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). This ratio most often exhibits a typical shape with an amplitude above one below a sitespecific frequency fNL, and an amplitude below one beyond fNL. This paper presents an investigation of the correlation between this RSRNL ratio and various parameters

2 used to characterize the site (Site Condition Proxies: SCPs) and the seismic loading level (Ground Motion Intensity Measures: GMIMs).

The data used in this analysis come from sites of the Japanese Kiban-Kyoshin (KiKnet) network, for which the nonlinear to linear site-response ratio (RSRNL) is obtained by comparing the surface/down-hole Fourier spectral ratio for strong events and for weak events. The five SCPs are VS30, the minimum velocity of the soil profile (Vsmin), an index of the velocity gradient over the top 30 m (B30), the fundamental frequency f0HV, as measured from the H/V earthquake ratio, and the corresponding amplitude A0HV. The seven GMIMs are PGA, PGV, PGV/VS30 (peak strain proxy), IA (Arias Intensity), CAV (Cumulative Absolute Velocity), arms (Root Mean Square Acceleration) and Trifunac-Brady Duration (DT). The original data set consists of a total of 2927 RSRNL derived from KiK-net recordings at 132 sites. To assign an equal weight to each site, and to avoid any bias linked to sites with many recordings, for each GMIM, this original data set is grouped in 15 different intervals corresponding to fixed fractiles of the statistical distribution of the considered GMIM (every 10% from F10 to F50, and every 5% from F55 to F100). In each group, the average RSRNL-GM for each site is computed. For each of these seven advanced data sets, a neural network approach is used to predict the behavior of RSRNL-GM as a function of the corresponding GMIM, and one or two SCPs. The performance of each model is quantified through the average variance reduction coefficient µ(Rc) in a fixed frequency range. This sensitivity study is performed in the normalized frequency (f/fNL) domain to identify the best combinations (GMIM, SCPs) providing the largest variance reduction, and then in the absolute frequency domain for the final optimal combination. The optimal combinations [GMIM, two-SCPs] are triplets [PGV / VS30, VS30-f0HV; µ(Rc) = 18.6%], [PGV / VS30, VS30-A0HV; µ(Rc) = 18.16%], [PGV, VS30-f0HV;

INTRODUCTION

Although the Non-Linear (so-called NL) behavior of soft soils under large seismic shaking has been recognized since many decades, accounting for NL site response in hazard assessment studies is still associated with large uncertainties. The various benchmarking exercises of NL simulation codes over the last 2 decades, reported in [START_REF] Kwok | Nonlinear ground response analysis of Turkey Flat shallow stiff-soil site to strong ground motion[END_REF], [START_REF] Stewart | Benchmarking of nonlinear geotechnical ground response analysis procedures[END_REF], [START_REF] Stewart | Benchmarking of nonlinear geotechnical ground response analysis procedures[END_REF]Kwok (2008, 2009), and Régnier et al., (2016a[START_REF] Régnier | PRENOLIN: International Benchmark on 1D Nonlinear Site-Response Analysis-Validation Phase Exercise[END_REF], have repeatedly shown that the prediction of site-specific NL response may vary significantly even amongst teams with very good expertise in NL simulation, due to various types of uncertainties linked either to the simulation (code and numerical method, constitutive model, user) or to the definition and measurement of soil parameters, together with intrinsic assumptions of the model (1D site impinged by vertically propagating S waves, with or without pore-water pressure effects). All these uncertainties lead to a simulation-to-simulation variability reaching 0.25 (log10 scale), and prediction to observations differences up to 0.25 to 0.35 (log10 scale) especially around the site fundamental frequency.

On another hand, more generic seismic hazard estimates based on GMPEs face difficulties in accounting for NL site response: amongst the GMPEs that include NL site terms, only very few are based exclusively on recorded data (Sandikkaya et al., 2013[START_REF] Derras | Site-conditions proxies, ground-motion variability and data-driven GMPEs insights from NGA-West 2 and RESORCE datasets[END_REF], 2017), while most of them constrain the NL site term with complementary 1D simulations (described in Walling et al., 2008 for NGA models, and[START_REF] Kamai | Nonlinear horizontal site amplification for constraining the NGA-West2 GMPEs[END_REF] and [START_REF] Seyhan | Semi-empirical nonlinear site amplification from NGAWest2 data and simulations[END_REF] for NGA West 2 models).

The resulting site term models are thus also depending a lot on the simulation assumptions and are impacted by all the corresponding uncertainties.

The global objective of the present study is to propose an alternative, purely empirical approach, that could be used for both site-specific and generic studies. It focuses only on one peculiar aspect of NL site response, i.e., the changes in site response due to the NL behavior of soils. Such modifications have already been reported many times since the early nineties on individual data sets (e.g., SMART1 array in Taiwan, a few pre KiK-net borehole recordings in Japan, some rock/soil station pairs in California, and the large set of mainshock/aftershock recordings in the Los Angeles basin from the Northridge sequence, see [START_REF] Field | Nonlinear groundmotion amplification by sediments during the 1994 Northridge earthquake[END_REF]. The number of such recordings exhibiting NL response has increased a lot in the last two decades, especially with the KiK-net data. This led Régnier et al., (2013) to propose the concept of "non-linear to linear site response ratio" (RSRNL) comparing the surface/downhole Fourier spectral ratio for strong events and for weak events, and Régnier et al., (2016a) to present a statistic of such ratios for different groups of sites and different PGA thresholds. This RSRNL modulation function exhibits a typical shape with an amplitude above one at low frequency (due to the shift of resonant frequency associated to shear modulus reduction), and below one at high frequency (associated to increased damping), with a transition frequency denoted fNL, which is site-specific, and always larger than or equal to the site fundamental frequency f0.

The main goal of the present study is to go one step further, and to propose a model describing the continuous dependence of this RSRNL as a function of the site parameters (Site Condition Proxies: SCPs) and the seismic loading level (Ground Motion Intensity Measures: GMIMs). Such empirical modulation functions could then be used as an alternative to numerical simulation to modify either the linear site transfer functions (observed or simulated) for site-specific hazard estimates, or the linear site terms in GMPEs for generic hazard estimates.

The derivation of these empirical modulation functions is described in four main sections. The first one describes the construction of the RSRNL data sets on the basis of a subset of KiK-net recordings for sites having at least one strong recording (surface PGA ≥ 0.1 g), and two weak motion recordings (PGA between 0.1 and 25 cm/s 2 ), grouped within increasing loading level bins considering various ground motion intensity measures. It also provides an overview of the corresponding statistical distribution of several site parameters to test their ability to predict the NL site response. The second section presents the neural network approach adopted for investigating the dependency of RSRNL on the loading level and various combinations of site proxies, together with the variance reduction metrics adopted to compare the performance of various models. The third and fourth sections present the results of the neural network models, first in a normalized frequency domain [RSRNL(f/fNL)] to better identify the most relevant SCPs and GMIMs that provide best predictions (those associated with the largest variance reduction), and then in the absolute frequency domain [RSRNL(f)] in order to avoid the need to establish a parallel model predicting fNL for each site.

FROM RAW DATA TO ADVANCED DATA SETS

The present study requires two kinds of data to build prediction models: a set of linear to non-linear empirical modulation observations, and a set of explanatory variables related to site conditions and loading levels. Presently, the only network offering that combination of high-quality data for a large number of sites with homogeneous site metadata and with a large number of strong enough recordings, is the Japanese Kiban-Kyoshin Network (KiK-net). The KiK-net network consists of 688 stations with surface and downhole accelerometers [START_REF] Fujiwara | Strong-motion Observation Networks of NIED: K-NET and KiK-NET[END_REF]. Most of the borehole seismic stations are located between 100 and 200 m depth.

We start below with the presentation of the model parameters (site condition proxies and loading level parameters), and then describe the building of the empirical nonlinear modulation ratios.

Model parameters

From this KiK-net database and for the purpose of this analysis we extracted two kinds of parameters which may be considered as useful proxies to characterize the non-linear site response: Ground Motion Intensity Measures (GMIMs) related to the loading level from the earthquake recordings, and Site-Condition Proxies (SCPs) related to the site (elastic) properties. Both types of proxies are detailed below.

Ground-motion intensity measures (GMIMs)

We considered seven different intensity measures to characterize the level of loading: PGA (Peak Ground Acceleration), PGV (Peak Ground Velocity), PGV/VS30 (proxy for peak strain, CAV (Cumulative absolute Velocity), IA (arias Intensity), Arms (Root Mean Square Acceleration), and DT (5%- 95% Trifunac-Brady Duration, Trifunac and Brady 1975). The first two are very well known and involve only peak values reached only once during the whole duration of the shaking. The third one is more and more used in the geotechnical earthquake engineering community (see [START_REF] Idriss | Use of Vs30 to represent local site conditions[END_REF], because of its simple and robust physical basis: for a non-dispersive waveform f(t-x/c) propagating along direction x with a propagation speed c, the strain (i.e., the spatial derivative of the motion), is equal to the particle velocity (time derivative of the signal) divided by the propagation speed c. Despite the actual of complexity of seismic wave fields (consisting of multiple waves propagating in various direction with different velocities), the proxy PGV/VS30 has been shown to provide a reasonable estimate of peak strains, at least for vertically propagation shear waves (see [START_REF] Chandra | PGA-PGV/Vs considered as a stress-strain proxy for predicting nonlinear soil response[END_REF][START_REF] Guéguen | Comparison of Soil Nonlinearity (In Situ Stress-Strain Relation and G/Gmax Reduction) Observed in Strong-Motion Databases and Modeled in Ground-Motion Prediction Equations[END_REF], and as long as the soil is not driven too far in the non-linear domain leading to major changes in the propagation velocity and frequency content. The last four GMIMs are derived directly from time domain integration of the acceleration time histories: CAV is obtained by integrating the absolute value of the acceleration time series over the strong motion phase, while lA, Arms and DT are derived from the "Husid" plot describing the time dependence of the integral of the square of the acceleration time series [START_REF] Trifunac | A study on the duration of strong earthquake ground motion[END_REF]. CAV, IA and Arms combine information on both amplitude and duration, while DT only keeps the duration information.

Site-condition proxies (SCPs)

We considered five parameters partially describing the site conditions : VS30 (the widely used travel-time average shear wave velocity over the first 30 m of soil), Vsmin (the minimum shear wave velocity of the soil profile, generally located at the very surface but not always in case of velocity inversion at some depth), B30 describing a power-law dependence of Vs with depth, over the top 30m, as defined in Régnier et al. (2013) and [START_REF] Régnier | Influence of the VS Profiles beyond 30 m Depth on Linear Site Effects: Assessment from the KiKnet Data[END_REF], f0HV that is the fundamental resonance frequency picked on the Horizontal to vertical Fourier spectral ratio of surface earthquake recordings, and A0H/V the corresponding amplitude.

These five proxies provide different kinds of information on the underground structure. The VS30 and VSmin parameters provide both an indication on the soil softness at shallow depth. For thin deposits (i.e., with a total thickness less than 30 m), the VS30 value may be strongly contaminated by the underlying bedrock velocity, and may no longer be a relevant indicator of shallow softness. On the opposite, VSmin does provide an indication of the minimum softness, but without any information on the associated thickness. The B30 parameter provides an indication on the amount of velocity variation over the top 30 m: it is generally between 0 and 1, 0 corresponding to a constant value, and 1 to a linear dependence on depth (Régnier et al., 2013).

The f0HV parameter, which directly provides the frequency below which the site amplification is negligible (in linear regime), also informs jointly about the softness and thickness over the seismic bedrock (the larger the thickness and/or the lower the softness, the lower the f0HV frequency). The associated A0HV amplitude is intended to provide an indication on the impedance contrast between the deep bedrock (controlling the fundamental resonance) of and the overlying sediments.

Empirical non-linear to linear site response ratio (RSRNL)

The database used in Régnier et al., (2016a) was a subset composed of all the accelerometric data recorded between 1996 and 2009 with magnitudes (MJMA) higher than 3 and epicentral distances below 150 km. This initial database has been enhanced with all strong motion recordings obtained from 2010 to 2014 with peak ground accelerations (PGA) higher than 50 cm/s 2 at the downhole station, and without any criterion on distance. The resulting data set contains more than 47 600 recordings with 7738 recordings having a PGA at the surface above 20 cm/s 2 on 529 sites.

The processing involves three steps as illustrated in Figure 1: the derivation of the non-linear to linear spectral ratios RSRNL for each site and recording with a surface PGA greater than 20 cm/s 2 , their normalization in the frequency domain, and then the elaboration of specific data sets for each of the seven considered loading parameters (GMIMs).

First step: derivation of "raw" RSRNL ratios

The data were processed as explained in Régnier et al., (2013). The site response for each site event was described by the surface to borehole Fourier amplitude Spectrum Ratio (BSR in the following) as defined in Equation 1 (quadratic mean of the horizontal components). Where, FASEWsurface, FASNSsurface, FASEWborehole FASNSborehole, are the smoothed Fourier amplitude spectrum of the East-West, North-South components of the surface and downhole recordings, respectively. The applied smoothing is the Konno-Ohmachi one [START_REF] Konno | Ground-motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor[END_REF] with a parameter b equal to 40.

The non-linear soil behavior and its impact on site response is then characterized by the average of the ratio between non-linear and linear BSRs. At a site (i), the nonlinear to linear site response ratio can be calculated for each strong motion event (j), we called it RSRNLij. It represents the modification of the weak motion BSR resulting from non-linear soil behavior due to strong motion j. RSRNLij can be defined according to Equation (2) for all strong events with a surface PGA higher than 20 cm/s 2 , as the ratio between the BSR of the strong event j over the geometrical average of BSR calculated on weak events (with surface PGA between 0.1 and 10 cm/s 2 ) at the same site.

Eq 2

Where RSRNLij is the ratio of the non-linear to linear site response for a given site (i) and a given strong event j, w the index of weak events, Niw the number of weak events (Niw ≥ 2) recorded at site i, and BSR the borehole spectral ratio. As discussed in Régnier et al. (2016a), the so-defined RSRNLij ratios are considered to characterize the modification of site response linked to the non-linear behaviour of soft deposits, whatever the nature of the reference site (i.e., with a sensor at the surface of an outcropping rock, or at depth within a bore-hole).

An average of the RSRNLij over all strong events corresponding to surface PGA values exceeding a given threshold, or falling within a given range, may then be calculated, together with the corresponding variability. As described in Régnier et al., (2016a), the average RSRNL (Figure 2 (B1)) curves obtained for different PGA thresholds exhibit a typical frequency dependence close to the first derivative of a Gaussian function, consisting in three main parts. The first part is a slow increase from one at low frequency until a specific frequency that varies from one site to another. The second part is an abrupt decrease down to values below one. The last part is a slow increase and/or stabilization at values generally below one at high frequency. This shape reflects directly the frequency shift caused by the degradation of elastic properties at large strains, and the increase of damping due to hysteretic behavior. Such a curve is thus characterized by a "pivot" frequency called fNL, corresponding to the frequency beyond which RSRNL goes below one. This parameter is obviously site specific and could also depend, for a given site, on the loading level, for instance the PGA level at first order. However, Régnier et al., (2016a) report that such fNL values exhibit almost no dependence on PGA, except for a few thick sites with low fundamental frequency (below 1.5 Hz). In the present study, we have thus assigned to each site the fNL values corresponding to a PGA threshold of 100 cm/s 2 : such a threshold value is large enough to allow a clear NL modulation and an unambiguous pick of the fNL value, and moderate enough to allow a pick for all selected sites. fNL values could be picked automatically for 164 sites, varying from 0.49 Hz to 15.7 Hz with a mean value of 5.9 Hz and a standard deviation of 3.7Hz.

The RSRNL curves can be considered either in the absolute frequency domain (Step 1 of Figure 1), or in a normalized frequency domain, i.e., as a function of the ratio f/fNL (Step 2 of Figure 1). In the absolute frequency domain, the [0.2, 20 Hz] frequency range was subdivided into 49 bins having a constant width on a logarithmic axis, i.e., corresponding to a constant ratio between central frequencies of two consecutive bins r = 100 1/49 = 1.0985, over which each of the RSRNL(f) curves were averaged.

The corresponding central frequencies of each bin are listed in Table B of the Appendix. We are emphasizing that averaging is performed only once in the absolute frequency domain.

To develop broad-band models, we kept in our data base only the recordings for which the RSRNLij curve are defined at least for 46 out of the 49 frequency bins, i.e. with a good signal-to-noise ratio (exceeding 3) over almost the whole frequency range .

At this stage, the number of RSRNLij data fulfilling all the selection criteria, i.e.(1) a PGA at the surface greater than 20 cm/s 2 , (2) at least two weak events recorded at the same site, (3) a fNL defined at the site and (4) having at most 3 undefined values over the whole range of frequency bins, contains a total of 2927 recordings corresponding to 132 different sites.

Second Step: shift to the normalized frequency domain

Considering the typical shape of RSRNL curves, it was considered useful to also analyse them in a normalized frequency domain, i.e., as a function of f/fNL, so as to better apprehend the sensitivity of this typical shape to loading parameters and site condition proxies. In this aim, we used the fNL values derived for each site as described above. The 49 absolute frequency bins thus resulted into 97 normalized frequency bins, with the central one (bin 49) corresponding to a normalized frequency bin between 0.954 (r -0.5 ) and 1.048 (r 0.5 ). For a site with frequency fNL, the initial absolute frequency bins are simply shifted by n = 49 -int {log(fNL/0.2)/log(r)}, so as to automatically assign the central bin 49 to a normalized frequency of 1 and keeping the same ratio r = 1.0985 for the width of each normalized frequency bin. For a given site, the range of normalized frequencies thus depends on the fNL value, as it goes from 0.21/fNL to 19.1/fNL, i.e., from bin n to bin n+48.

Third step: derivation of "GM-specific" advanced data sets

The "raw, absolute frequency" and "raw, normalized frequency" data established in steps one and two respectively exhibit a significant inhomogeneity in terms of number of recordings per site, and number of recordings per loading level. For instance, the station AKTH04 has 33 recordings, whereas the relatively close AKTH06 station has only five recordings fulfilling the selection criteria. The full range of number of recordings per site goes from 2 to 116. In addition, for every site, the number of recordings is generally much larger for relatively moderate motion than for strong motion. To prevent the statistical models from being biased by the uneven distribution of number of recordings per site and per loading level, we pre-processed the initial data set of RSRNL as described in the following and illustrated in Figure 2.

For each of the seven ground-motion intensity measures, we defined 15 bins based on the cumulative distribution functions shown in Figure 2 (A1) for PGA and Figure 3 for all GMIMs. We considered 15 bins corresponding to evenly distributed fractiles Fx: every 10% from F10 to F50, and every 5% from F55 to F100. The narrower bins in the 50% upper part of the distribution were designed to discretize more precisely the data corresponding to large loading levels. These are the ranges where soil nonlinear behavior is expected to have a larger impact on site response.

For each site i, we first count the number of recordings Ni,GMk falling in each intensity measure bin k. For example, this number can vary from 0 to 18 in the case we take PGA as GMIM. Therefore, to assign an equal weight to every site in a given intensity measure bin, we take the average of RSRNLij for all the recordings in the bin k. This average is associated to the average ground motion intensity measure of the bin as detailed in Equation ( 3). It may happen some sites do not have any recording falling in the bin k : Ni,GMk = 0. We therefore end up with a total of seven "advanced data sets" (one for each GMIM : GM in the Eq 3).

RSR NLi-GMk µ i ( GM k )         GM K GM K+1 = 1 N i ,GMk RSR NLij j=1 N i ,GMk ∑ 1 N i ,GMk GM ij j=1 N i ,GMk ∑                 GM K GM K+1 Eq 3
Where RSRNLi-GMk is the average non-linear modulation function for all the recordings in a bin k and for a site i. The bin is characterized by these limits bink =[GMk to GMk+1]. GMK varies from F10(GM) for k=1 to F100(GM) for k=15. NiGMk is the number of records in the same bin at site i. Furthermore, µi(GMk) is the average GMIM value between GMK and GMK+1 and for site I; it is of course bounded by the values GMk and GMk+1, and does not vary much from site to site.

The procedure is illustrated in Figure 2 for the PGA loading GMIM. The subplot A1 displays the PGA cumulative distribution function for all the recordings. The subplot A2 shows the total number of sites considered for each PGA bin, while the subplot A3 refines the number of available sites as a function of f/fNL, again for each PGA bin.

We can observe on subplot A2 that the number of sites does not vary too much from one PGA bin to another indicating an adequate distribution of the data for a statistical analysis. The smaller number of sites at low and high normalized frequencies indicated by subplot A3 has two origins: (1) the original RSRNL-GM, for a given site and bin, may not be valid over the whole [0.2-20 Hz] frequency range because of too small signal-to-noise ratio and (2) the fNL is variable from one site to another which results in a site-to-site variability of the available normalized frequency range. That is why all curves in subplot A3 exhibit a bell shape with a maximum for normalized frequencies close to 1, the values of which correspond to numbers displayed in subplot A2 and varying from 67 to almost 108 sites. Table A in the appendix provides the number of records and the number of sites for each of the 15 intensity bins of the seven intensity measures (instead of only PGA in Figure 2). As expected from the construction of each data set, the number of records in each bin is around 290 in each of the 5 first bins, and half of it, i.e around 145, in the last 10 bins, which correspond exactly to 10% and 5% of the total number of recordings ( 2927). The number of sites from which the average and standard deviation of the RSRNL-GM is calculated is more variable from bin to bin and GMIM to GMIM, but corresponds to an average of around 90 sites for the first 5 bins, and 70 for the last 10. These numbers are large enough to ensure a statistical significance in each intensity bin, and we therefore consider that these seven advanced data sets are appropriate for investigating the dependency of the RSRNL modulation function as a function of the above listed site condition proxies and intensity measures.

As an example, subplots (B1) and (B2) of Figure 2 display, respectively, the average and the standard deviation of all the available RSRNL-GM for each PGA bin, as a function of the normalized frequency f/fNL. These plots are briefly discussed in the next section.

Statistical overview of the seven data sets

Distribution of metadata

The cumulative distributions of the GMIMs and SCPs are displayed on Figures 3,4 and their cross-correlations in Figures 5 and 6 The weakest correlation is found between the strain proxy PGV/VS30 and DT with R = -0.01. Such a strong correlation between most amplitude-related GMIMs suggests that one GMIM is probably enough to characterize the dependence of non-linear site response on loading level.

Similarly, to check the possible non-independence between the various SCPs, correlation plots are displayed for each pair of SCPs (Figure 6) together with the corresponding correlation coefficient (R). Another parameter is considered in these plots, the "FNL" frequency, to investigate its possible correlation with the SCPs. Some pairs do exhibit some significant correlation (e.g., R = 0.65 for the pair VS30-f0, R=0.6 for VS30-VSmin), but in general the correlations values are much smaller compared to the various GMIMs, with the weakest correlations corresponding to the VSmin-B30, VSmin-A0HV and VS30-A0HV pairs. The SCPs can be considered as almost independent site parameters for the derived ANN models, which allows using more than one SCP in the ANN models.

The last column of Figure 6 displaying the correlation plots between fNL and all the considered SCPs is interesting in two respect: the best correlation is found with VS30 (R=0.64), and the f0HV-fNL scatter plot displays a triangular distribution indicating that fNL is at least equal to, but may be much larger than f0HV, especially for low frequency (thick and/or soft) sites.

Variability of RSRNL-GM

In the normalized frequency domain, the variability of the advanced data sets (Eq. 7)

is illustrated in Figure 7 (a). The average variability is similar whatever the intensity measure: it is very low at frequencies below fNL (because all RSRNL-GM ratios are very close to 1 whatever the intensity level), it then steadily increases up to a value around 0.1 (corresponding to around 26% = (10 (0.1) -1).100) for a unit normalized frequency, and then, after a very narrow-band drop around f/fNL=1, stabilizes around a constant value of 0.12 (32%), for f/fNL > 1. For some GMIMs, the variability increases for high normalized frequencies (beyond f/fNL=2-3), as a result of a larger GMIM bin-to-bin variability and site-to-site variability (see Figure 2B). The drop around f/fNL=1 is due to the fact that RSRNL-GM is close to 1 for f = fNL; however, the variability does not go down to zero because fNL may change slightly from one intensity bin to the other (in addition to the fact that RSRNL-GM is not exactly equal to 1 in the central bin because of the bin averaging process).

In the absolute frequency domain (figure 7b), the variability of such RSRNL-GM values is limited at low frequency (typically less than 0.04 log10 -less than 10% -for f < 0.8 Hz), then is steadily increasing up to a level around 0.17 (i.e. around 48 %) up to a frequency around 10 Hz, beyond which it decreases down to around 0.12 (i.e. around 32%) at 20 Hz (the largest considered frequency).

While the fNL frequency normalization alone does not allow to significantly reduce the overall scatter of the non-linear modulation function RSRNL compared to the absolute frequency domain, it however allows to better display the main trend in the dependency of RSRNL as a function of the loading intensity level. For instance, the subplot B1 of Figure 2 display, on the example of the PGA, the increase in the modulation function with loading level, with larger low-frequency (f<fNL) amplification increase for larger PGA, and larger high-frequency (f>fNL) reduction for large PGA.

Indeed, below f/fNL = 1 the average ratio RSRNL increases until the value of 1.5 for the last PGA bin ([265-1050[ cm/s²), while above f/fNL = 1, it decreases down to values below 0.5. In addition, the subplot B2 shows that the within-bin variability of all "raw" RSRNLij-GMk ratios exhibits also a significant increase with increasing loading level, with their standard deviation σRSRNLij-GMk o slightly exceeding 0.165 (40%) for the last PGA bin below fNL, and reaching up to 0.25 (78%) beyond fNL: it indicates that the non-linear transfer function could be twice the linear one at low frequency, and could be three to four times weaker at high frequency. The loading dependency of the variability (subplot B2) also suggests that other parameters (such as site proxies) could be used to further refine the model and reduce this variability.

A similar analysis was conducted with alternative intensity measures such as the strain proxy parameter PGV/VS30: the overall trends are similar but generally less clear.

METHODOLOGY

Overview

The main aim of this study is two-fold: 1) Investigating the ability of various GMIMs and SCPs to improve the prediction of RSRNL-GM (this will be developed in the sensitivity analysis section), and 2) selecting optimal selection of GMIM and SCPs to derive a RSRNL-GM model allowing to estimate the nonlinear site response from the linear site response. The latter can be obtained inter alia by linear GMPEs in generic studies, or by more detailed, numerical or instrumental, investigations in site-specific studies.

To reach the first goal, we use the seven "advanced " datasets developed in the previous section (step 03) and a neural network approach for developing RSRNL-GM prediction equations in the normalized frequency domain, in the mathematical form described in the Equation 4:

( ) ( ) - = ±     10 NL GM NL NL log RSR f / f G( (W,b)) . f / f β ε σ Eq.4
where

• G is the prediction functional form,

• σ represents the standard deviation of residuals, and ε is representing the residual normalized by σ.

• β designates the GMIM vector and the SCP matrix

• W and b represent the parameters of the neuronal model which are tuned to optimize the fit as described in the next section.

• Given the range of values of fNL [0.49 -15.7 Hz], the normalized frequency ν = f/fNL is ranging from around 0.015 to 40, with however only few values at the two extremities of this interval (see Figure 2, subplot A3).

The neuronal model has the advantage of not requiring a prior functional form [START_REF] Derras | Adapting the neural network approach to PGA prediction: an example based on the KiK-net data[END_REF]: the actual dependence is established directly from the data and can therefore be used as a guide for a better understanding of the factors that control ground motions.

The results obtained in the sensitivity analysis will be later used to establish the final RSRNL-GM equation in the absolute frequency domain, in an analogous form as shown in Equation 5( )

10 NL GM log RSR f H( (W,b)) . ( f ) β ε σ - = ±    
Eq.5

Artificial Neural Network Methods approach

An ANN is made up with interconnecting artificial neurons within input, hidden and output layers. The symbols W and b represent the synaptic weights and bias with subscripts representing the corresponding neurons, respectively (Figure 8). The ANN type used in this work is the feed-forward ANN [START_REF] Hu | Handbook of neural network signal processing[END_REF].

The Quasi-Newton Back Propagation technique also called "BFGS" [START_REF] Robitaille | Modified quasi-Newton methods for training neural networks[END_REF] has been used in this work for the training phase. This method considers the second derivatives with respect to the unknown coefficients of the input-output relationship and is therefore more efficient than the original method of backpropagation. The number of iterations required to converge is significantly lower and the computation time is reduced [START_REF] Demuth | Neural Network ToolboxTm 6, User's Guide[END_REF].

The performances of the results obtained by ANN are measured by the standard deviation σ of residuals between observations and model predictions (Eq.6), compared to the standard deviation σref of the original advanced data set (Eq.7)

through the variance reduction coefficient Rc as defined in Eq. 8

M 2 10 NL GM ,obs 10 NL GM ,pred 1 1 (log ( RSR ) log ( RSR )) M σ - - = - ∑ Eq 6 M 2 ref 10 NL GM ,obs 10 NL GM ,obs 1 1 (log ( RSR ) log ( mean( RSR ))) M σ = - - - ∑ Eq.7 2 c 2 ref R ( 1 ).100 (%) σ σ = -
Eq.8

where RSRNL-GM,obs represents the "observed" RSRNL-GM as derived in the step 3 advanced data set. RSRNL-GM,pred is the neural prediction of the RSRNL-GM (either in the normalized frequency domain for the sensitivity study, or in the absolute frequency domain for the final model). M is the size of the advanced data set.

Using an ANN method, the residual error can be driven to a very small value, for instance through the use of a large number of nodes in the hidden layer. However, when new data are presented to the network the resulting error may become large.

To avoid it, the regularization method is used in this study. This method involves modifying the conventional mean sum of squares of the network errors by adding a term equal to the mean of the sum of squares of the network weights and biases [START_REF] Derras | Adapting the neural network approach to PGA prediction: an example based on the KiK-net data[END_REF], which de facto limits the number of degrees of freedom.

Design of ANN model

The design of the ANN model requires several choices regarding:

• the input parameters (here GMIMs and SCPs) which are relevant for explaining the variability of output responses (in this study RSRNL-GM),

• the number of hidden layers,

• the corresponding number of neurons,

• the selection of the activation functions.

We first have chosen the number and the kind of independent parameters of our predictive models (inputs of the neural model): this is the main topic addressed in the sensitivity study described in the next section. A single hidden layer has been finally

systematically selected for all models (Figure 8). Two or more hidden layers would have allowed to reach much smaller errors, but it would also have significantly increased the complexity of the model, raising the issue of an "over-fitting": such models are not favored by the regularization technique. In addition, an ANN model with one single hidden layer has been shown to be a universal function approximator [START_REF] Wolfgang | Networks of spiking neurons: the third generation of neural network models[END_REF][START_REF] Peter | A learning rule for very simple universal approximators consisting of a single layer of perceptrons[END_REF].

Here, the number of neurons in this single hidden layer (N) has been taken equal to the number of the independent parameters considered in the input layer [START_REF] Wierenga | Neural nets versus marketing models in time series analysis: a simulation studies[END_REF]. This choice allows to reach an optimal compromise between σ reduction and Akaike Information Criterion (AIC) increase due to larger number of degrees of freedom.

Several activation functions (between input and hidden layers and between hidden and output layers) have been considered. The lowest σ value, and the lowest number of iterations as well, have been obtained with a hyperbolic tangent function for the former, and a linear one for the latter (their schematic shape is shown in Figure 8). All the tests and the final implementation have been performed with the Matlab Neural Network ToolboxTM [START_REF] Demuth | Neural Network ToolboxTm 6, User's Guide[END_REF].

The final neural models thus consist of a series of three layers. The first represents N inputs, (one GMIM and {N-1} SCPs). The second, hidden layer has the same number N of neurons. The last layer represents the values of RSRNL-GM for 97 normalized frequency bins (sensitivity analysis), or 49 absolute frequency bins (final model). The selected architecture is therefore of the N-N-97 or N-N-49 type.

Normalized frequency domain: results and sensitivity analysis 4.1 Outline

To investigate the respective performance of the various GMIMs and SCPs in predicting the non-linear modulation, i.e., in reducing the model residual, different RSRNL-GM (f/fNL) ANN-models were built. A schematic description is given in Figure 1 (step 4). Their performance is evaluated for each normalized frequency through the variance reduction coefficient Rc(f/fNL) (Eq.8). This frequency dependent quantity describes the capacity of the model to explain the observations. Figure 9 displays the Rc values as a function of the normalized frequency f/fNL for several one or two-input parameter models, considering either one GMIM, or the combination of each GMIM with one of the five SCPs. The variance reduction is found to exhibit significant differences from model to model, and also significant variations with normalized frequency: the variance reduction is very small for (f/fNL) values much smaller than 1, it then increases and reaches a maximum Rcmax for f/fNL between 1 and 2, and stabilizes around an almost constant value (model-dependent, and generally ranging from 5% to 15%), for f/fNL values beyond 3 to 5. One may also notice the sharp and narrow drop of Rc for f/fNL around 1 (with Rc values most often between 3% and 8%).

This drop is related to the definition of fNL: all RSRNL-GM values are very close to 1, the initial variance is already very small (see Figure 2: B2) and the models cannot reduce it further.

Amongst the one-GMIM models, one can observe that the performance ranking also These average variance reduction values are significantly improved when adding one SCP, as shown in Table 1 and Figure 10. This improvement is most noticeable when using PGV/VS30, for which µ(Rc) increases from 5.4% to an average value of 11.4 %, and up to 15.9% when using the VS30 SCP. One may notice also that the performance remains very poor for the duration DT: µ(Rc) is less than 6% whatever the considered site proxy, which indicates that NL behavior should definitely be related with some amplitude measure (incidentally, one may also notice that for DT, the best improvement is found when considering the "A0HV" site proxy, i.e. the only one directly related with some amplitude information). For all other GMIMs, the single site proxy leading to the best performance is almost systematically the site fundamental frequency. The best one-GMIM one-SCP combination is found to be (PGV, f0HV) with a mean variance reduction of 16.4%, and the two other best combinations are found to be [PGA; f0HV] and [Arms; f0HV] with mean variance reductions of 15.7% and 15.3%, respectively. On the opposite, the site proxy leading to the worst performance is almost systematically the minimum S-wave velocity VSmin.

Quantitative Model Ranking

Model performances are improved when considering more SCPs in the input layer, as listed in Table 1 andFigure 10. One may notice however that the improvements are more and more marginal as the number of input SCPs is increased: when considering all SCPs together, the mean variance reduction µ(Rc) always remain below 20%, which may be interpreted as an indication of the limited relevancy of all the considered site proxies for a physical characterization of the non-linear site response. Other parameters such as plasticity index, relative density, fine contents could be more relevant, but unfortunately are not available as site metadata in any of the strong motion data repositories. That is why we have not considered all possible combinations but have limited to all [one-GMIM, two SCPs] models, and a few more with best performing three and four SCP models.

Table 1 and figure 10 call for several specific comments:

• The GMIM leading to best performance within all [one-GMIM, two SCPs] models and all [one-GMIM, all SCPs] models are the strain proxy PGV/VS30 with µ(Rc) values of 19.76 % in the latter case, and above 18% for the two-SCP combinations (VS30, f0HV), (VS30, B30), and (VS30, A0HV) (18.59, 18.47 and 18.16%, respectively).

• The other GMIM leading to variance reduction above 17% are PGV, when associated to f0HV and A0HV (17.50%), or f0HV and VS30 (17.260%), or VS30 and B30 (17.01%), or f0HV and B30 (17.0%), and PGA, when associated to B30 and A0HV (17.19%). In average thus, peak values (PGV/VS30, PGA and PGV) better explain the NL modulation of site response than other intensity measures also accounting for duration (IA, CAV, Arms, DT).

• Regarding the SCPs, one may notice the frequent presence of VS30, f0HV, and B30 within the best performing (one-GMIM, two SCPs) models listed above (i.e., µ(Rc)values above 17 %). As the first two are already known to provide best performing models for linear site amplifications (NGA-West 2; RESORCE [START_REF] Douglas | Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East[END_REF][START_REF] Boudghene-Stambouli | Deriving amplification factors from simple site parameters using generalized regression neural networks: implications for relevant site proxies[END_REF][START_REF] Derras | Site-conditions proxies, ground-motion variability and data-driven GMPEs insights from NGA-West 2 and RESORCE datasets[END_REF][START_REF] Derras | VS30, slope, H800 and f0: Performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting non-linear site response[END_REF], it is interesting to notice that instrumental data -without any modelling as in NGA-West 2 -do support their usefulness also for NL behavior. The appearance of the B30 SCP is not surprising since B30 characterizes the shallow velocity gradient, and large gradients, associated to large impedance contrasts near the surface, are likely to generate high strains and thus significant NL modifications (see Régnier et al., 2013). This parameter is however not available in most strong motion database and the use of models involving B30 is thus probably premature. Even though measuring B30 is definitely less simple and reliable than measuring f0HV, it would be however useful to investigate the feasibility of its measurement from non-invasive techniques (as for VS30), for future developments.

From all these results, we can thus recommend the use of PGA as a relevant shaking intensity measure controlling the nonlinear modulation of site response in the case no site proxies are available. In the opposite case, which is fortunately more and more frequent, the present results lead to recommend the use of PGV/VS30 for NL site response models; PGA or PGV based models do have however a quite satisfactory performance. 

Final model: Absolute frequency domain

The sensitivity study of the previous section allowed to identify the optimal input parameters regarding the shaking intensity level and the site-condition proxies.

However, it was performed in the normalized frequency domain, and the fNL frequency is site-specific and cannot be simply predicted: an attempt to relate fNL directly to SCPs through a similar ANN approach yielded poorly performing models.

Therefore, to develop a tractable model for practical applications, it was decided to take advantage of the normalized frequency sensitivity study to select the optimal triplet (PGV/VS30, VS30, f0HV), and to develop a new ANN model in the absolute frequency model. This section is devoted to a presentation of this new model, and to a discussion of its results. In such a model, VS30 provides an indication on the stiffness of the site at shallow depth, while f0HV provides a combined information on the overall stiffness and thickness of the whole soil column down to the bedrock. The tanh dependency is related to the selection of the Tanh-sigmoid activation function for the hidden layer (see Figure 8). The frequency dependent coefficients C1 to C4 are listed in Table B of the Appendix, together with the standard deviation σlog10(RSRLN-GM(f)) and the variance reduction coefficient Rc(f).

Residual analysis

The ANN model is obtained here also using the training-regularization [START_REF] Derras | Adapting the neural network approach to PGA prediction: an example based on the KiK-net data[END_REF] procedure. In addition to the median, the ANN approach gives also the aleatory uncertainty part (Eq. 5).

The first check of the ANN model consists of an analysis of the distribution of the residuals (eq.10).

( ) Where RSRNL-GM,obs and RSRNL-GM,pred are the recorded and predicted values respectively, for a given site and ground motion bin.

These residuals are found to approximately follow a lognormal distribution, and to be free from any systematic trend (bias) versus any of the three input parameters PGV/VS30, VS30 and f0HV. Figure 12 displays the distribution of residuals average and ± σ per bin versus VS30, f0HV and PGV/VS30 for two frequencies, 2.4 and 8 Hz, corresponding respectively to the 20% and 80% fractiles of the fNL cumulative distribution functions displayed in Figure 4. Each parameter bin has been selected to include about 100 data points in order for the statistics to be significant. For

PGV/Vs30, it should be noted that the bins used for the Figure 12 plot are not the same as those used for building the advanced dataset in step 3. While the mean of residuals within each SCP bin does vary from bin to bin, these variations do not exhibit any systematic trend or bias, as the mean values remain within the ± 1 σ interval whatever the considered bin and the considered input parameter. One may notice in particular that the model behaves better with PGV/VS30 (very flat mean curve, with values close to 0) than with VS30 and f0HV (exhibiting some erratic though limited variability). This is normal since PGV/VS30 is the parameter which is used to transform the initial data into equally distributed ranges for optimally analysing the effect of shaking intensity on NL modulation.

As complementary information to the effects of the GMIM and SCPs on aleatory variability, the total percentages of synaptic weight, Pi (%) corresponding to each of the three input parameters were computed as explained in [START_REF] Derras | Adapting the neural network approach to PGA prediction: an example based on the KiK-net data[END_REF] (Equation 10). These synaptic weights assign the largest contribution to PGV/Vs30 (57 %), while the two SCPs VS30 and f0HV contribute almost equally (23% and 20%, respectively).

Example RSRNL-GM ANN predictions

Figure 13 displays some example RSRNL-GM predictions by the final ANN model. The estimation is performed for different levels of PGV/VS30 (as in Figure 2) and for 6 soil profiles cases. We have chosen the values of the couples (VS30, f0HV) so as they satisfactorily span the range of values of the initial data set, while remaining in the core of the data set (see Figure 6 and the insert in Figure 13A). The 6 cases considered for Figure 13 c) The comparison of predictions for stiff sites and softer sites also suggest larger NL changes for stiff sites. This is relatively surprising, but actually, such an unexpected result has been already reported in Régnier et al., (2016b): the most likely interpretation is that sites with relatively large VS30 and f0HV most often consist of thin, softer layers resting on much harder rock (also leading to highfrequency amplification, as shown by [START_REF] Laurendeau | Derivation of consistent hard rock (1000< VS< 3000 m/s) GMPEs from surface and down-hole recordings: analysis of KiK-net data[END_REF]: the associated large impedance contrast may thus result, under strong shaking, in large strains, and therefore in significant NL effects.

d) Another apparently surprising observation is the appearance of non-linearity even at low levels of strain: even the curves corresponding the first three to four PGV/VS30 bins exhibit some low-frequency bump and high-frequency trough. One must keep in mind however that all sites, even in the linear domain, present a significant event-to-event variability in their site response (see for instance [START_REF] Maufroy | Source-Related Variability of Site Response in the Mygdonian Basin (Greece) from Accelerometric Recordings and 3D Numerical Simulations[END_REF], for an in-depth discussion of the origins of such a variability).

Such a variability may be estimated in Figure 2 with the standard deviation within the smallest PGA bin (solid red curve in panel B2): the high frequency sigma is around 0.08, corresponding to a factor around ± 20%, Therefore, the median predictions of Figure 13 should always be considered with the uncertainty corresponding to the standard deviation of the model (Table B in the appendix),

which increases from about 0.03 around 0.3 Hz (i.e., ± 7%), to 0.05 around 1 Hz (± 12%), and 0.13 around 10 Hz (± 35%). The low frequency predictions are more reliable than the high frequency predictions, and all high frequency predictions falling within ± 15-20 % of the unit value should be interpreted with caution.

Figure 14 provides an alternative insight in the model predictions, by showing the changes in predicted RSRNL-GM curves with VS30 for fixed values of PGV/VS30 and f0HV (Figure 14A), and with f0HV for fixed values of PGV/VS30 and VS30 (Figure 14B). For both cases, the strain proxy is taken equal to relatively large values with significant NL effects (0.02 %, i.e., corresponding to fractile 85-90 in Figure 3), while f0HV is taken equal to 3 Hz in Figure 14A (close to its median value), and VS30 to 300 m/s in Figure 14B (corresponding to the 25% fractile value, but relatively close to its median value of 375 m/s, see Figure 3 bottom). The variations of VS30 (Figure 14A) and f0HV

(Figure 14B) are limited by the reliability range provided by the distribution of original data in the (VS30, f0HV) plane shown in Figure 6: from 300 to 800 m/s for VS30 and from 0.3 to 9 Hz for f0HV. One may notice again that the NL effects (i.e., the deviation of RSRNL-GM ratio from 1, above and below) increase with site shallow stiffness (VS30)

and site fundamental frequency f0HV. One may also notice that, at least for the cases considered here centred around the median values of VS30 and f0HV, VS30 variations are mainly impacting the intermediate to high frequency part [2-10] Hz, while f0HV variations affect a lower frequency band between 1 Hz and 5 Hz. Moreover, fNL is found to increase with increasing VS30 and increasing f0HV, which could be expected from the scatter plots of Figure 6: the present ANN model also indirectly offers the possibility to provide an estimate of the pivot frequency fNL. It therefore turns out that, even though their synaptic weights are lower than the one of the strain proxy PGV/VS30, VS30 and f0HV are parameters which are useful to be considered for an empirical prediction of nonlinear site response.

We thus consider that the derived ANN(PGV/VS30, VS30, f0HV) model proves to be reasonably satisfactory in predicting the nonlinear modulation of site response, and is the one of the very few (together with the GMPE model by Sandikkaya et al., 2013 ), to be based only on instrumental data. In addition, this model is the only one that takes into account not only of the "classical" high-frequency reduction due to increased damping, but also the low-frequency over-amplification associated with modulus degradation and the resulting shift of the site resonant frequencies.

CONCLUSIONS AND DISCUSSION

The present set of investigations based only on instrumental data (a subset of KiKnet recordings) allows to draw interesting conclusions regarding the onset of NL behaviour, the ground motion intensity measures that seem to control the nonlinearity of site response, the site proxies which perform the best in predicting the NL modulation of site response and the quantitative dependence of NL modulation on site and loading parameters. In addition, from a methodological viewpoint, the present study emphasizes once again the usefulness of computational statistics tools such as the neural network approach, which does not require any a priori assumption on the functional form of the dependence on the input parameters, and thus allows to test a wide number of combinations, and to choose the most relevant ones on the basis of a simple performance indicator based on variance reduction coefficient.

Both the simple statistical analysis of RSRNL-GM ratios grouped in the normalized frequency domain according to increasing loading bins, and the predictions of neural network models indicate the onset of detectable NL site response changes at rather low shaking levels. For instance, Figure 2 indicates a noticeable NL effect at high frequency, from the first PGA bin, i.e., 0.03g, and a significant one at low and high frequency for PGA larger than 0.1g, while example predictions in Figure 13 and 14 indicate noticeable high frequency decrease for strain proxy values (PGV/VS30) as low as 0.01%. Nevertheless, the corresponding average changes are smaller than, or comparable to the standard deviations (see Figure 7). This probably explains why such NL effects are difficult to detect and model in usual GMPEs, where the nonlinear part of site response variability is mixed with other terms and their variabilities (source, crustal path, linear, generic site term associated to a simple and single site proxy). In any case, this onset of slight non-linearities at rather low loading levels is consistent with recent statistical studies [START_REF] Guéguen | Comparison of Soil Nonlinearity (In Situ Stress-Strain Relation and G/Gmax Reduction) Observed in Strong-Motion Databases and Modeled in Ground-Motion Prediction Equations[END_REF] suggesting that the main recent strong motion data bases (NGA, KiK-net -K-Net, ESM) do include some detectable non-linearities, which, though limited, are found larger than what is predicted by non-linear site terms of recent GMPEs.

The ability of various site-condition proxies and ground motion intensity measures to explain the non-linear modulation of site response could be compared through the variance reduction performance coefficient. Even though the results exhibit some changes as a function of the parameter combination, some rather general and robust results may be outlined for the seven intensity measures that were considered:

• The worst performing one is, as expected, the Trifunac-Brady duration, i.e., the only one which does not account at all for the shaking amplitude

• The best performing ones, when associated with other site proxies, are peak values intensity measures, i.e., PGA, PGV and the peak strain proxy PGV/VS30. (Table 1). It is worth noticing however that the latter performs well only when associated to two site proxies. When considered individually to predict RSRNL-GM in the normalized frequency domain, it surprisingly performs very poorly, while when associated with one single site proxy, it performs well only with VS30 or f0HV, unlike PGA and PGV which perform well with all site proxies. We do not have any tentative explanation for such a result, which may however indicate that this quantity is only a rather crude proxy to the peak strain, for which the best reference velocity could be the minimum velocity instead of VS30.

• Intensity measures mixing amplitude and duration (IA, CAV and Arms) exhibit an intermediate performance, with a significantly better one however for the latter.

Three groups of site proxies may also be identified according to their ability to predict the non-linear modulation of site response, again with the use of the same performance indicators.

• The best SCPs providing the largest variance reduction are found to be the classical shallow velocity proxy VS30 and the fundamental frequency f0HV.

• The shallow gradient indicator B30 proves to perform rather well. However, since its estimation requires the knowledge of the velocity profile over the top 30 m (which is not required neither for f0HV nor for VS30, at least when the latter is estimated from surface wave dispersion curves), it is probably more efficient in the next years to prefer the two previous site proxies, especially as the latter have proved to perform well in predicting linear site amplification (Boudghène-Stambouli et al., 2017;[START_REF] Derras | VS30, slope, H800 and f0: Performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting non-linear site response[END_REF]Hassani andAtkison, 2016, 2018) • The worst performing site proxies are the minimum velocity VSmin and the fundamental peak amplitude A0HV. None of them however are commonly used as site proxies in GMPEs.

As a result, the most effective combination of GMIM and SCP to predict non-linear modulation of site response was found to be the strain proxy PGV/VS30 and the two complementary site proxies VS30 and f0HV, which provide a variance reduction of 18.6% in the normalized frequency domain, and of about 26% in the absolute frequency domain. The latter, in addition to its improved performance with respect to the normalized frequency domain, offers the advantage to avoid the need to find a parallel way predict the pivot frequency fNL. Such a model could thus be used to obtain a first level estimation of the impact of soil non-linearities on site response,
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Figure 1 Road-map to obtain non-linear to linear site response ratio (RSRNL-GM). In step 1 the initial dataset of RSRNL, SCPs and GMIM are presented (Régnier et al., 2016).
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Step 3: Seven different "advanced data sets" (RSRNL-GM) are produced.

Step 4 illustrates the sensitivity study to choose the best SCPs and GMIMs in the normalized frequency domain.

Step 5: the best model of RSRNL-GM in the absolute frequency domain is established using ANN approach.

  . The Figure 3 represents the cumulative distribution function (CDF) of the log values of PGA, PGV, CAV, IA, DT, Arms and PGV/VS30, for the whole set of 2927 recordings: all of them are thus found to follow a lognormal distribution. The same findings stand for the distribution of SCPs (Figure 4), except for B30 that follows an approximately normal distribution. Similar distributions are obtained for the three sets of data obtained in step 1, 2 and 3, so we used the logarithm (base 10) values of all GMIMs and SCPs (except for B30) as input for all ANN models. Figure 5 displays the cross-correlations for each pair of GMIMs, together with the corresponding correlation coefficient values. Some pairs exhibit a strong correlation (e.g. R(PGA, Arms) = 0.96; or R(IA, CAV = 0.95)), and in general all parameters involving amplitude information are significantly and positively correlated. The Trifunac-Brady duration DT is found the most poorly correlated with all others.

  exhibits a slight dependence on the normalized frequency. The Trifunac-Brady duration has a low performance, the best performances are achieved by ground motion amplitude related parameter such as PGA, PGV, IA and Arms, and intermediate performances are observed for CAV and strain proxy PGV/VS30. Such one-GMIM models reduce the variance by at most 25-30% around fNL, and around 10% at high frequencies. When adding one SCP to a GMIM, the prediction is significantly improved for f/fNL ≥ 1, with Rcmax exceeding 30%, and a slight trend to a lower model-to-model differentiation at high frequency, to the exception of all those involving the Trifunac-Brady duration, which still perform very poorly. The performance is significantly improved when the SCP is VS30, f0HV or B30, and for the strain proxy PGV/VS30 when associated to any additional SCP (especially VS30 or f0HV). This result was expected as the SCPs (essentially VS30) are used in GMPEs to model the non-linear component of site response.

Figure 9

 9 Figure 9 indicates that the area where GMIM and SCP mostly contribute to the

  In summary, the optimal[GMIM, two-SCPs] combinations providing the largest variance reductions are the triplets [PGV/VS30, VS30-f0HV,] (Rc = 18.6%), [PGV/VS30, VS30-A0HV] (Rc = 18.2%), [PGV, VS30-f0HV;] (Rc = 17.3%) and [PGA, B30-A0HV;] (Rc = 17.2%). For the best [PGV/VS30, VS30-f0HV,] model, the details on variance reduction displayed on Figure 11 indicate that the peak reduction Rcmax is about 40% and occurs for normalized frequency between 1 and 2: despite the relatively moderate value of mean variance reduction over the whole interval [0.25-4.0], this peak value emphasizes the interest of this model especially in the frequency range where linear site amplification is significant.

  include a soft, low frequency site (160 m/s, 0.3 Hz, case A), three sites with a constant, intermediate shallow stiffness (VS30 = 300 m/s) with low to intermediate fundamental frequency (0.3, 1 and 3 Hz for cases B, C and D, respectively), and finally two stiff sites (VS30 = 800 m/s) with intermediate to high fundamental frequency (3 and 9 Hz, respectively).
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 Table : Mean variance reduction (µ(Rc), arithmetic average of Rc(f/fNL) over the [0.25, 4] f/fNL interval, in %) for the 140 considered ANN models. One GMIM and two/three/four/all SCP are chosen as input to build the 140 ANN-RSR models.

	µ(Rc) in %	PGA PGV CAV	IA	DT	Arms	PGV/VS30
	Without SCPs	13.21 10.05	7.80	10.73	1.86	12.65	5.39
	VS30	14.96 15.02 10.87 13.38	5.02	12.77	15.92
	Vsmin	13.7	11.2	9.1	11.64	3.16	13.1	7.67
	B30	14.61 13.65 10.57 13.25	4.18	14.69	10.78
	F0HV	15.73 16.43 10.89 13.53	5.23	15.29	14.35
	A0HV	15.24 12.77	9.54	12.1	5.61	14.88	8.06
	VS30+Vsmin	15.34 15.29 11.22 13.72	5.06	14.84	16.46
	VS30+B30	16.15 17.01 11.99 14.44	6.30	15.79	18.47
	VS30+f0HV	16.16 17.26 11.86 14.34	6.27	15.72	18.59
	VS30+A0HV	16.68 16.91 12.31 14.30	8.30	16.53	18.16
	Vsmin+B30	16.28 16.29 12.08 14.44	6.31	15.65	15.07
	Vsmin+f0HV	16.10 16.56 11.67 14.20	6.16	15.44	15.67
	Vsmin+A0HV	15.60 14.05 11.03 13.20	6.41	15.67	10.25
	B30+f0HV	16.21 17.00 11.89 14.42	5.97	15.66	15.32
	B30+A0HV	17.19 16.73 12.38 14.95	7.64	16.84	13.32
	F0HV+A0HV	16.79 17.50 12.47 15.02	7.86	16.80	15.93
	VS30+f0HV+A0HV	16.86 18.03 12.96 15.09	8.56	17.00	19.56
	VS30+f0HV+B30	16.62 17.79 12.36 14.64	6.65	16.13	19.02
	VS30+f0HV+B30+A0HV	17.82 17.93 14.05 15.35	9.04	17.67	19.66
	All SCPs	17.80 18.99 13.55 15.96	9.30	17.82	19.76

authors are very grateful to NIED for providing such high-quality earthquake recordings.

The KiK-net ANN (PGV/VS30, VS30, f0HV): functional form

We considered the same, simple neural network architecture as illustrated in Figure 8, and applied to the PGV/VS30 advanced data set to predict the dependence of RSRNL as a function of PGV/VS30, VS30 and f0HV. It thus results in a relatively simple, data-driven functional form, providing the estimation in log10 (RSRNL-GM (f)) over the [0.2-20] Hz frequency range through the Equation 9.

Where:

whatever the method followed to estimate the linear site amplification (generic with some GMPE, or site-specific using instrumental recordings or numerical simulation).

Further developments on this approach are nevertheless needed to better understand what are the parameters which control the value of fNL (which is always larger than, or equal to, f0HV, see Figure 6), and whether it may always be considered as approximately independent of the loading intensity (as we assumed here). An interesting direction of research might be to consider, for the same KiK-Net data subset, the differences between the fundamental frequency f0HV, and the dominant site response frequency fpeak [START_REF] Hassani | Site effects model for Central and Eastern North America based on peak frequency[END_REF]. Another one would be to perform the same kind of analysis on comprehensive sets of well controlled, 1D nonlinear numerical simulations, in order to identify the possible control by other, more refined (and less easily available) soil parameters such as the plasticity index or the reference strain γref (strain at which the shear modulus is reduced by 50%).

DATA AND RESOURCES

Time histories and velocity profiles used in this study were collected from the KiK-Net web site www.kik.bosai.go.jp and http://www.kik.bosai.go.jp/kik/ (last accessed October 2014).
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