (i.e., with a total thickness less than 30 174 

m), the VS30 value may be strongly contaminated by the underlying bedrock velocity, 175 

and may no longer be a relevant indicator of shallow softness. On the opposite, VSmin 176 

does provide an indication of the minimum softness, but without any information on 177 

the associated thickness. The B30 parameter provides an indication on the amount of 178 

velocity variation over the top 30 m: it is generally between 0 and 1, 0 corresponding 179 

to a constant value, and 1 to a linear dependence on depth (Régnier et al., 2013). 180 

The f0HV parameter, which directly provides the frequency below which the site 181 

amplification is negligible (in linear regime), also informs jointly about the softness 182 

and thickness over the seismic bedrock (the larger the thickness and/or the lower the 183 

softness, the lower the f0HV frequency). The associated A0HV amplitude is intended to 184 

provide an indication on the impedance contrast between the deep bedrock 185 

(controlling the fundamental resonance) of and the overlying sediments. 186 

2.2 Empirical non-linear to linear site response ratio (RSRNL) 187 

The database used in Régnier et al., (2016a) was a subset composed of all the 188 

accelerometric data recorded between 1996 and 2009 with magnitudes (MJMA) higher 189 

than 3 and epicentral distances below 150 km. This initial database has been 190 
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enhanced with all strong motion recordings obtained from 2010 to 2014 with peak 191 

ground accelerations (PGA) higher than 50 cm/s2 at the downhole station, and 192 

without any criterion on distance. The resulting data set contains more than 47 600 193 

recordings with 7738 recordings having a PGA at the surface above 20 cm/s2 on 529 194 

sites. 195 

The processing involves three steps as illustrated in Figure 1: the derivation of the 196 

non-linear to linear spectral ratios RSRNL for each site and recording with a surface 197 

PGA greater than 20 cm/s2, their normalization in the frequency domain, and then the 198 

elaboration of specific data sets for each of the seven considered loading parameters 199 

(GMIMs). 200 

 201 

2.2.1 First step: derivation of "raw" RSRNL ratios 202 

The data were processed as explained in Régnier et al., (2013). The site response 203 

for each site event was described by the surface to borehole Fourier amplitude 204 

Spectrum Ratio (BSR in the following) as defined in Equation 1 (quadratic mean of 205 

the horizontal components). 206 

2
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2
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2
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2

EW

boreholeborehole

surfacesurface

FASFAS

FASFAS
BSR

+
+

=      Eq 1 207 

Where, FASEWsurface, FASNSsurface, FASEWborehole FASNSborehole, are the smoothed 208 

Fourier amplitude spectrum of the East-West, North-South components of the 209 

surface and downhole recordings, respectively. The applied smoothing is the Konno-210 

Ohmachi one (Konno and Ohmachi, 1998) with a parameter b equal to 40.  211 
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The non-linear soil behavior and its impact on site response is then characterized by 212 

the average of the ratio between non-linear and linear BSRs. At a site (i), the non-213 

linear to linear site response ratio can be calculated for each strong motion event (j), 214 

we called it RSRNLij. It represents the modification of the weak motion BSR resulting 215 

from non-linear soil behavior due to strong motion j. RSRNLij can be defined 216 

according to Equation (2) for all strong events with a surface PGA higher than 20 217 

cm/s2, as the ratio between the BSR of the strong event j over the geometrical 218 

average of BSR calculated on weak events (with surface PGA between 0.1 and 10 219 

cm/s2) at the same site. 220 

   Eq 2 221 

Where RSRNLij is the ratio of the non-linear to linear site response for a given site (i) 222 

and a given strong event j, w the index of weak events, Niw the number of weak 223 

events (Niw ≥ 2) recorded at site i, and BSR the borehole spectral ratio. As discussed 224 

in Régnier et al. (2016a), the so-defined RSRNLij ratios are considered to characterize 225 

the modification of site response linked to the non-linear behaviour of soft deposits, 226 

whatever the nature of the reference site (i.e., with a sensor at the surface of an 227 

outcropping rock, or at depth within a bore-hole).  228 

An average of the RSRNLij over all strong events corresponding to surface PGA 229 

values exceeding a given threshold, or falling within a given range, may then be 230 

calculated, together with the corresponding variability. As described in Régnier et al., 231 

(2016a), the average RSRNL (Figure 2 (B1)) curves obtained for different PGA 232 

thresholds exhibit a typical frequency dependence close to the first derivative of a 233 

Gaussian function, consisting in three main parts. The first part is a slow increase 234 
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from one at low frequency until a specific frequency that varies from one site to 235 

another. The second part is an abrupt decrease down to values below one. The last 236 

part is a slow increase and/or stabilization at values generally below one at high 237 

frequency. This shape reflects directly the frequency shift caused by the degradation 238 

of elastic properties at large strains, and the increase of damping due to hysteretic 239 

behavior. Such a curve is thus characterized by a "pivot" frequency called fNL, 240 

corresponding to the frequency beyond which RSRNL goes below one. This 241 

parameter is obviously site specific and could also depend, for a given site, on the 242 

loading level, for instance the PGA level at first order. However, Régnier et al., 243 

(2016a) report that such fNL values exhibit almost no dependence on PGA, except for 244 

a few thick sites with low fundamental frequency (below 1.5 Hz). In the present study, 245 

we have thus assigned to each site the fNL values corresponding to a PGA threshold 246 

of 100 cm/s2: such a threshold value is large enough to allow a clear NL modulation 247 

and an unambiguous pick of the fNL value, and moderate enough to allow a pick for 248 

all selected sites. fNL values could be picked automatically for 164 sites, varying from 249 

0.49 Hz to 15.7 Hz with a mean value of 5.9 Hz and a standard deviation of 3.7Hz.  250 

The RSRNL curves can be considered either in the absolute frequency domain (Step 251 

1 of Figure 1), or in a normalized frequency domain, i.e., as a function of the ratio f/fNL 252 

(Step 2 of Figure 1). In the absolute frequency domain, the [0.2, 20 Hz] frequency 253 

range was subdivided into 49 bins having a constant width on a logarithmic axis, i.e., 254 

corresponding to a constant ratio between central frequencies of two consecutive 255 

bins r = 1001/49 = 1.0985, over which each of the RSRNL(f) curves were averaged. 256 

The corresponding central frequencies of each bin are listed in Table B of the 257 
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Appendix. We are emphasizing that averaging is performed only once in the absolute 258 

frequency domain. 259 

To develop broad-band models, we kept in our data base only the recordings for 260 

which the RSRNLij curve are defined at least for 46 out of the 49 frequency bins, i.e. 261 

with a good signal-to-noise ratio (exceeding 3) over almost the whole frequency 262 

range [0.2 – 20 Hz]. 263 

At this stage, the number of RSRNLij data fulfilling all the selection criteria, i.e.(1) a 264 

PGA at the surface greater than 20 cm/s2, (2) at least two weak events recorded at 265 

the same site, (3) a fNL defined at the site and (4) having at most 3 undefined values 266 

over the whole range of frequency bins, contains a total of 2927 recordings 267 

corresponding to 132 different sites. 268 

2.2.2 Second Step: shift to the normalized frequency domain 269 

Considering the typical shape of RSRNL curves, it was considered useful to also 270 

analyse them in a normalized frequency domain, i.e., as a function of f/fNL, so as to 271 

better apprehend the sensitivity of this typical shape to loading parameters and site 272 

condition proxies. In this aim, we used the fNL values derived for each site as 273 

described above. The 49 absolute frequency bins thus resulted into 97 normalized 274 

frequency bins, with the central one (bin 49) corresponding to a normalized 275 

frequency bin between 0.954 (r-0.5) and 1.048 (r0.5). For a site with frequency fNL, the 276 

initial absolute frequency bins are simply shifted by n = 49 - int {log(fNL/0.2)/log(r)}, so 277 

as to automatically assign the central bin 49 to a normalized frequency of 1 and 278 

keeping the same ratio r = 1.0985 for the width of each normalized frequency bin. For 279 

a given site, the range of normalized frequencies thus depends on the fNL value, as it 280 

goes from 0.21/fNL to 19.1/fNL, i.e., from bin n to bin n+48. 281 
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2.2.3 Third step: derivation of "GM-specific" advanced data sets  282 

The "raw, absolute frequency" and “raw, normalized frequency” data established in 283 

steps one and two respectively exhibit a significant inhomogeneity in terms of 284 

number of recordings per site, and number of recordings per loading level. For 285 

instance, the station AKTH04 has 33 recordings, whereas the relatively close 286 

AKTH06 station has only five recordings fulfilling the selection criteria. The full range 287 

of number of recordings per site goes from 2 to 116. In addition, for every site, the 288 

number of recordings is generally much larger for relatively moderate motion than for 289 

strong motion. To prevent the statistical models from being biased by the uneven 290 

distribution of number of recordings per site and per loading level, we pre-processed 291 

the initial data set of RSRNL as described in the following and illustrated in Figure 2. 292 

For each of the seven ground-motion intensity measures, we defined 15 bins based 293 

on the cumulative distribution functions shown in Figure 2 (A1) for PGA and Figure 3 294 

for all GMIMs. We considered 15 bins corresponding to evenly distributed fractiles 295 

Fx: every 10% from F10 to F50, and every 5% from F55 to F100. The narrower bins 296 

in the 50% upper part of the distribution were designed to discretize more precisely 297 

the data corresponding to large loading levels. These are the ranges where soil non-298 

linear behavior is expected to have a larger impact on site response.  299 

For each site i, we first count the number of recordings Ni,GMk falling in each intensity 300 

measure bin k. For example, this number can vary from 0 to 18 in the case we take 301 

PGA as GMIM. Therefore, to assign an equal weight to every site in a given intensity 302 

measure bin, we take the average of RSRNLij for all the recordings in the bin k. This 303 

average is associated to the average ground motion intensity measure of the bin as 304 

detailed in Equation (3). It may happen some sites do not have any recording falling 305 
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in the bin k : Ni,GMk = 0. We therefore end up with a total of seven "advanced data 306 

sets" (one for each GMIM : GM in the Eq 3).  307 
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  Eq 3 308 

Where RSRNLi-GMk is the average non-linear modulation function for all the recordings 309 

in a bin k and for a site i. The bin is characterized by these limits bink =[GMk to 310 

GMk+1]. GMK varies from F10(GM) for k=1 to F100(GM) for k=15. NiGMk is the number 311 

of records in the same bin at site i. Furthermore, µi(GMk) is the average GMIM value 312 

between GMK and GMK+1 and for site I; it is of course bounded by the values GMk 313 

and GMk+1, and does not vary much from site to site. 314 

The procedure is illustrated in Figure 2 for the PGA loading GMIM. The subplot A1 315 

displays the PGA cumulative distribution function for all the recordings. The subplot 316 

A2 shows the total number of sites considered for each PGA bin, while the subplot 317 

A3 refines the number of available sites as a function of f/fNL, again for each PGA bin. 318 

We can observe on subplot A2 that the number of sites does not vary too much from 319 

one PGA bin to another indicating an adequate distribution of the data for a statistical 320 

analysis. The smaller number of sites at low and high normalized frequencies 321 

indicated by subplot A3 has two origins: (1) the original RSRNL-GM, for a given site 322 

and bin, may not be valid over the whole [0.2-20 Hz] frequency range because of too 323 

small signal-to-noise ratio and (2) the fNL is variable from one site to another which 324 

results in a site-to-site variability of the available normalized frequency range. That is 325 

why all curves in subplot A3 exhibit a bell shape with a maximum for normalized 326 
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frequencies close to 1, the values of which correspond to numbers displayed in 327 

subplot A2 and varying from 67 to almost 108 sites. Table A in the appendix provides 328 

the number of records and the number of sites for each of the 15 intensity bins of the 329 

seven intensity measures (instead of only PGA in Figure 2). As expected from the 330 

construction of each data set, the number of records in each bin is around 290 in 331 

each of the 5 first bins, and half of it, i.e around 145, in the last 10 bins, which 332 

correspond exactly to 10% and 5% of the total number of recordings (2927). The 333 

number of sites from which the average and standard deviation of the RSRNL-GM is 334 

calculated is more variable from bin to bin and GMIM to GMIM, but corresponds to an 335 

average of around 90 sites for the first 5 bins, and 70 for the last 10. These numbers 336 

are large enough to ensure a statistical significance in each intensity bin, and we 337 

therefore consider that these seven advanced data sets are appropriate for 338 

investigating the dependency of the RSRNL modulation function as a function of the 339 

above listed site condition proxies and intensity measures. 340 

As an example, subplots (B1) and (B2) of Figure 2 display, respectively, the average 341 

and the standard deviation of all the available RSRNL-GM for each PGA bin, as a 342 

function of the normalized frequency f/fNL. These plots are briefly discussed in the 343 

next section. 344 

2.3 Statistical overview of the seven data sets 345 

2.3.1 Distribution of metadata 346 

The cumulative distributions of the GMIMs and SCPs are displayed on Figures 3, 4 347 

and their cross-correlations in Figures 5 and 6. The Figure 3 represents the 348 

cumulative distribution function (CDF) of the log values of PGA, PGV, CAV, IA, DT, 349 
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Arms and PGV/VS30, for the whole set of 2927 recordings: all of them are thus found to 350 

follow a lognormal distribution. The same findings stand for the distribution of SCPs 351 

(Figure 4), except for B30 that follows an approximately normal distribution. Similar 352 

distributions are obtained for the three sets of data obtained in step 1, 2 and 3, so we 353 

used the logarithm (base 10) values of all GMIMs and SCPs (except for B30) as input 354 

for all ANN models. Figure 5 displays the cross-correlations for each pair of GMIMs, 355 

together with the corresponding correlation coefficient values. Some pairs exhibit a 356 

strong correlation (e.g. R(PGA, Arms) = 0.96; or R(IA, CAV = 0.95)), and in general all 357 

parameters involving amplitude information are significantly and positively correlated. 358 

The Trifunac-Brady duration DT is found the most poorly correlated with all others. 359 

The weakest correlation is found between the strain proxy PGV/VS30 and DT with R = 360 

-0.01. Such a strong correlation between most amplitude-related GMIMs suggests 361 

that one GMIM is probably enough to characterize the dependence of non-linear site 362 

response on loading level. 363 

Similarly, to check the possible non-independence between the various SCPs, 364 

correlation plots are displayed for each pair of SCPs (Figure 6) together with the 365 

corresponding correlation coefficient (R). Another parameter is considered in these 366 

plots, the "FNL" frequency, to investigate its possible correlation with the SCPs. Some 367 

pairs do exhibit some significant correlation (e.g., R = 0.65 for the pair VS30-f0, R=0.6 368 

for VS30-VSmin), but in general the correlations values are much smaller compared to 369 

the various GMIMs, with the weakest correlations corresponding to the VSmin-B30, 370 

VSmin-A0HV and VS30-A0HV pairs. The SCPs can be considered as almost independent 371 

site parameters for the derived ANN models, which allows using more than one SCP 372 

in the ANN models. 373 
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The last column of Figure 6 displaying the correlation plots between fNL and all the 374 

considered SCPs is interesting in two respect: the best correlation is found with VS30 375 

(R=0.64), and the f0HV-fNL scatter plot displays a triangular distribution indicating that 376 

fNL is at least equal to, but may be much larger than f0HV, especially for low frequency 377 

(thick and/or soft) sites. 378 

2.3.2 Variability of RSRNL-GM  379 

In the normalized frequency domain, the variability of the advanced data sets (Eq. 7) 380 

is illustrated in Figure 7 (a). The average variability is similar whatever the intensity 381 

measure: it is very low at frequencies below fNL (because all RSRNL-GM ratios are very 382 

close to 1 whatever the intensity level), it then steadily increases up to a value 383 

around 0.1 (corresponding to around 26% = (10(0.1)-1).100) for a unit normalized 384 

frequency, and then, after a very narrow-band drop around f/fNL=1, stabilizes around 385 

a constant value of 0.12 (32%), for f/fNL > 1. For some GMIMs, the variability 386 

increases for high normalized frequencies (beyond f/fNL=2-3), as a result of a larger 387 

GMIM bin-to-bin variability and site-to-site variability (see Figure 2B). The drop 388 

around f/fNL=1 is due to the fact that RSRNL-GM is close to 1 for f = fNL; however, the 389 

variability does not go down to zero because fNL may change slightly from one 390 

intensity bin to the other (in addition to the fact that RSRNL-GM is not exactly equal to 1 391 

in the central bin because of the bin averaging process). 392 

In the absolute frequency domain (figure 7b), the variability of such RSRNL-GM values 393 

is limited at low frequency (typically less than 0.04 log10 – less than 10% - for f < 0.8 394 

Hz), then is steadily increasing up to a level around 0.17 (i.e. around 48 %) up to a 395 

frequency around 10 Hz, beyond which it decreases down to around 0.12 (i.e. around 396 

32%) at 20 Hz (the largest considered frequency).  397 
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While the fNL frequency normalization alone does not allow to significantly reduce the 398 

overall scatter of the non-linear modulation function RSRNL compared to the absolute 399 

frequency domain, it however allows to better display the main trend in the 400 

dependency of RSRNL as a function of the loading intensity level. For instance, the 401 

subplot B1 of Figure 2 display, on the example of the PGA, the increase in the 402 

modulation function with loading level, with larger low-frequency (f<fNL) amplification 403 

increase for larger PGA, and larger high-frequency (f>fNL) reduction for large PGA. 404 

Indeed, below f/fNL = 1 the average ratio RSRNL increases until the value of 1.5 for the 405 

last PGA bin ([265-1050[ cm/s²), while above f/fNL = 1, it decreases down to values 406 

below 0.5. In addition, the subplot B2 shows that the within-bin variability of all "raw" 407 

RSRNLij-GMk ratios exhibits also a significant increase with increasing loading level, 408 

with their standard deviation σRSRNLij-GMk o slightly exceeding 0.165 (40%) for the last 409 

PGA bin below fNL, and reaching up to 0.25 (78%) beyond fNL: it indicates that the 410 

non-linear transfer function could be twice the linear one at low frequency, and could 411 

be three to four times weaker at high frequency. The loading dependency of the 412 

variability (subplot B2) also suggests that other parameters (such as site proxies) 413 

could be used to further refine the model and reduce this variability. 414 

A similar analysis was conducted with alternative intensity measures such as the 415 

strain proxy parameter PGV/VS30: the overall trends are similar but generally less 416 

clear.  417 
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3 METHODOLOGY 418 

3.1 Overview 419 

The main aim of this study is two-fold: 1) Investigating the ability of various GMIMs 420 

and SCPs to improve the prediction of RSRNL-GM (this will be developed in the 421 

sensitivity analysis section), and 2) selecting optimal selection of GMIM and SCPs to 422 

derive a RSRNL-GM model allowing to estimate the nonlinear site response from the 423 

linear site response. The latter can be obtained inter alia by linear GMPEs in generic 424 

studies, or by more detailed, numerical or instrumental, investigations in site-specific 425 

studies. 426 

To reach the first goal, we use the seven "advanced " datasets developed in the 427 

previous section (step 03) and a neural network approach for developing RSRNL-GM 428 

prediction equations in the normalized frequency domain, in the mathematical form 429 

described in the Equation 4: 430 

( ) ( )− = ±  10 NL GM NL NLlog RSR f / f G( (W,b)) .   f / fβ ε σ                         Eq.4 431 

where  432 

• G is the prediction functional form, 433 

• σ represents the standard deviation of residuals, and ε is representing the 434 

residual normalized by σ.  435 

• β designates the GMIM vector and the SCP matrix 436 

• W and b represent the parameters of the neuronal model which are tuned to 437 

optimize the fit as described in the next section.  438 
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• Given the range of values of fNL [0.49 – 15.7 Hz], the normalized frequency ν = 439 

f/fNL is ranging from around 0.015 to 40, with however only few values at the 440 

two extremities of this interval (see Figure 2, subplot A3). 441 

The neuronal model has the advantage of not requiring a prior functional form 442 

(Derras et al., 2012): the actual dependence is established directly from the data and 443 

can therefore be used as a guide for a better understanding of the factors that control 444 

ground motions. 445 

The results obtained in the sensitivity analysis will be later used to establish the final 446 

RSRNL-GM equation in the absolute frequency domain, in an analogous form as 447 

shown in Equation 5 448 

( )10 NL GMlog RSR f H( (W,b)) .   ( f )β ε σ− = ±                 Eq.5 449 

3.2 Artificial Neural Network Methods approach  450 

An ANN is made up with interconnecting artificial neurons within input, hidden and 451 

output layers. The symbols W and b represent the synaptic weights and bias with 452 

subscripts representing the corresponding neurons, respectively (Figure 8). The ANN 453 

type used in this work is the feed-forward ANN (Hu and Hwang, 2002). 454 

The Quasi-Newton Back Propagation technique also called “BFGS” (Robitaille et 455 

al.,1996) has been used in this work for the training phase. This method considers 456 

the second derivatives with respect to the unknown coefficients of the input-output 457 

relationship and is therefore more efficient than the original method of back-458 

propagation. The number of iterations required to converge is significantly lower and 459 

the computation time is reduced (Demuth et al., 2009).  460 
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The performances of the results obtained by ANN are measured by the standard 461 

deviation σ of residuals between observations and model predictions (Eq.6), 462 

compared to the standard deviation σref of the original advanced data set (Eq.7) 463 

through the variance reduction coefficient Rc as defined in Eq. 8 464 

M
2

10 NL GM ,obs 10 NL GM ,pred

1

1
(log ( RSR ) log ( RSR ))

M
σ − −= −∑     Eq 6 465 

M
2

ref 10 NL GM ,obs 10 NL GM ,obs

1

1
(log ( RSR ) log ( mean( RSR )))

M
σ = − −−∑   Eq.7 466 

2

c 2

ref

R (1 ).100   (%)
σ
σ

= −        Eq.8 467 

where RSRNL-GM,obs represents the "observed" RSRNL-GM as derived in the step 3 468 

advanced data set. RSRNL-GM,pred is the neural prediction of the RSRNL-GM (either in 469 

the normalized frequency domain for the sensitivity study, or in the absolute 470 

frequency domain for the final model). M is the size of the advanced data set. 471 

Using an ANN method, the residual error can be driven to a very small value, for 472 

instance through the use of a large number of nodes in the hidden layer. However, 473 

when new data are presented to the network the resulting error may become large. 474 

To avoid it, the regularization method is used in this study. This method involves 475 

modifying the conventional mean sum of squares of the network errors by adding a 476 

term equal to the mean of the sum of squares of the network weights and biases 477 

(Derras et al, 2012), which de facto limits the number of degrees of freedom. 478 

3.3 Design of ANN model 479 

The design of the ANN model requires several choices regarding:  480 
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• the input parameters (here GMIMs and SCPs) which are relevant for 481 

explaining the variability of output responses (in this study RSRNL-GM), 482 

• the number of hidden layers,  483 

• the corresponding number of neurons,  484 

• the selection of the activation functions. 485 

We first have chosen the number and the kind of independent parameters of our 486 

predictive models (inputs of the neural model): this is the main topic addressed in the 487 

sensitivity study described in the next section. A single hidden layer has been finally 488 

systematically selected for all models (Figure 8). Two or more hidden layers would 489 

have allowed to reach much smaller errors, but it would also have significantly 490 

increased the complexity of the model, raising the issue of an “over-fitting”: such 491 

models are not favored by the regularization technique. In addition, an ANN model 492 

with one single hidden layer has been shown to be a universal function approximator 493 

(Wolfgang 1997; Peter et al., 2008).  494 

Here, the number of neurons in this single hidden layer (N) has been taken equal to 495 

the number of the independent parameters considered in the input layer (Wierenga 496 

and Kluytmans, 1994). This choice allows to reach an optimal compromise between 497 

σ reduction and Akaike Information Criterion (AIC) increase due to larger number of 498 

degrees of freedom. 499 

Several activation functions (between input and hidden layers and between hidden 500 

and output layers) have been considered. The lowest σ value, and the lowest number 501 

of iterations as well, have been obtained with a hyperbolic tangent function for the 502 

former, and a linear one for the latter (their schematic shape is shown in Figure 8). All 503 
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the tests and the final implementation have been performed with the Matlab Neural 504 

Network ToolboxTM (Demuth et al., 2009).  505 

The final neural models thus consist of a series of three layers. The first represents N 506 

inputs, (one GMIM and {N-1} SCPs). The second, hidden layer has the same number 507 

N of neurons. The last layer represents the values of RSRNL-GM for 97 normalized 508 

frequency bins (sensitivity analysis), or 49 absolute frequency bins (final model). The 509 

selected architecture is therefore of the N-N-97 or N-N-49 type. 510 

4 Normalized frequency domain: results and sensitivity 511 

analysis 512 

4.1 Outline 513 

To investigate the respective performance of the various GMIMs and SCPs in 514 

predicting the non-linear modulation, i.e., in reducing the model residual, different 515 

RSRNL-GM (f/fNL) ANN-models were built. A schematic description is given in Figure 1 516 

(step 4). Their performance is evaluated for each normalized frequency through the 517 

variance reduction coefficient Rc(f/fNL) (Eq.8). This frequency dependent quantity 518 

describes the capacity of the model to explain the observations. Figure 9 displays the 519 

Rc values as a function of the normalized frequency f/fNL for several one or two-input 520 

parameter models, considering either one GMIM, or the combination of each GMIM 521 

with one of the five SCPs. The variance reduction is found to exhibit significant 522 

differences from model to model, and also significant variations with normalized 523 

frequency: the variance reduction is very small for (f/fNL) values much smaller than 1, 524 

it then increases and reaches a maximum Rcmax for f/fNL between 1 and 2, and 525 
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stabilizes around an almost constant value (model-dependent, and generally ranging 526 

from 5% to 15%), for f/fNL values beyond 3 to 5. One may also notice the sharp and 527 

narrow drop of Rc for f/fNL around 1 (with Rc values most often between 3% and 8%). 528 

This drop is related to the definition of fNL: all RSRNL-GM values are very close to 1, the 529 

initial variance is already very small (see Figure 2: B2) and the models cannot reduce 530 

it further. 531 

Amongst the one-GMIM models, one can observe that the performance ranking also 532 

exhibits a slight dependence on the normalized frequency. The Trifunac-Brady 533 

duration has a low performance, the best performances are achieved by ground 534 

motion amplitude related parameter such as PGA, PGV, IA and Arms, and 535 

intermediate performances are observed for CAV and strain proxy PGV/VS30. Such 536 

one-GMIM models reduce the variance by at most 25-30% around fNL, and around 537 

10% at high frequencies. When adding one SCP to a GMIM, the prediction is 538 

significantly improved for f/fNL ≥ 1, with Rcmax exceeding 30%, and a slight trend to a 539 

lower model-to-model differentiation at high frequency, to the exception of all those 540 

involving the Trifunac-Brady duration, which still perform very poorly. The 541 

performance is significantly improved when the SCP is VS30, f0HV or B30, and for the 542 

strain proxy PGV/VS30 when associated to any additional SCP (especially VS30 or 543 

f0HV). This result was expected as the SCPs (essentially VS30) are used in GMPEs to 544 

model the non-linear component of site response. 545 

4.2 Quantitative Model Ranking  546 

Figure 9 indicates that the area where GMIM and SCP mostly contribute to the 547 

reduction of the variability and exhibit the largest model-to-model differences, 548 

corresponds to f/fNL around one (just below and above fNl). It was thus decided to 549 
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characterize the performance of each ANN model by a single, scalar value, 550 

corresponding to the arithmetic mean µ(Rc) over the normalized frequency range 551 

[0.25-4.0]. The µ(Rc) values are listed on Table 1 and displayed in Figure 10, 552 

indicating that the best GMIMs, when considered without any SCP, are, quite 553 

surprisingly, those related with acceleration amplitude: µ(Rc) values are 13.2% and 554 

12.7% for PGA and Arms, respectively. Those involving mid-frequency information (IA, 555 

PGV and CAV) exhibit a slightly lower performance (10.7%, 10.1% and 7.8 %, 556 

respectively), while PGV/VS30 performs very modestly (µ(Rc)= 5.4%), and duration DT 557 

very poorly (1.9%).  558 

These average variance reduction values are significantly improved when adding one 559 

SCP, as shown in Table 1 and Figure 10. This improvement is most noticeable when 560 

using PGV/VS30, for which µ(Rc) increases from 5.4% to an average value of 11.4 %, 561 

and up to 15.9% when using the VS30 SCP. One may notice also that the 562 

performance remains very poor for the duration DT: µ(Rc) is less than 6% whatever 563 

the considered site proxy, which indicates that NL behavior should definitely be 564 

related with some amplitude measure (incidentally, one may also notice that for DT, 565 

the best improvement is found when considering the "A0HV" site proxy, i.e. the only 566 

one directly related with some amplitude information). For all other GMIMs, the single 567 

site proxy leading to the best performance is almost systematically the site 568 

fundamental frequency. The best one-GMIM one-SCP combination is found to be 569 

(PGV, f0HV) with a mean variance reduction of 16.4%, and the two other best 570 

combinations are found to be [PGA; f0HV] and [Arms; f0HV] with mean variance 571 
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reductions of 15.7% and 15.3%, respectively. On the opposite, the site proxy leading 572 

to the worst performance is almost systematically the minimum S-wave velocity VSmin. 573 

Model performances are improved when considering more SCPs in the input layer, 574 

as listed in Table 1 and Figure 10. One may notice however that the improvements 575 

are more and more marginal as the number of input SCPs is increased: when 576 

considering all SCPs together, the mean variance reduction µ(Rc) always remain 577 

below 20%, which may be interpreted as an indication of the limited relevancy of all 578 

the considered site proxies for a physical characterization of the non-linear site 579 

response. Other parameters such as plasticity index, relative density, fine contents 580 

could be more relevant, but unfortunately are not available as site metadata in any of 581 

the strong motion data repositories. That is why we have not considered all possible 582 

combinations but have limited to all [one-GMIM, two SCPs] models, and a few more 583 

with best performing three and four SCP models.  584 

Table 1 and figure 10 call for several specific comments: 585 

• The GMIM leading to best performance within all [one-GMIM, two SCPs] 586 

models and all [one-GMIM, all SCPs] models are the strain proxy PGV/VS30 587 

with µ(Rc) values of 19.76 % in the latter case, and above 18% for the two-588 

SCP combinations (VS30, f0HV), (VS30, B30), and (VS30, A0HV) (18.59, 18.47 and 589 

18.16%, respectively). 590 

• The other GMIM leading to variance reduction above 17% are PGV, when 591 

associated to f0HV and A0HV (17.50%), or f0HV and VS30 (17.260%), or VS30 and 592 

B30 (17.01%), or f0HV and B30 (17.0%), and PGA, when associated to B30 and 593 

A0HV (17.19%). In average thus, peak values (PGV/VS30, PGA and PGV) better 594 
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explain the NL modulation of site response than other intensity measures also 595 

accounting for duration (IA, CAV, Arms, DT).  596 

• Regarding the SCPs, one may notice the frequent presence of VS30, f0HV, and 597 

B30 within the best performing (one-GMIM, two SCPs) models listed above 598 

(i.e., µ(Rc)values above 17 %). As the first two are already known to provide 599 

best performing models for linear site amplifications (NGA-West 2; RESORCE 600 

Douglas 2014; Boudghene-Stambouli et al., 2017; Derras et al., 2016, 2017), 601 

it is interesting to notice that instrumental data – without any modelling as in 602 

NGA-West 2 – do support their usefulness also for NL behavior. The 603 

appearance of the B30 SCP is not surprising since B30 characterizes the 604 

shallow velocity gradient, and large gradients, associated to large impedance 605 

contrasts near the surface, are likely to generate high strains and thus 606 

significant NL modifications (see Régnier et al., 2013). This parameter is 607 

however not available in most strong motion database and the use of models 608 

involving B30 is thus probably premature. Even though measuring B30 is 609 

definitely less simple and reliable than measuring f0HV, it would be however 610 

useful to investigate the feasibility of its measurement from non-invasive 611 

techniques (as for VS30), for future developments.  612 

From all these results, we can thus recommend the use of PGA as a relevant 613 

shaking intensity measure controlling the nonlinear modulation of site response in the 614 

case no site proxies are available. In the opposite case, which is fortunately more 615 

and more frequent, the present results lead to recommend the use of PGV/VS30 for 616 

NL site response models; PGA or PGV based models do have however a quite 617 

satisfactory performance. 618 
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In summary, the optimal [GMIM, two-SCPs] combinations providing the largest 619 

variance reductions are the triplets [PGV/VS30, VS30-f0HV,] (Rc = 18.6%), [PGV/VS30, 620 

VS30-A0HV] (Rc = 18.2%), [PGV, VS30-f0HV;] (Rc = 17.3%) and [PGA, B30-A0HV;] (Rc = 621 

17.2%).  622 

For the best [PGV/VS30, VS30-f0HV,] model, the details on variance reduction displayed 623 

on Figure 11 indicate that the peak reduction Rcmax is about 40% and occurs for 624 

normalized frequency between 1 and 2: despite the relatively moderate value of 625 

mean variance reduction over the whole interval [0.25-4.0], this peak value 626 

emphasizes the interest of this model especially in the frequency range where linear 627 

site amplification is significant. 628 

5 Final model: Absolute frequency domain  629 

The sensitivity study of the previous section allowed to identify the optimal input 630 

parameters regarding the shaking intensity level and the site-condition proxies. 631 

However, it was performed in the normalized frequency domain, and the fNL 632 

frequency is site-specific and cannot be simply predicted: an attempt to relate fNL 633 

directly to SCPs through a similar ANN approach yielded poorly performing models. 634 

Therefore, to develop a tractable model for practical applications, it was decided to 635 

take advantage of the normalized frequency sensitivity study to select the optimal 636 

triplet (PGV/VS30, VS30, f0HV), and to develop a new ANN model in the absolute 637 

frequency model. This section is devoted to a presentation of this new model, and to 638 

a discussion of its results. In such a model, VS30 provides an indication on the 639 

stiffness of the site at shallow depth, while f0HV provides a combined information on 640 

the overall stiffness and thickness of the whole soil column down to the bedrock. 641 
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5.1 The KiK-net ANN (PGV/VS30, VS30, f0HV): functional form 642 

We considered the same, simple neural network architecture as illustrated in Figure 643 

8, and applied to the PGV/VS30 advanced data set to predict the dependence of 644 

RSRNL as a function of PGV/VS30, VS30 and f0HV. It thus results in a relatively simple, 645 

data-driven functional form, providing the estimation in log10 (RSRNL-GM (f)) over the 646 

[0.2–20] Hz frequency range through the Equation 9.  647 

( ) ( ) ( ) ( ) ( )−  = + + +10 NL GMlog RSR f  C 1 f .F 1 C 2 f .F 2 C 3 f .F 3  C 4 f  Eq.9 648 

Where: 649 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

 = − + − +
 = − + + +


= − + − −

10 S 30 10 0 HV 10 S 30

10 S 30 10 0 HV 10 S 30

10 S 30 10 0 HV 10 S 30

F1 tanh 0.908 0.492.log V 0.352.log f 0.097.log PGV / V

F 2 tanh 2.477 1.01.Log V 0.448.Log f 0.274.Log PGV / V

F 3 tanh 1.595 0.216.Log V 0.092.Log f 0.710.Log PGV / V

 650 

The tanh dependency is related to the selection of the Tanh-sigmoid activation 651 

function for the hidden layer (see Figure 8). The frequency dependent coefficients C1 652 

to C4 are listed in Table B of the Appendix, together with the standard deviation 653 

σlog10(RSRLN-GM(f)) and the variance reduction coefficient Rc(f). 654 

5.2 Residual analysis 655 

The ANN model is obtained here also using the training-regularization (Derras et al, 656 

2012) procedure. In addition to the median, the ANN approach gives also the 657 

aleatory uncertainty part (Eq. 5).  658 

The first check of the ANN model consists of an analysis of the distribution of the 659 

residuals (eq.10).  660 

( ) − −= −
10 NL GM ,obs 10 NL GM ,pred

f  log ( RSR ( f )) loResiduals g ( RSR ( f ))  Eq.10 661 
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Where RSRNL-GM,obs and RSRNL-GM,pred are the recorded and predicted values 662 

respectively, for a given site and ground motion bin. 663 

These residuals are found to approximately follow a lognormal distribution, and to be 664 

free from any systematic trend (bias) versus any of the three input parameters 665 

PGV/VS30, VS30 and f0HV. Figure 12 displays the distribution of residuals average and 666 

± σ per bin versus VS30, f0HV and PGV/VS30 for two frequencies, 2.4 and 8 Hz, 667 

corresponding respectively to the 20% and 80% fractiles of the fNL cumulative 668 

distribution functions displayed in Figure 4. Each parameter bin has been selected to 669 

include about 100 data points in order for the statistics to be significant. For 670 

PGV/Vs30, it should be noted that the bins used for the Figure 12 plot are not the 671 

same as those used for building the advanced dataset in step 3. While the mean of 672 

residuals within each SCP bin does vary from bin to bin, these variations do not 673 

exhibit any systematic trend or bias, as the mean values remain within the ± 1 σ 674 

interval whatever the considered bin and the considered input parameter. One may 675 

notice in particular that the model behaves better with PGV/VS30 (very flat mean 676 

curve, with values close to 0) than with VS30 and f0HV (exhibiting some erratic though 677 

limited variability). This is normal since PGV/VS30 is the parameter which is used to 678 

transform the initial data into equally distributed ranges for optimally analysing the 679 

effect of shaking intensity on NL modulation. 680 

As complementary information to the effects of the GMIM and SCPs on aleatory 681 

variability, the total percentages of synaptic weight, Pi (%) corresponding to each of 682 

the three input parameters were computed as explained in Derras et al., (2012) 683 

(Equation 10). These synaptic weights assign the largest contribution to PGV/Vs30 (57 684 

%), while the two SCPs VS30 and f0HV contribute almost equally (23% and 20%, 685 

respectively).  686 
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5.3 Example RSRNL-GM ANN predictions 687 

Figure 13 displays some example RSRNL-GM predictions by the final ANN model. The 688 

estimation is performed for different levels of PGV/VS30 (as in Figure 2) and for 6 soil 689 

profiles cases. We have chosen the values of the couples (VS30, f0HV) so as they 690 

satisfactorily span the range of values of the initial data set, while remaining in the 691 

core of the data set (see Figure 6 and the insert in Figure 13A). The 6 cases 692 

considered for Figure 13 include a soft, low frequency site (160 m/s, 0.3 Hz, case A), 693 

three sites with a constant, intermediate shallow stiffness (VS30 = 300 m/s) with low to 694 

intermediate fundamental frequency (0.3, 1 and 3 Hz for cases B, C and D, 695 

respectively), and finally two stiff sites (VS30 = 800 m/s) with intermediate to high 696 

fundamental frequency (3 and 9 Hz, respectively).  697 

Figure 13 calls for several comments: 698 

a) As expected from the original RSRNL-GM observations (like Figure 2 (B1)), the 699 

predicted RSRNL-GM exhibits the classical shape with a low frequency part above 1 700 

and a high-frequency part below 1. 701 

b) The impact of soil non-linear behavior increases with the strain proxy level: the 702 

low frequency over-amplification reaches value of 1.25 for large PGV/VS30 values 703 

(bin [0.0351%-0.5829%], while the high-frequency reduction also increases with 704 

increasing PGV/VS30. At high frequency (beyond fNL) the non-linear transfer 705 

function could be three times weaker. 706 

c) The comparison of predictions for stiff sites and softer sites also suggest larger 707 

NL changes for stiff sites. This is relatively surprising, but actually, such an 708 

unexpected result has been already reported in Régnier et al., (2016b): the most 709 

likely interpretation is that sites with relatively large VS30 and f0HV most often 710 
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consist of thin, softer layers resting on much harder rock (also leading to high-711 

frequency amplification, as shown by Laurendeau et al., 2018): the associated 712 

large impedance contrast may thus result, under strong shaking, in large strains, 713 

and therefore in significant NL effects. 714 

d) Another apparently surprising observation is the appearance of non-linearity even 715 

at low levels of strain: even the curves corresponding the first three to four 716 

PGV/VS30 bins exhibit some low-frequency bump and high-frequency trough. One 717 

must keep in mind however that all sites, even in the linear domain, present a 718 

significant event-to-event variability in their site response (see for instance 719 

Maufroy et al., 2017, for an in-depth discussion of the origins of such a variability). 720 

Such a variability may be estimated in Figure 2 with the standard deviation within 721 

the smallest PGA bin (solid red curve in panel B2): the high frequency sigma is 722 

around 0.08, corresponding to a factor around ± 20%, Therefore, the median 723 

predictions of Figure 13 should always be considered with the uncertainty 724 

corresponding to the standard deviation of the model (Table B in the appendix), 725 

which increases from about 0.03 around 0.3 Hz (i.e., ± 7%), to 0.05 around 1 Hz 726 

(± 12%), and 0.13 around 10 Hz (± 35%). The low frequency predictions are more 727 

reliable than the high frequency predictions, and all high frequency predictions 728 

falling within ± 15-20 % of the unit value should be interpreted with caution. 729 

Figure 14 provides an alternative insight in the model predictions, by showing the 730 

changes in predicted RSRNL-GM curves with VS30 for fixed values of PGV/VS30 and f0HV 731 

(Figure 14A), and with f0HV for fixed values of PGV/VS30 and VS30 (Figure 14B). For 732 

both cases, the strain proxy is taken equal to relatively large values with significant 733 

NL effects (0.02 %, i.e., corresponding to fractile 85-90 in Figure 3), while f0HV is 734 
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taken equal to 3 Hz in Figure 14A (close to its median value), and VS30 to 300 m/s in 735 

Figure 14B (corresponding to the 25% fractile value, but relatively close to its median 736 

value of 375 m/s, see Figure 3 bottom). The variations of VS30 (Figure 14A) and f0HV 737 

(Figure 14B) are limited by the reliability range provided by the distribution of original 738 

data in the (VS30, f0HV) plane shown in Figure 6: from 300 to 800 m/s for VS30 and from 739 

0.3 to 9 Hz for f0HV. One may notice again that the NL effects (i.e., the deviation of 740 

RSRNL-GM ratio from 1, above and below) increase with site shallow stiffness (VS30) 741 

and site fundamental frequency f0HV. One may also notice that, at least for the cases 742 

considered here centred around the median values of VS30 and f0HV, VS30 variations 743 

are mainly impacting the intermediate to high frequency part [2-10] Hz, while f0HV 744 

variations affect a lower frequency band between 1 Hz and 5 Hz. Moreover, fNL is 745 

found to increase with increasing VS30 and increasing f0HV, which could be expected 746 

from the scatter plots of Figure 6: the present ANN model also indirectly offers the 747 

possibility to provide an estimate of the pivot frequency fNL. It therefore turns out that, 748 

even though their synaptic weights are lower than the one of the strain proxy 749 

PGV/VS30, VS30 and f0HV are parameters which are useful to be considered for an 750 

empirical prediction of nonlinear site response. 751 

We thus consider that the derived ANN(PGV/VS30, VS30, f0HV) model proves to be 752 

reasonably satisfactory in predicting the nonlinear modulation of site response, and is 753 

the one of the very few (together with the GMPE model by Sandikkaya et al., 2013 ), 754 

to be based only on instrumental data. In addition, this model is the only one that 755 

takes into account not only of the “classical” high-frequency reduction due to 756 

increased damping, but also the low-frequency over-amplification associated with 757 

modulus degradation and the resulting shift of the site resonant frequencies.  758 
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6 CONCLUSIONS AND DISCUSSION  759 

The present set of investigations based only on instrumental data (a subset of KiK-760 

net recordings) allows to draw interesting conclusions regarding the onset of NL 761 

behaviour, the ground motion intensity measures that seem to control the non-762 

linearity of site response, the site proxies which perform the best in predicting the NL 763 

modulation of site response and the quantitative dependence of NL modulation on 764 

site and loading parameters. In addition, from a methodological viewpoint, the 765 

present study emphasizes once again the usefulness of computational statistics tools 766 

such as the neural network approach, which does not require any a priori assumption 767 

on the functional form of the dependence on the input parameters, and thus allows to 768 

test a wide number of combinations, and to choose the most relevant ones on the 769 

basis of a simple performance indicator based on variance reduction coefficient.  770 

Both the simple statistical analysis of RSRNL-GM ratios grouped in the normalized 771 

frequency domain according to increasing loading bins, and the predictions of neural 772 

network models indicate the onset of detectable NL site response changes at rather 773 

low shaking levels. For instance, Figure 2 indicates a noticeable NL effect at high 774 

frequency, from the first PGA bin, i.e., 0.03g, and a significant one at low and high 775 

frequency for PGA larger than 0.1g, while example predictions in Figure 13 and 14 776 

indicate noticeable high frequency decrease for strain proxy values (PGV/VS30) as 777 

low as 0.01%. Nevertheless, the corresponding average changes are smaller than, or 778 

comparable to the standard deviations (see Figure 7). This probably explains why 779 

such NL effects are difficult to detect and model in usual GMPEs, where the non-780 

linear part of site response variability is mixed with other terms and their variabilities 781 

(source, crustal path, linear, generic site term associated to a simple and single site 782 
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proxy). In any case, this onset of slight non-linearities at rather low loading levels is 783 

consistent with recent statistical studies (Guéguen et al., 2019) suggesting that the 784 

main recent strong motion data bases (NGA, KiK-net – K-Net, ESM) do include some 785 

detectable non-linearities, which, though limited, are found larger than what is 786 

predicted by non-linear site terms of recent GMPEs.  787 

The ability of various site-condition proxies and ground motion intensity measures to 788 

explain the non-linear modulation of site response could be compared through the 789 

variance reduction performance coefficient. Even though the results exhibit some 790 

changes as a function of the parameter combination, some rather general and robust 791 

results may be outlined for the seven intensity measures that were considered: 792 

• The worst performing one is, as expected, the Trifunac-Brady duration, i.e., 793 

the only one which does not account at all for the shaking amplitude 794 

• The best performing ones, when associated with other site proxies, are peak 795 

values intensity measures, i.e., PGA, PGV and the peak strain proxy 796 

PGV/VS30. (Table 1). It is worth noticing however that the latter performs well 797 

only when associated to two site proxies. When considered individually to 798 

predict RSRNL-GM in the normalized frequency domain, it surprisingly performs 799 

very poorly, while when associated with one single site proxy, it performs well 800 

only with VS30 or f0HV, unlike PGA and PGV which perform well with all site 801 

proxies. We do not have any tentative explanation for such a result, which 802 

may however indicate that this quantity is only a rather crude proxy to the 803 

peak strain, for which the best reference velocity could be the minimum 804 

velocity instead of VS30. 805 

• Intensity measures mixing amplitude and duration (IA, CAV and Arms) exhibit an 806 

intermediate performance, with a significantly better one however for the latter. 807 



36 

 

 808 

Three groups of site proxies may also be identified according to their ability to 809 

predict the non-linear modulation of site response, again with the use of the same 810 

performance indicators. 811 

• The best SCPs providing the largest variance reduction are found to be the 812 

classical shallow velocity proxy VS30 and the fundamental frequency f0HV.  813 

• The shallow gradient indicator B30 proves to perform rather well. However, 814 

since its estimation requires the knowledge of the velocity profile over the top 815 

30 m (which is not required neither for f0HV nor for VS30, at least when the 816 

latter is estimated from surface wave dispersion curves), it is probably more 817 

efficient in the next years to prefer the two previous site proxies, especially as 818 

the latter have proved to perform well in predicting linear site amplification 819 

(Boudghène-Stambouli et al., 2017; Derras et al., 2017; Hassani and Atkison, 820 

2016, 2018) 821 

• The worst performing site proxies are the minimum velocity VSmin and the 822 

fundamental peak amplitude A0HV. None of them however are commonly used 823 

as site proxies in GMPEs. 824 

As a result, the most effective combination of GMIM and SCP to predict non-linear 825 

modulation of site response was found to be the strain proxy PGV/VS30 and the two 826 

complementary site proxies VS30 and f0HV, which provide a variance reduction of 827 

18.6% in the normalized frequency domain, and of about 26% in the absolute 828 

frequency domain. The latter, in addition to its improved performance with respect to 829 

the normalized frequency domain, offers the advantage to avoid the need to find a 830 

parallel way predict the pivot frequency fNL. Such a model could thus be used to 831 

obtain a first level estimation of the impact of soil non-linearities on site response, 832 
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whatever the method followed to estimate the linear site amplification (generic with 833 

some GMPE, or site-specific using instrumental recordings or numerical simulation). 834 

Further developments on this approach are nevertheless needed to better 835 

understand what are the parameters which control the value of fNL (which is always 836 

larger than, or equal to, f0HV, see Figure 6), and whether it may always be considered 837 

as approximately independent of the loading intensity (as we assumed here). An 838 

interesting direction of research might be to consider, for the same KiK-Net data 839 

subset, the differences between the fundamental frequency f0HV, and the dominant 840 

site response frequency fpeak (Hassani and Atkinson, 2016). Another one would be to 841 

perform the same kind of analysis on comprehensive sets of well controlled, 1D non-842 

linear numerical simulations, in order to identify the possible control by other, more 843 

refined (and less easily available) soil parameters such as the plasticity index or the 844 

reference strain γref (strain at which the shear modulus is reduced by 50%). 845 

7 DATA AND RESOURCES 846 

Time histories and velocity profiles used in this study were collected from the KiK-Net 847 

web site www.kik.bosai.go.jp and http://www.kik.bosai.go.jp/kik/ (last accessed 848 

October 2014). 849 
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Figures Captions 
 
Figure 1 Road-map to obtain non-linear to linear site response ratio (RSRNL-GM). In step 1 

the initial dataset of RSRNL, SCPs and GMIM  are presented (Régnier et al., 2016). Step 2: 

the RSRNL are normalized by fNL. Step 3: Seven different "advanced data sets" (RSRNL-GM) 

are produced. Step 4 illustrates the sensitivity study to choose the best SCPs and GMIMs 

in the normalized frequency domain. Step 5: the best model of RSRNL-GM in the absolute 

frequency domain is established using ANN approach. 

Figure 2 Statistical distribution of data and variation of RSRNL-GM with shaking intensity on 

the example of the PGA GMIM. The three top subplots (A1, A2 and A3) display the CDF of 

PGA, the number of sites available per fractile of PGA and their distribution as a function of 

f/fNL, respectively. The colored circles and lines represent the 15 PGA-bins. The two bottom 

plots show the average and "standard deviation" of RSRNL-GM(f/fNL) for each PGA-bin, 

respectively. The 15 PGA-bins (circles and lines colors) correspond to regulartly spaced 

fractiles of the PGA CDF, every 10%, from F10 to F50, and every 5% from F55 to F100. 

Figure 3 Empirical cumulative distribution function (CDF) of the original set of 2927 KiK-net 

recordings according to each considered GMIM:  PGA (top left), PGV (top right), CAV 

(second row from top, left), IA (right), DT (third row from top, left), Arms (right) and PGV/Vs30 

(bottom). 

Figure 4 Empirical cumulative distribution function (CDF) of the original set of 2927 KiK-net 

recordings according to each considered site proxy: Vs30 (top left), Vsmin (top right), B30 

(middle left), f0HV (middle right), A0HV (bottom left). The bottom right plot displays the CDF of 

the measured fNL values for the considered KiK-net data set. 

Figure 5 Scatter plots displaying the correlation (or absence of correlation) between all the 

considered GMIMs. The value given at the top of each plot represents the correlation 

coefficient between the corresponding pair of GMIMs. 



 

 

Figure 6 Scatter plots displaying the correlation (or absence of correlation) between the 

different site-condition proxies (SCPs). The value given at the top of each plot represents 

the correlation coefficient between the corresponding pair of SCPs. 

Figure 7 Initial variabilty of the seven advanced data sets (corresponding to the seven 

considered GMIMs) as a function of normalized frequency f/fNL (left), and absolute frequency 

f (right). This variability is quantifed by the σref(RSRNL-GM) as defined in [equation 7] in log10 

values. 

Figure 8 General pattern of the ANN models consider here: The left part corresponds to the 

input layer (one GMIM, plus one or more SCPs), the right part corresponds to the outputs to 

be predicted by the ANN (RSRNL-GM, in either absolute or normalized frequency), and the 

central part the combinations performed with the intermediate hidden layer. W and b are the 

synaptic weights and bias between two neurons, respectively. The shape of function in the 

box represents the optimal activation functions finally selected: non-linear (tanh) for the 

hidden layer, and linear for the output layer. 

Figure 9 Performance of various GMIMs and SCPs in reducing the initial RSRNL-GM 

variability, as a function of f/fNL. The top-left frame display the variance reduction coefficient 

(Rc) for all the one-GMIM ANN models. The other frames represent in a similar way the 

performance of all (one-GMIM, one-SCP) ANN models: each frame correspond to one 

specific SCP  (VS30, VSmin, B30, f0HV, A0HV), and the 7 different GMIMs (PGA, PGV, CAV, IA, 

DT, Arms, PGV/Vs30), with the same labeling as in the top left frame. 

Figure 10 Sensitivity of the mean variance reduction “µ(Rc)” (arithmetic average over the 

normalized frequency range [0.25-0.4], in %) to the ANN model. The horizontal length of 

each colored bar display the µ(Rc) values listed in Table 1: the color code correspond to the 

7 considered GMIMs, and the vertical axis to the various site proxies considered as input. 

Figure 11 Variance reduction coefficient (Rc) for the seven RSRNL-GM(f/fNL) models 

considering Vs30 and f0HV as input SCPs. [PGV/Vs30, Vs30, f0HV] is considered as the optimal 



 

 

combination providing the best RSRNL-GM predictions. The grey dashed vertical lines indicate 

the f/fNL band [0.25, 4.0] over which the mean µ(Rc) values are computed. 

Figure 12 Dependence of residuals from RSRNL-GM final absolute frequency model 

according to Vs30, f0HV and PGV/Vs30, respectively. The three left plots correspond to 

frequency = 2.4 Hz and the right plots are for a frequency = 8 Hz. We illustrate the Mean 

residuals and standard deviations in the different metadata ranges. The circles show 

average residuals in bins; the vertical bars correspond to the variability (two standard 

deviations) within each bin, while the horizontal bars represent the standard deviation of the 

residuals for the whole model.   

Figure 13 Variation of median RSRNL-GM(f) predicted for increasing values of PGV/Vs30 

(corresponding to the mean bin values, in %). Several pairs of (Vs30, f0HV) are considered: 

their choice is based primarily on their location within the validity domain of the model (as 

indicated in the frame inserted in (A): red circles) and on the wish to explore a wide range 

of sites: soft to stiff, shallow to deep sites, as indicated by their Vs30 values (160, 300, 800 

m/s) and f0HV values (0.3, 1, 3, 9 Hz). 

Figure 14 Variation of median RSRNL-GM predicted for different values of Vs30 (300, 400, 600, 

800 m/s, left), and for several values of f0HV (0.3, 1.0, 3.0, 9.0 Hz, right). The PGV/Vs30 value 

(0.02 %) has been considered in order to be weel beyond the onset of non-lienar behavior. 

In the case where Vs30 is varying we take f0HV = 3.0 Hz (left). In the case where taken f0HV 

as variable we fix Vs30 at a 300 m/s value. 
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Figure 13 
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Figure 14  
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Table 

Table 1 : Mean variance reduction (µ(Rc), arithmetic average of Rc(f/fNL) over the [0.25, 4] 

f/fNL interval, in %) for the 140 considered ANN models. One GMIM and two/three/four/all 

SCP are chosen as input to build the 140 ANN-RSR models. 

µ(Rc) in % 

 
PGA PGV CAV IA DT Arms 

 
PGV/VS30 

 
Without SCPs 13.21 10.05 7.80 10.73 1.86 12.65 5.39 

VS30 14.96 15.02 10.87 13.38 5.02 12.77 15.92 
Vsmin 13.7 11.2 9.1 11.64 3.16 13.1 7.67 
B30 14.61 13.65 10.57 13.25 4.18 14.69 10.78 
F0HV 15.73 16.43 10.89 13.53 5.23 15.29 14.35 
A0HV 15.24 12.77 9.54 12.1 5.61 14.88 8.06 

VS30+Vsmin 15.34 15.29 11.22 13.72 5.06 14.84 16.46 

VS30+B30 16.15 17.01 11.99 14.44 6.30 15.79 18.47 

VS30+f0HV 16.16 17.26 11.86 14.34 6.27 15.72 18.59 

VS30+A0HV 16.68 16.91 12.31 14.30 8.30 16.53 18.16 

Vsmin+B30 16.28 16.29 12.08 14.44 6.31 15.65 15.07 

Vsmin+f0HV 16.10 16.56 11.67 14.20 6.16 15.44 15.67 

Vsmin+A0HV 15.60 14.05 11.03 13.20 6.41 15.67 10.25 

B30+f0HV 16.21 17.00 11.89 14.42 5.97 15.66 15.32 

B30+A0HV 17.19 16.73 12.38 14.95 7.64 16.84 13.32 

F0HV+A0HV 16.79 17.50 12.47 15.02 7.86 16.80 15.93 

VS30+f0HV+A0HV 16.86 18.03 12.96 15.09 8.56 17.00 19.56 

VS30+f0HV+B30 16.62 17.79 12.36 14.64 6.65 16.13 19.02 

VS30+f0HV+B30+A0HV 17.82 17.93 14.05 15.35 9.04 17.67 19.66 

All SCPs 17.80 18.99 13.55 15.96 9.30 17.82 19.76 

 



 

 

Road-map to obtain non-linear to linear site response ratio (RSRNL-GM). In step 1 the initial dataset of 

RSRNL, SCPs and GMIM  are presented (Régnier et al., 2016). Step 2: the RSRNL are normalized by fNL. 

Step 3: Seven different "advanced data sets" (RSRNL-GM) are produced. Step 4 illustrates the sensitivity 

study to choose the best SCPs and GMIMs in the normalized frequency domain. Step 5: the best model 

of RSRNL-GM in the absolute frequency domain is established using ANN approach. 




