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Martin Lazar* Jérôme Lohéac�
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Abstract

In this chapter we provide an overview of recent progress on the problem of controllability of
parameter dependent systems. We explore a different control notions successfully developed
through the last decade. The aim of the control function is to steer the system to a state
satisfying some properties prescribed either at some time instant T > 0 or during a given time
interval. These properties may be separated with respect to parameter values and can refer
just to a single system itself (e.g. greedy control), or may consider solutions corresponding
to the whole parameter range (e.g. ensemble control, averaged control). In the latter case
control functions are designed as parameter invariant, implying a same control is to be applied
to the system independently of a particular realisation of the parameter, while in the first case
controls vary along with the parameter.

Beside the positive theoretical results, for each notion we provide a precise computational
algorithm accompanied by a numerical example.

Keywords: Averaged control, greedy control, ensemble control, parameter dependent systems,
reduced basis.
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nik, Croatia (mlazar@unidu.hr).

�Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France (jerome.loheac@univ-lorraine.fr).

1



1 Introduction

In this chapter, we consider parameter dependent control systems of the form,

ẋθ(t) = Aθxθ(t) +Bθuθ(t) (t > 0), (1.1a)

xθ(0) = x0
θ, (1.1b)

where xθ(t) ∈ RN is the state of the system, uθ(t) is the control, and x0
θ ∈ RN is a given initial

condition. The dynamics operator Aθ is an N ×N matrix, the control operator Bθ is an N ×M
matrix, while θ is a parameter describing the system.

If not precised otherwise, the following assumptions will be used throughout the chapter.

Assumption 1.

(i) θ belongs to a compact set Θ ⊂ Rd;

(ii) θ ∈ Θ↦ (Aθ,Bθ,x0
θ) ∈ RN×N ×RN×M ×RN is Lipschitz continuous.

The aim of the control function is to steer the system to a state satisfying some properties
prescribed either at some time instant T > 0 or during a given time interval. These properties
may be separated with respect to parameter values and can refer just to a single system itself
(e.g. greedy control), or may consider solutions corresponding to the whole parameter range
(e.g. ensemble control, averaged control). In the latter case controls uθ are designed as parameter
invariant, implying a same control is to be applied to the system (1.1) independently of a particular
realisation of the parameter θ, while in the first case the controls uθ vary with θ .

The Chapter is organised as follows. In the next subsection we present a brief introduction
to controllability of finite dimensional systems. Section 2 deals with various types of parameter
independent controls, and in Section 3, we present different methods for efficient design of (an
approximation of) control uθ for every parameter θ. Each presented control notion is accompanied
by a precise algorithm, providing construction of an optimal control function, and a numerical
example.

Recall on finite dimensional control systems. Here we present some classical results on
control of a general finite dimensional system of a form as in (1.1), with dependence with respect
to parameter being omitted. A more elaborated overview of the topic can be found in e.g. [48,
Chapter 1] or [52].

A system
ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1.2)

is said to be controllable if every initial datum x0 can be driven to any final datum x1 ∈ RN in
some (and consequently in any) time T > 0.

This controllability property can be fully characterised by the so called Kalman rank condition.
It says that system (1.2) is controllable if and only if

rank [B,AB, . . . ,AN−1B] = N. (1.3)

This condition is of purely algebraic nature, and also time independent. For this reason controlla-
bility in some time T > 0 implies controllability in any positive time, and it is easy to observe that
there are infinitely many controls steering the trajectory from the initial datum to the prescribed
final target.
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Another characterisation of the controllability property is provided by the dual problem of
observability of the adjoint system

{ −ϕ̇ = A∗ϕ (t ∈ (0, T )),
ϕ(T ) = ϕ1.

(1.4)

More precisely the following result holds.

Proposition 1.1. System (1.2) is controllable in time T if and only if the adjoint system (1.4) is
observable in time T , i.e., if there exists a constant C > 0 such that, for all solution ϕ of (1.4),

∣ϕ1∣2 ≤ C ∫
T

0
∣B∗ϕ∣2 dt. (1.5)

Both properties hold in all time T > 0 if and only if the Kalman rank condition (1.3) is satisfied.

Furthermore, this dual approach provides a control of minimal L2-norm out of all admissible
controls. More precisely, if ϕ̃1 is a minimiser of the quadratic functional J ∶ RN → R:

J(ϕ1) = 1

2
∫

T

0
∣B∗ϕ(t)∣2 dt − ⟨x1, ϕ1⟩ + ⟨x0, ϕ(0)⟩, (1.6)

then the control
u = B∗ϕ̃ ∈ L2(0, T )M ,

where ϕ̃ is the corresponding solution of (1.4), is the control of minimal L2-norm steering the
system from x0 to x1 in time T .

Note that the minimiser ϕ̃1 of the functional J exists since the latter is differentiable, con-
vex and, by the observability inequality (1.5), coercive. In addition, it satisfies the requirement
DJ(ϕ̃1) = 0 which can be equivalently restated as

Λϕ̃1 = x1 − eTAx0. (1.7)

Here the operator Λ stands for the (infinite time) controllability Gramian associated to the pair
(A,B), given by the relation

Λ = ∫
T

0
e(T−t)ABB∗e(T−t)A

∗
dt.

Thus solving the control problem reduces to finding the minimiser of the functional (1.6),
which is equivalent to solving the system (1.7). In practice, this is done by exploring (conjugate)
gradient or some other iterative method. Note this is usually implemented without construction
of the Gramian matrix Λ itself. Indeed, application of the Gramian operator to any vector ϕ1

corresponds to the state of the system at time T driven by the control of the form u = B∗ϕ, where
ϕ is the solution of the adjoint system (1.4). Thus, each iteration requires solving in turn the
dual and the primal system, which for systems of a large dimension N represents a significant
computational challenge, specially if it has to be resolved and applied in a real time.

For these reasons, when dealing with large systems that are in addition parameter dependent,
it is of crucial importance to develop robust algorithms that provide (at least approximatively)
desired control functions in a stable and computationally efficient way.
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2 Parameter invariant controls

In this paragraph, we are looking for controls uθ independent of the parameter θ, that is to say
that we consider the system

ẋθ(t) = Aθxθ(t) +Bθu(t) (t > 0), (2.1a)

xθ(0) = x0
θ. (2.1b)

More precisely, in order to define the controllability notion, we propose two different approaches. In
the first notion, (averaged controllability), the goal is to steer the expectation of the system to the
target, while for the second one (ensemble controllability), the aim is to steer every realisation of
the system to an arbitrarily small ball around the target. Of course for the averaged controllability
notion, it is required that the parameter realisation follows some probability law. One can see
that ensemble controllability is a stronger notion, and it has been checked in [47] that ensemble
controllability implies averaged controllability.

In each case, the major goal is to steer the parameter dependent solution to some target by a
single control. The problem is relevant in applications in which the control has to be chosen in a
robust manner, independently of a particular realisation of parameters obeying some deterministic
or stochastic law.

Let us make more precise these two notions. To this end, we denote by xθ(t;x0
θ, u) the solution

of (2.1) at time t.

Definition 1 (Averaged controllability). Assume that Assumption 2 holds, and let (Θ,F , µ) be
a probability space (i.e., F is a α-algebra on Θ and µ is a probability measure defined on F). We
say that the system (2.1) is controllable in average, with respect to the probability distribution µ,
if for every µ-integrable function θ ∈ Θ↦ x0

θ ∈ RN , and every x1 ∈ RN , there exist a time T > 0 and
a control u ∈ L2(0, T )M such that the solution of (2.1) satisfies

∫
Θ
xθ(T ; x0

θ, u)dµθ = x1. (2.2)

Of course, for Definition 1 to make sense, one need an integrability property of θ ↦ xθ(T ; x0
θ, u).

This can be ensured using Assumption 2. Note however that more general well-posedness conditions
can be stated in terms of the adjoint state (see [53]).

Assumption 2 (Averaged controllability assumptions). θ ∈ Θ ↦ (Aθ,Bθ) ∈ RN×N × RN×M is
µ-measurable, and sup{Re(λθ) ∣ λθ ∈ σ(Aθ), θ ∈ Θ} < ∞.

Hence, for averaged controllability, i.e., in Section 2.1, only Assumption 2 will be assumed.

Definition 2 (Ensemble controllability). Assume that Assumption 1 holds. We say that the
system (2.1) is ensemble controllable, if for every ε > 0, every continuous function θ ∈ Θ↦ (x0

θ,x
1
θ) ∈

RN × RN , there exist a time T > 0 and a control u ∈ L2(0, T )M such that the solution of (2.1)
satisfies

sup
θ∈Θ

∣xθ(T ; x0
θ, u) − x1

θ ∣ < ε. (2.3)

Remark 2.1. � By taking the formal limit ε → 0 in Definition 2, we obtain the notion of
simultaneous controllability (see e.q. [44] or [36, Chapter 5] for this notion). However, let
us mention that if the cardinal of Θ is infinite, then simultaneous controllability cannot
hold, see [47]. In addition, when Θ = {θ1, . . . , θK}, then the ensemble controllability of (2.1)
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coincide with the simultaneous controllability of (2.1), that is to say to the controllability of
the pair (A,B), with

A =
⎛
⎜⎜⎜
⎝

Aθ1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ 0
0 ⋯ 0 AθK

⎞
⎟⎟⎟
⎠
∈ RKN×KN and B =

⎛
⎜⎜⎜
⎝

Bθ1
⋮
⋮

BθK

⎞
⎟⎟⎟
⎠
∈ RKN×M .

This is the consequence of the well-known result stating that approximate controllability
implies exact controllability in finite dimension.

� Let us mention that Definition 2 is also called uniform ensemble controllability. Indeed, one
can consider the more general notion of Lq(Θ, µ)-ensemble controllability, for q ∈ (1,∞) and

some measure µ on Θ, by substituting (2.3) with (∫
Θ
∣xθ(T ; x0

θ, u) − x1
θ ∣
q

dµθ)
1/q

< ε. Note

however that for a bounded measure µ, the ensemble controllability defined by Definition 2
implies Lq(Θ, µ)-ensemble controllability. This is an easy consequence of the continuous
injection of C0(Θ) ∩L∞(Θ) in L∞(Θ;µ) and of L∞(Θ;µ) in Lq(Θ;µ).

In the rest of this section, we consider averaged controllability in Section 2.1 and ensemble
controllability in Section 2.2. For each of these notions, we recall some known results and propose
numerical methods to compute a control realisation.

2.1 Averaged controllability

2.1.1 Averaged controllability notion and results

The notion of averaged controllability has first been introduced in [53]. Rapidly averaged control-
lability results has been obtained for different classes of PDE systems, see e.g. [4, 5, 12, 25, 27,
30, 38, 39, 41]. Links between averaged and simultaneous controllability has been obtained in [37]
and a refined version of averaged controllability (the notion of long time averaged controllability
has been performed in [28]). Dealing with numerical aspects of averaged controllability, we refer
to [1] for wave equations and to [41] for Euler-Bernoulli plate equations.

In [53], it has been shown that the system (2.1) is controllable in average if and only if a
Kalman type rank condition is satisfied. It has also been shown there, that the averaged control-
lability property is equivalent to the positivity of some controllability Gramian. In addition, if the
system (2.1) is controllable in average, then one can build a control of minimal L2-norm. These
results are summarized in the following theorem.

Theorem 2.2 ([53]). The following properties are equivalent.

1. The system (2.1) is controllable in average, with probability measure µ.

2. rank [∫ΘBθ dµθ, ∫ΘAθBθ dµθ, . . . , ∫ΘA
k
θBθ dµθ, . . . ] = N .

3. There exists T > 0 such that the N ×N matrix

Λ(T ) = ∫
T

0
(∫

Θ
e(T−t)AθBθ dµθ ∫

Θ
B∗
θ e

(T−t)A∗
θ dµθ) dt (2.4)

is positive, i.e., there exist a constant c(T ) > 0 such that ϕ1∗Λ(T )ϕ1 ⩾ c(T )∣ϕ1∣ for every
ϕ1 ∈ RN .

4. For every T > 0, the matrix Λ(T ), defined by (2.4), is positive.
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In addition, if the system (2.1) is controllable in average, then for every µ-integrable (x0
θ)θ∈θ ∈

(RN)Θ, every x1 ∈ RN , and every T > 0, then there exist a unique control of minimal L2-norm
steering the initial condition (x0

θ)θ to the averaged value x1 in time T , and this control is given by

u(t) = ∫
Θ
B∗
θ e

(T−t)A∗
θΛ(T )−1 (x1 − ∫

Θ
eTAθx0

θ dµθ) dµθ (t ∈ (0, T )). (2.5)

Remark 2.3. Note that the 3rd condition of Theorem 2.2 is also equivalent to the observability
of the adjoint. More precisely, this condition is equivalent to,

c(T )∣ϕ1∣2 ⩽ ∫
T

0
∣∫

Θ
B∗
θϕθ(t)dµθ∣

2

dt (ϕ1 ∈ RN), (2.6)

where ϕθ is solution of

−ϕ̇θ(t) = A∗
θϕθ(t) (t ∈ (0, T )), (2.7a)

ϕθ(T ) = ϕ1. (2.7b)

Note also that we trivially have the existence of a constant C(T ) > 0 such that

ϕ1∗Λ(T )ϕ1 ⩽ C(T )∣ϕ1∣2 (ϕ1 ∈ RN), (2.8)

Remark 2.4. Note that the control of minimal L2-norm given in Theorem 2.2 is given by

u(t) = ∫
Θ
B∗
θϕθ(t)dµθ, (2.9)

where ϕθ is solution of (2.7), with ϕ1 ∈ RN solution of the minimization problem,

min
1

2
∫

T

0
∣∫

Θ
B∗
θϕθ(t)dµθ∣

2

dt − ⟨ϕ1,x1⟩ + ∫
Θ
⟨ϕθ(0),x0

θ⟩ dµθ

ϕ1 ∈ RN and ϕθ solution of (2.7).

This expression of the control is easier to consider, since we only have to solve a quadratic min-
imization problem in RN to obtain ϕ1. The associated minimal L2-norm control is then obtained
from (2.9). More precisely, in order to solve the quadratic problem, one can use for instance any
gradient descent method. Then, once ϕ1 has been found, we obtain ϕθ(t) by solving (2.7), and
finally, using the expression (2.9), we get u(t). Of course, in this procedure, one has to discretize
time and integrals with respect to Θ. Note that the time discretization is rather standard and
hence will not be developed here. The discretization with respect to θ, will be discussed in the rest
of this section.

2.1.2 Numerical approximation

In this subsection we deal with the issue of constructing a (numerical approximation of) averaged
control for a general system for which formulae (2.5) or (2.9) can not be calculated exactly, either
due to computational complexity or to issues related to integration (with respect to θ).

The idea behind all the numerical methods presented here is to consider K ∈ N∗ values

θK1 , . . . , θ
K
K ∈ Θ and K weights mK

1 , . . . ,m
K
K ∈ R+, so that ∑Kk=1m

K
k e

tA
θK
k BθK

k
converges for ev-

ery t ∈ [0, T ] to ∫Θ e
tAθBθ dµθ, as K goes to ∞. Once these parameters are given, we consider the
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matrices,

AK =
⎛
⎜⎜⎜
⎝

AθK1 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . 0 AθK

K

⎞
⎟⎟⎟
⎠
∈ RNK×NK , BK =

⎛
⎜⎜⎜
⎝

BθK1
⋮
⋮

BθK
K

⎞
⎟⎟⎟
⎠
∈ RNK×M

and CK = (mK
1 In ⋯ mK

KIn) ∈ RN×NK (2.10)

and the system

ẊK = AKXK +BKu, XK(0) =X0
K ∶= (x0

θK1

∗ ⋯ x0
θK
K

∗
)
∗
∈ RNK . (2.11a)

with output
xK = CKXK . (2.11b)

Given some time T > 0, the problem is to find a control u ∈ L2(0, T )M such that the output of the
system (2.11) satisfies xK(T ) = x1.

Definition 3. We say that the system (2.11) is output controllable if for every X0 ∈ RNK and
every x1 ∈ RN , there exist a time T > 0 and a control u ∈ L2(0, T )M such that the solution of (2.11)
satisfies, xK(T ) = x1.

Remark 2.5. The notion of output controllability is more general than the averaged one, and can
be applied for general systems ẋ = Ax + Bu, with output y = Cx +Du. We refer to [26] for this
notion and corresponding controllability results.

Remark 2.6. Note that the output controllability of (2.11) coincides with the averaged control-
lability of (2.1) with the measure µK = ∑Nk=1m

K
k δθKk , where δθ is the Dirac measure supported

at θ ∈ Θ. As a consequence output controllability criteria for the system (2.11) can be directly
obtained from Theorem 2.2. In particular, (2.11) is averaged controllable if and only if for every
T > 0, the Gramian

ΛK(T ) = CK (∫
T

0
e(T−t)AKBKB∗Ke

(T−t)A∗K dt)C∗
K (2.12)

is positive. In addition, if ΛK(T ) is positive, the minimal L2-norm control in time T > 0 is given by

uK(T ) = B∗Ke
(T−t)A∗KC∗

KΛK(T )−1 (x1 −CKeTAKX0
K) . (2.13)

Algorithm 1 will be then used to compute numerically an averaged control for K evaluations
of the system.

In practice, given some error ε > 0, one wants to determine as integer K = K(ε) such that
∥uK − u∥L2(0,T )M ⩽ ε (which in turn implies that ∣x(T ; x0

θ, uK) − x1
θ ∣ is small as well), where u is

the control of minimal L2-norm such that xθ(T ; x0
θ, u) = x1. The difficulty is that, in practice, we

know the convergence rate, but do not know the multiplicative constant in front of it, i.e., with
the notations of Proposition 2.8 (eq. (2.14)), we know po, but not C. To overcome this difficulty,
one check a posteriori that ∣x(T ; x0

θ, uK) − x1
θ ∣ < ε.

Remark 2.7. Obviously, to compute ∣x(T ; x0
θ, uK) − x1

θ ∣ in Algorithm 2, one needs again to dis-
cretized ∫Θ xθ(T ; xθ0, uK)dµθ, this can be done with a finer discretization θ1, . . . , θL than the one
(θK1 , . . . , θ

K
K ) used in Algorithm 1.
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Algorithm 1 Output control with K evaluations of the system

Initialize: Given θ ∈ Θ ↦ x0
θ ∈ RN , x1 ∈ RN and T > 0, and given K ∈ N∗, θK1 , . . . , θ

K
K ∈ Θ and

mK
1 , . . . ,m

K
K ∈ R+.

1: Build matrices AK , BK and CK as in (2.10) and X0
K as in (2.11a).

2: if System (2.11) is not output controllable, (i.e., if rank [CKA0
KBK , . . . ,CKAnK−1BK] < N)

then
3: No control can be computed, quit algorithm and return ∅.
4: else
5: Compute ϕ1

K = argminϕ1∈RN
1
2
ϕ1∗ΛK(T )ϕ1 + ⟨ϕ1,CKeTAKX0

K − x1⟩.
6: Compute ϕK(t) solution of ϕ̇K = −A∗

KϕK with final condition ϕK(T ) = C∗
Kϕ

1 ∈ RNK .
7: end if
Return: uK(t) = B∗KϕK(t).

Algorithm 2 Averaged control computation

Initialize: Given ε > 0.
1: K ← 1, and compute u1 from Algorithm 1.
2: while uK is not defined (i.e., Algorithm 1 returns ∅), or ∣x(T ; x0

θ, uK) − x1
θ ∣ ⩾ ε do

3: K ←K + 1, and compute uK from Algorithm 1.
4: end while
Return: uK .

Based on the expressions given in Remark 2.6, and with well-chosen parameters θK1 , . . . , θ
K
K

and mK
1 , . . . ,m

K
K , one can ensure that if K is large enough, then the system (2.11) is output

controllable. In addition, the numerical control uK given by Algorithm 1 converges to the exact
control as K →∞.

Proposition 2.8. Let T > 0, x1 ∈ RN and assume that (2.1) is µ-averaged controllable. Assume
in addition that θK1 , . . . , θ

K
K ∈ Θ, and mK

1 , . . . ,m
K
K ∈ R+ are designed so that there exist Co > 0 and

po > 0 such that

sup
t∈[0,T ]

∣∫
Θ
etAθBθ dµθ −

K

∑
k=1

mK
k e

tA
θK
k BθK

k
∣ ⩽ CoK−po

and ∣∫
Θ
eTAθx0

θ dµθ −
K

∑
k=1

mK
k e

TA
θK
k x0

θK
k
∣ ⩽ CoK−po .

Then for K ∈ N∗ large enough, the system (2.11) is output controllable.
Furthermore, there exist K0 ∈ N∗ and C > 0 such that

∥uK − u∥L2(0,T )M ⩽ CK−po and ∣∫
Θ
xθ(T ; x0

θ, uK)dµθ − x1∣ ⩽ CK−po (K ⩾K0), (2.14)

where u and uK are the controls respectively given by (2.5) and (2.13), and where xθ(⋅; x0
θ, uK) is

the solution of (2.1a) with control uK .

Proof. Let us first proof the existence of K0 ∈ N such that for every K ⩾ K0, the system (2.11) is
output controllable. To this end, we define the integration error

EK(t) =
K

∑
k=1

mK
k e

tA
θK
k BθK

k
− ∫

Θ
etAθBθ dµθ (t ∈ [0, T ]).
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We observe that ΛK(T ) given by (2.12) can be expressed as

ΛK(T ) = Λ(T ) + ∫
T

0
(∫

Θ
etAθBθ dµθ)EK(t)∗ dt + ∫

T

0
EK(t) (∫

Θ
etAθBθ dµθ)

∗
dt

+ ∫
T

0
EK(t)EK(t)∗ dt. (2.15)

Hence, for every ϕ1 ∈ RN , we get,

ϕ1∗ΛK(T )ϕ1 ⩾ ϕ1∗Λ(T )ϕ1 − 2
√
TC(T )∣ϕ1∣2CoK−po − TC2

0K
−2po ∣ϕ1∣2.

with C(T ) given by Remark 2.3. Since the system (2.1) is averaged controllable, we have
ϕ1∗Λ(T )ϕ1 ⩾ c(T )∣ϕ1∣2 (here again, c(T ) is defined by Remark 2.3). This ensures the existence of
K0 ∈ N∗ such that for every K ⩾K0, we have,

ϕ1∗ΛK(T )ϕ1 ⩾ cK(T )∣ϕ1∣2 (ϕ1 ∈ RN),

for some positive constant cK(T ). That is to say that the system (2.11) is output controllable.
Proving the convergence rate of uK to u is a classical exercise which is not developed here.

This fact also leads to the convergence of ∫Θ xθ(T,uK)dµθ to x1.

In the rest of this section, we check this result in Example 2.12 with two different interpolations
rules. The first one is based on the mid-point rule, while the second one on the large number theory.

Interpolation approach. For this approach, we assume that the set of parameter Θ is some
real interval. We will also assume1 that dµθ = w(θ)dθ, where w is some positive function on Θ.
Let us then define for every θ ∈ Θ, W (θ) = µ(Θ ∩ (−∞, θ)) = ∫Θ∩(−∞,θ)w(s)ds. It is clear that W

is an increasing function, and hence, W ∶ Θ→ [0,1] is a bijective map.
In order to apply Proposition 2.8, one need to have a consistent numerical method for the

integration with respect to the measure µ. This can be for instance done with the mid-point rule.
To this end, we define for every K ∈ N∗, K + 1 points zK0 , . . . , z

K
K ∈ [0,1] satisfying 0 = zK0 < zK1 <

⋅ ⋅ ⋅ < zKK−1 < zKK = 1, and set

θKk =W −1 (
zKk−1 + zKk

2
) and mK

k = zKk − zKk−1 (k ∈ {1, . . . ,K}) (2.16)

and for every f ∈ C0(Θ), such that ∫Θ ∣f ∣dµ < ∞, we numerically approach ∫Θ f dµ by

IK(f) =
K

∑
k=1

mK
k f(θKk ). (2.17)

Lemma 2.9. In addition to the above notations and assumptions, let us assume that f and W
are C2 functions on Θ. Let us also set g ∶ Θ → R+ a µ-integrable function such that g ⩾ ∣f ∣. Then
we have

∣∫
Θ
f(θ)dµθ −

K

∑
k=1

mK
k f(θKk )∣ ⩽

K−1

∑
k=2

Mk

24
(mK

k )3 + r1 + rK .

1The following description can also be adapted for more general probability measures (including the one having
a countable number of atomic masses). However, we keep this assumption for the sake of simplicity.

9



where we have set

Mk = sup
[W−1(zK

k−1),W−1(zK
k

)]
w−2 ∣f ′′ − f ′w

′

w
∣ (k ∈ {2, . . . ,K − 1}),

r1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sup
(inf Θ,W−1(zK1 )]

w−2 ∣f ′′ − f ′w
′

w
∣ (m

K
1 )3

24
if lim
z→0

f ○W −1(z) exists,

∫
zK1

0
g ○W −1 dz +mK

1 g(θK1 ) otherwise

and

rK =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sup
[W−1(zK

K−1),sup Θ)
w−2 ∣f ′′ − f ′w

′

w
∣
(mK

K)3

24
if lim
z→1

f ○W −1(z) exists,

∫
1

zK
K−1

g ○W −1 dz +mK
Kg(θKK) otherwise.

Proof. Let us first observe that,

∫
Θ
f(θ)dµθ = ∫

Θ
f(θ)w(θ)dθ = ∫

1

0
f (W −1(z)) dz =

K

∑
k=1
∫

zKk

zK
k−1

f (W −1(z)) dz.

Note that f ○W −1 is of class C2 on (0,1) but might not be defined at 0 or 1. Hence, for k ∈
{2, . . . ,K − 1}, we classically have

∣∫
zKk

zK
k−1

f ○W −1dz −mK
k f(θKk )∣ ⩽

(zKk − zKk−1)3

24
sup

[zK
k−1,z

K
k

]
∣d

2 f ○W −1

dz2
∣ .

We observe that d2 f○W−1

dz2
○W = 1

w2 (f ′′ − f ′w
′
w
) and hence, we have,

∣∫
zKk

zK
k−1

f ○W −1dz −mK
k f(θKk )∣ ⩽Mk(zKk − zKk−1)3.

Note that this estimate is also valid for k = 1 (respectively k = K) if f ○W −1 is continuous (or
admits a continuous extension) at 0 (respectively 1). When this does not hold, we can however
use the following estimate, for k = 1 or K =K,

∣∫
zKk

zK
k−1

f ○W −1 dz −mK
k f(θKk )∣ ⩽ ∫

zKk

zK
k−1

g ○W −1 dz +mK
k g(θKk ) (k ∈ {1, . . . ,K}).

Randomized approach. For this approach, we consider K ∈ N∗ realisations of the random
variable θ, following the probability law µ. This leads to some parameters θK1 , . . . , θ

K
K ∈ Θ. We

then apply the output controllability procedure to the system (2.11), with matrices A, B and C
given by (2.10), with mK

k = 1/K.
More precisely, we approach I(f) = ∫Θ f(θ)dµθ by the random variable

IK(f) = 1

K

K

∑
k=1

f(θKk ), (2.18)

where θKk is a random variable following the probability law µ. Based on the central limit Theorem,

we know that the expectation of the error, I(f) − IK(f) is null, and furthermore,
√
K(I(f) −

IK(f))/σ converges in law to a random variable following the probability law N(0,1), where σ is
the standard derivation of f(θ). More precisely, we have the following result.
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Lemma 2.10. Given (Θ,F , µ) a probability space and let f ∶ Θ→ R be a measurable function such

that ∫Θ ∣f(θ)∣2 dµθ < ∞. We define I(f) = ∫
Θ
f(θ)dµθ and σ =

√
∫

Θ
(f(θ) − I(f))2

dµθ Then for

every sequence (θk)k∈N∗ of independent and identically distributed random variables following the
probability law µ, we have that

√
K (IK(f) − I(f)) /σ (with IK(f) defined by (2.18)) converges in

law to the normal distribution N(0,1).

Lemma 2.10 ensures in particular that for every a > 0, the probability that ∣IK(f) − I(f)∣ <
a/

√
K converges to a constant as K →∞. That is to say that, when evaluating the random variable

θ1, . . . , θK , it is expected that I(f) − IK(f) decays polynomially with rate 1/2. This rate will be
confirmed on Example 2.12.

Remark 2.11. Note that this method is very simple to implement in practice. Its convergence
rate is rather small, but it is easy to extend this method for general parameter set Θ and general
measure µ. In addition, the convergence rate of this method is independent of the size of Θ.

Numerical example. To conclude this subsection, we consider both the interpolation and ran-
domized approaches on an example.

Example 2.12. Let us consider the probability space (R+,B(R+), µ), where the measure µ is
given by dµθ = w(θ)dθ, with w(θ) = e−θ. Let us also assume that the dimension of the state is
N = 2 and the dimension of the control is M = 1, we then consider the matrices Aθ and Bθ given
by

Aθ = (0 −θ2

1 0
) and Bθ = ( 0

θ − 1
) (θ ∈ Θ).

For this example, everything can be computed by hands. In particular, for T = 1, the controllability
Gramian Λ(T ) given in (2.4) is

Λ(1) = 1

240
(32 + 15π 30

30 15π − 20
) .

One can observe that Λ(1) is a positive matrix. Hence, the system consider in this example is

controllable in average. In addition, we set as initial condition x0
θ = (θ sin θ)∗ and an averaged

target condition x1 = 0. Using the relation (2.5), we obtain that the control steering (x0
θ)θ on the

average x1 in time T = 1 is

uex(t) =
48(t − 1)(144 − 90π + 520t − 156πt − 188t2 + 33πt2 − 72t3 + 45πt3)

5(45π2 + 36π − 308)(2 − 2t + t2)3
(t ∈ [0,1]).

In order to apply Proposition 2.8, we have to consider the µ-integration of f , with f given by
f(θ) = eTAθx0

θ or f(θ) = etAθBθ.
● Interpolation appraoch. Our aim is to apply Lemma 2.9 with well-chosen values zKk .

First note that we have,

w(θ)−2 ∣f ′′(θ) − f ′(θ)w
′(θ)
w(θ)

∣ = e2θ ∣f ′′(θ) + f ′(θ)∣ (θ ∈ R+).

In order to estimate f ′ and f ′′, one can use the following procedure. For f(θ) = eTAθx0
θ, let us

define for every t ∈ [0, T ], ξθ(t) = etAθx0
θ, so that ξθ(T ) = f(θ). Then, ξθ, ξ

′
θ and ξ′′θ (where “ ′ ”

denotes the differentiation with respect to θ) are solution of

⎛
⎜
⎝

ξ̇θ
ξ̇′θ
ξ̇′′θ

⎞
⎟
⎠
=
⎛
⎜
⎝

Aθ 0 0
A′
θ Aθ 0

A′′
θ 2A′

θ Aθ

⎞
⎟
⎠

⎛
⎜
⎝

ξθ
ξ′θ
ξ′′θ

⎞
⎟
⎠
,

⎛
⎜
⎝

ξθ(0)
ξ′θ(0)
ξ′′θ (0)

⎞
⎟
⎠
=
⎛
⎜
⎝

x0
θ

x0
θ

′

x0
θ

′′

⎞
⎟
⎠
.

11



In our particular case, we get,

⎛
⎜
⎝

ξ̇θ
ξ̇′θ
ξ̇′′θ

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(0 −θ2

1 0
) 0 0

(0 −2θ
0 0

) (0 −θ2

1 0
) 0

(0 −2
0 0

) (0 −4θ
0 0

) (0 −θ2

1 0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜
⎝

ξθ
ξ′θ
ξ′′θ

⎞
⎟
⎠
,

⎛
⎜
⎝

ξθ(0)
ξ′θ(0)
ξ′′θ (0)

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ
sin θ

1
cos θ

0
− sin θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and easily obtain
e2θ ∣f ′′(θ) + f ′(θ)∣ = e2θ ∣ξ′′θ (T ) + ξ′θ(T )∣ ⩽ Cεe(2+ε)θ, (2.19a)

for every ε > 0 and for some constant Cε > 0 (indeed ∣ξθ(T )∣2 + ∣ξ′θ(T )∣2 + ∣ξ′′θ (T )∣ is polynomial in
(T, θ) and hence can be bounded by an exponential). In addition, since the eigenvalues of Aθ are
purely complex numbers, we have,

∣f(θ)∣ = ∣x0
θ ∣ ⩽ θ + 1. (2.19b)

Similarly, for f(θ) = etAθBθ, we consider, ϕ1 ∈ RN and ϕθ solution of −ϕ̇θ = A∗
θϕθ with ϕθ(T ) = ϕ1,

we then have that,

−
⎛
⎜
⎝

ϕ̇θ
ϕ̇′θ
ϕ̇′′θ

⎞
⎟
⎠
=
⎛
⎜
⎝

A∗
θ 0 0

A′
θ
∗

A∗
θ 0

A′′
θ
∗

2A′
θ
∗

A∗
θ

⎞
⎟
⎠
,

⎛
⎜
⎝

ϕθ(0)
ϕ′θ(0)
ϕ′′θ (0)

⎞
⎟
⎠
=
⎛
⎜
⎝

ϕ1

0
0

⎞
⎟
⎠

and that,

(f ′′ + f ′)∗ ϕ1 = B′′
θ
∗
ϕθ(t) +B′

θ
∗(2ϕ′θ(t) + ϕθ(t)) +B∗

θ (ϕ′′θ (t) + ϕ′θ(t))
= e∗2 ((θ − 1)ϕ′′θ (t) + (θ + 1)ϕ′θ(t) + ϕθ(t)) ,

with e∗2 = (0 1). Here also, we get that,

e2θ ∣ (f ′′(θ) + f ′(θ))∗ ϕ1∣ = e2θ ∣(θ − 1)ϕ′′θ (t) + (θ + 1)ϕ′θ(t) + ϕθ(t)∣ ⩽ Cεe(2+ε)θ ∣ϕ1∣, (2.20a)

for every ε > 0, every ϕ1 ∈ R2 and for some constant Cε > 0 independant of ϕ1 and t. In addition,
we have,

∣f(θ)∗ϕ1∣ = ∣ϕθ(t)∣ = ∣ϕ1∣ ⩽ (θ + 1)∣ϕ1∣ (ϕ1 ∈ R2, t ∈ [0, T ]). (2.20b)

Finally, for both definition of f , we get from Lemma 2.9 (with g(θ) = θ + 1), that the interpolation

error EKf = ∣∫
Θ
f(θ)dµθ −

K

∑
k=1

mK
k f(θKk )∣ satisfies,

EKf ⩽ Cε
K−1

∑
k=1

e(2+ε)W
−1(zKk )(zKk − zKk−1)3 + (2 +W −1(zKK−1)) e−W

−1(zKK−1)

+ (1 − zKK−1)(W −1 (
zKK−1 + 1

2
) + 1) .

Using the fact that W −1(z) = − ln(1− z), and setting zKk = k/K for every k ∈ {0, . . . ,K}, we finally
get

EKf ⩽ 1

K1−ε (Cε
2 + ε
1 + ε

+ 3 + 2 ln(2K)
Kε

− Cε
(1 + ε)K1+ε ) .

That is to say that the interpolation error decays polynomially with rate 1 − ε, and we can apply
Proposition 2.8, with Co = Cε and po = 1−ε, to obtain that the control uK−uex decays polynomially
with rate 1 − ε. This fact is confirmed on Figure 1a.

12



● Randomized approach. As already noticed, in both cases we have ∣f(θ)∣ ⩽ θ + 1. This
ensures that ∫Θ ∣f(θ)∣2 dµθ is finite. Hence, according to Lemma 2.10, the randomized approach is
convergent in expectation with rate 1/2. And hence by application of Proposition 2.81, we obtain
that uK −uex decays polynomially in expectation with rate 1/2. This fact is confirmed numerically
on Figure 1b.
Note that in order to generate the sequence of random variables, we observe that there is a
one-to-one corresponance between random variable θ ∈ (R+,B(R+), µ) and random variable z ∈
((0,1),B((0,1)), λ) (with λ the Lebesgue measure). More precisely, if z ∈ ((0,1),B((0,1)), λ),
then θ =W −1(z) ∈ (R+,B(R+), µ), with W (s) = µ([0, s]).

0.1

1

10 100 1000

K

∥uK − uex∥L2

(a) For the interpolation approach, we numer-
ically obtain polynomially decay rate equal to
0.761540.

0.1

1

10

10 100 1000

K

∥uK − uex∥L2

(b) For the randomised approach, we numer-
ically obtain polynomially decay rate equal to
0.509645.

Figure 1: Convergence as the number of evaluation points goes to ∞ for Example 2.12.

2.2 Ensemble controllability

2.2.1 Ensemble controllability notion and results

The notion of ensemble controllability has been at first stage introduced for Bolch equation, and
we refer to [6, 33] for related articles. We also refer to [3, 11] for ensemble controllability for more
general nonlinear systems. Dealing with linear control system, this notion has been studied in
[14, 19, 32, 35, 34, 51].

A necessary and sufficient condition for ensemble controllability can be stated.

Proposition 2.13. ([47, Theorem 3.1.1] or [14, Section 2]) The system (2.1) is ensemble con-
trollable if and only if Span{θ ∈ Θ↦ AkθBθej ∣ k ∈ N, j ∈ {1, . . . ,M}} is dense in C0(Θ)N , where

e1, . . . , eM denote vectors of the canonical basis of RM .

Note that if the system (2.1) is ensemble controllable, then it is ensemble controllable in any
time T > 0, see [14].
The condition of Proposition 2.13 might be hard to check, and instead we shall employ the following
sufficient condition.

1Strictly speaking, Proposition 2.8 cannot be used. Indeed, one shall rely on its randomized version, whose proof
is similar to the original proof of Proposition 2.8.
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Proposition 2.14. ([14, Corollary 3]) In addition to Assumption 1, let us assume that M = 1
(i.e., Bθ ∈ RN ). The system (2.1) is ensemble controllable if the following conditions are satisfied:

1. the pair (Aθ,Bθ) is controllable for every θ ∈ Θ;

2. the eigenvalues of Aθ are simple for every θ ∈ Θ;

3. the map θ ∈ Θ↦ σ(Aθ) ∈ P(C) is injective.

2.2.2 Numerical approximation

In this paragraph, we propose an algorithm to compute, for a given precision ε > 0, given time
T > 0, and given initial and target datas θ ↦ (x0

θ,x
1
θ), a control uε such that (2.3) holds. To this

end, we first state a regularity lemma.

Lemma 2.15. Let us assume, in addition to Assumption 1 that θ ↦ x1
θ is Lipschitz continuous.

Then, for every T > 0 and every u ∈ L2(0, T )M , the map θ ∈ Θ↦ x1
θ −xθ(T ; x0

θ, u) ∈ RN is Lipschitz
continuous with Lipschitz constant C0 + C1∥u∥L2(0,T )M , where C0 and C1 are two nonnegative
constants independent of u.

Proof. Recall, that we have, xθ(T ; x0
θ, u) = eTAθx0

θ + ∫
T

0 e(T−t)AθBθu(t)dt. The conclusion follows
by noticing that θ ↦ etAθ is Lipschitz continuous with a Lipschitz constant independent of t ∈
[0, T ].

Let us also state a simple lemma.

Lemma 2.16. Assume that the system (2.1) is ensemble controllable, and let θ ∈ Θ ↦ (x0
θ,x

1
θ) ∈

RN × RN be any continuous function on Θ. Then for every T > 0, every ε > 0, every K ⩾ 2
and every set of distinct values θ1, . . . , θK ∈ Θ, there exist a control uεK ∈ L2(0, T )M such that the
solution xθ(⋅; x0

θ, u
ε
K) of (2.1) satisfies

sup
k∈{1,...,K}

∣x1
θk
− xθk(T ; x0

θk
, uεK)∣ ⩽ ε. (2.21)

Furthermore the control of minimal L2-norm such that (2.21) holds, is given by

uεK(t) =
K

∑
k=1

B∗
θk
ϕk(t), (2.22)

where we have set ϕk(t) the solution of,

− ϕ̇k = A∗
θk
ϕk, ϕk(T ) = ϕ1

k, (2.23)

with (ϕ1
1, . . . , ϕ

1
K) ∈ (RN)K the minimiser of

J(ϕ1
1, . . . , ϕ

1
K) = 1

2
∫

T

0
∣
K

∑
k=1

B∗
θk
e(T−t)A

∗
θkϕ1

k∣
2

dt +
K

∑
k=1

⟨ϕ1
k, e

TAθkx0
θk
− x1

θk
⟩ + ε

K

∑
k=1

∣ϕ1
k ∣. (2.24)

Proof. The existence of a control uεK ∈ L2(0, T )M such that (2.21) holds directly follows from
Definition 2. We then deduce the existence of a unique minimal L2-norm control such that (2.21)
holds. This control minimizes, u ∈ L2(0, T )M ↦ f(u) + g(Φu) ∈ R, with

f(u) = 1

2
∥u∥2

L2(0,T )M , Φu = (∫
T

0
e(T−t)AθkBθku(t)dt)

k∈{1,...,K}
(u ∈ L2(0, T )M),

g ((Xk)k∈{1,...,K}) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+∞ if sup
k∈{1,...,K}

∣x1
θk
− eTAθkx0

θk
−Xk∣ > ε,

0 otherwise
(X1, . . . ,XK ∈ RN).
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Using Fenchel-Rockafellar duality, see for instance [9, 16], we obtain that the minimiser uεK of
u ↦ f(u) + g(Φu) is given by uεK = ∇f∗(−Φ∗P 1), where P 1 = (ϕ1

k)k∈{1,...,K} ∈ (RN)K minimizes

P ∈ (RN)K ↦ f∗(Φ∗P )+g∗(P ). In these expressions, Φ∗ is the adjoint of Φ and f⋆ (respectively g⋆)
is the convex conjugate of f (respectively g). More precisely, we have,

(Φ∗(ϕ1
k)k∈{1,...,K}) (t) =

K

∑
k=1

B∗
θk
e(T−t)A

∗
θkϕ1

k,

that is to say that Φ∗(ϕ1
k)k∈{1,...,K} = ∑Kk=1B

∗
θk
ϕk, with ϕk defined by (2.23). We also have,

f⋆(ϕ) = sup
u∈L2(0,T )M

(⟨ϕ,u⟩ − f(u)) = 1

2
∥ϕ∥2

L2(0,T )M

and

g⋆ ((ϕ1
k)k∈{1,...,K}) = sup

X1,...,Xk∈RN
(
K

∑
k=1

⟨ϕ1
k,Xk⟩ − g ((Xk)k∈{1,...,K}))

= sup
Y1,...,Yk∈RN
∣Y1∣,...,∣YK ∣⩽1

K

∑
k=1

⟨ϕ1
k,x

1
θk
− eTAθkx0

θk
− εYk⟩ =

K

∑
k=1

⟨ϕ1
k,x

1
θk
− eTAθkx0

θk
⟩ + ε

K

∑
k=1

∣ϕ1
k ∣.

All these expressions lead to the claim of Lemma 2.16.

Using Lemmas 2.15 and 2.16, we can deduce the following result.

Proposition 2.17. Assume that the system (2.1) is ensemble controllable, and let θ ∈ Θ ↦
(x0
θ,x

1
θ) ∈ RN × RN be any Lipschitz continuous function on Θ. Then for every T > 0, every

ε > 0, every ε0 ∈ (0, ε), there exist K ∈ N∗ such that the solution xθ(⋅; x0
θ, u

ε0
K ) of (2.1) satisfies

sup
θ∈Θ

∣x1
θ − xθ(T ; x0

θ, u
ε0
K )∣ ⩽ ε, (2.25)

where uε0K is the control of minimal L2-norm such that (2.21) holds with θk = min Θ + (max Θ −
min Θ) k−1

K−1
for k ∈ {1, . . . ,K}.

Proof. By assumption, there exist uε0 ∈ L2(0, T ) such that, supθ∈Θ ∣x1
θ − xθ(T ; x0

θ, u
ε0)∣ ⩽ ε0. It is

also easy to see that ∥uε0K ∥L2(0,T ) ⩽ ∥uε0∥L2(0,T ), hence, by application of Lemma 2.15, we obtain,

sup
θ∈Θ

∣x1
θ − xθ(T ; x0

θ, u
ε0
K )∣ ⩽ ε0 +

C0 +C1∥uε0K ∥L2(0,T )

K − 1
⩽ ε0 +

C0 +C1∥uε0∥L2(0,T )

K − 1
. (2.26)

It is then trivial to conclude the existence of K(ε, ε0) ∈ N∗ such that for every K > K(ε, ε0) we

have,
C0+C1∥uε0∥L2(0,T )

K−1
⩽ ε − ε0.

Remark 2.18. Let us also mention that, up to an extraction of a subsequence, the sequence of
controls (uε0K )K , given in Proposition 2.17, converges in L2 to the control, uε0 , of minimal L2-norm
control such that supθ∈Θ ∣x1

θ − xθ(T ; x0
θ, u

ε0)∣ < ε0.
Indeed, for every K, we have ∥uε0K ∥L2(0,T )M ⩽ ∥uε0∥L2(0,T )M . Hence, there exist uε0∗ ∈ L2(0, T )M
such that up to an extraction of a subsequence, the sequence (uε0K )K is weakly convergent to uε0∗ .
In addition, we have ∥uε0∗ ∥L2(0,T )M ⩽ ∥uε0∥L2(0,T )M , and the weak convergence of (uε0K )K to uε0∗
ensures that limK→∞ xθ(T ; x0

θ, u
ε0
K ) = xθ(T ; x0

θ, u
ε0
∗ ). Furthermore, the two maps θ ↦ xθ(T ; x0

θ, u
ε0
K )

and θ ↦ xθ(T ; x0
θ, u

ε0
∗ ) are both Lipschitz with the same Lipschitz constant, C0 +C1∥uε0∥L2(0,T )M ,
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with the notations of Lemma 2.15. This, together with the compactness assumption on Θ, ensures
that supθ∈Θ ∣x1

θ −xθ(T ; x0
θ, u

ε0
∗ )∣ = limK→∞ supθ∈Θ ∣x1

θ −xθ(T ; x0
θ, u

ε0
K )∣. This last fact, combined with

the estimation (2.26), leads to supθ∈Θ ∣x1
θ − xθ(T ; x0

θ, u
ε0
∗ )∣ ⩽ ε0, and hence, the uniqueness of the

minimal L2-norm control implies uε0∗ = uε0 . Finally, since ∥uε0K ∥L2(0,T )M ⩽ ∥uε0∥L2(0,T )M , we also
conclude that limK→∞ ∥uε0K ∥L2(0,T )M = ∥uε0∥L2(0,T )M , that is to say that (uε0K )K converges strongly

in L2(0, T )M to uε0 .

The Proposition 2.17 directly leads to the following algorithm to compute an appropriate control
for ensemble controllability.

Algorithm 3 Ensemble control

Initialize: Given ε > 0 and ε0 ∈ (0, ε), and given θ ↦ (x0
θ,x

1
θ) continuous.

1: K ← 2.
2: Compute uε0K from Algorithm 4.

3: while supθ∈Θ ∣x1
θ − xθ(T ; x0

θ, u
ε0
K )∣ > ε do

4: K ←K + 1.
5: Compute uε0K from Algorithm 4.
6: end while
Return: uε0K .

Remark 2.19. Obviously, in the 3rd step of Algorithm 3, it is not possible to numerically compute
supθ∈Θ ∣x1

θ − xθ(T ; x0
θ, u

ε0
K )∣. Hence, one has to discretized Θ one again. This can be done, by picking

some large number L and some values θ̃1, . . . , θ̃L ∈ Θ, and substituting supθ∈Θ ∣x1
θ − xθ(T ; x0

θ, u
ε0
K )∣

by supl∈{1,...,L} ∣x1
θ̃l
− xθ̃l(T ; x0

θ̃l
, uε0K )∣. Note that the choice of the values of θ̃l can be random.

In Algorithm 3, we use Algorithm 4, in order to compute the control of minimal L2-norm such
that (2.21) holds (with ε replaced by ε0).

Algorithm 4 Approximate control for K values of θ

Initialize: Given K ⩾ 2, and ε0 > 0, and given θ ↦ (x0
θ,x

1
θ).

1: Compute for k ∈ {1, . . . ,K}, θk = min Θ + (k − 1) (max Θ −min Θ) /(K − 1).
2: Compute (ϕ1

1, . . . , ϕ
1
K) ∈ RN × ⋅ ⋅ ⋅ ×RN , the minimiser of (2.24) (with ε replaced by ε0).

3: Compute, for k ∈ {1, . . . ,K}, ϕk(t), solution of (2.23).
Return: uε0K (t) given by (2.22).

To conclude this subsection, we consider the following example.

Example 2.20. Let us consider Θ = [1,10], let us also assume that the dimension of the state is
N = 2 and the dimension of the control is M = 1, we then consider the following matrices

Aθ = (−1 −θ
θ −1

) and Bθ = (0
1
) (θ ∈ Θ).

With these matrices, we observe that the system (2.1) is ensemble controllable. Indeed, for every

θ ∈ Θ, we have, σ(Aθ) = {−1 − iθ,−1 + iθ} and rank (Bθ,AθBθ) = rank(0 −θ
1 −1

) = 2. It is then

easy to see that items 1–3 of Proposition 2.14 are fulfilled and hence, the system (2.1), with the
parameter set Θ and the matrices Aθ and Bθ defined above, is ensemble controllable.
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Let us now apply the result of Proposition 2.17. To this end, we consider the controllability
time T = 2, and the initial and final conditions given by x0

θ = (θ sin θ)∗ and x1
θ = 0. We then

use Algorithm 4, with ε0 = 1/10 and let K → ∞. On Figure 2, we display the L2-norm of the
control uK and the maximum of θ ↦ x1

θ − xθ(T ; x0
θ, uK) for K ∈ {3, . . . ,50}. To compute the

maximum of ∣x1
θ − xθ(T ; x0

θ, uK)∣, we use Remark 2.19 with L = 5.104 uniformly distributed values
of θ. We observe on this figure that ∣x1

θ − xθ(T ; x0
θ, uK)∣ decays to ε0 as K increase, we also

observe that ∥uK∥L2(0,T ) is bouded. Note that, we cannot guarantee that K ↦ ∥uK∥L2(0,T ) is
increasing, and this is in general not the case, as wee see on Figure 2. However, we can ensure that
∥u2K−1∥L2(0,T ) ⩾ ∥uK∥L2(0,T ), this is due to the fact that the sequence of interpolation points for
2K − 1 points contains the one for K points.
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Figure 2: Display of ∥uε0K ∥L2(0,T ) and supθ∈Θ ∣xθ(T ; x0
θ, u

ε0
K ) − x1

θ ∣, for K ∈ {3, . . . ,50}, with uK
given by Algorithm 4 for the ensemble control of the system considered in Example 2.20.

3 Parameter dependent controls

Throughout this section we consider the system (1.1) accompanied by the control problem

xθ(T ) = x1
θ, (θ ∈ Θ), (3.1)

where the prescribed target state in general depends on the parameter, while the control time
T > 0, at which the system should reach the target, is θ independent. In addition, we suppose the
system (1.1) is controllable for each value of the parameter θ ∈ Θ. In particular, it implies that for
each given control time T > 0 and the target x1

θ there exists a (parameter dependent) control such
that the state of the system satisfies xθ(T ) = x1

θ. As explained in the introduction, such control
(with minimal L2-norm) can be explicitly constructed by solving the adjoint equation starting from
optimal datum at time T determined by the equation (3.3).

However, the construction of control for a large dimensional system is an expansive, time and
computation consuming process. When dealing with parameter dependent problems, if this process
is to be repeated many times, with every change of parameter value, we need to seek alternatives
for solving the full problem over and over. For these reasons one tries to develop an approximate
model of lower complexity providing the solution to problem of interest within a prescribed error.
Such model we refer to as a reduced basis model.

An underlying assumption in application of reduced model techniques is that the solution
manifold can be well approximated by a linear space of low dimension. In the setting of this
chapter, this manifold consists of all controls (of minimal L2-norm) of the system (1.1) obtained
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through variation of the parameter. Their implementation generally follows the offline-online
paradigm. The purpose of the offline phase can be described as follows: given a Banach space X
and its compact subset K, find a low-dimensional subspace V ⊂ X such that V approximates K
fairly well. Once a reduced basis (of V ) is determined, the approximation of an arbitrary element
from K is calculated online as a linear combination of the reduced basis vectors. Normally, the cost
of the offline routine is much higher and it requires large computational and memory capacities,
but it can be considered as a pre-processing step that is performed only once.

The construction of the reduced basis mainly explores a proper orthogonal decomposition
(POD) or a greedy sampling procedure, or their combination (POD-greedy) in case of time-
dependent problems [18, 22]. Here we also refer the reader to [43, Chapter 12] for a general
introduction to reduced basis methods for parameter dependent control problems.

The former procedure consists of an explore-and-compress strategy, relying on a singular value
decomposition of numerous snapshots (vectors selected from K) and provide an optimal approxi-
mation space in the mean squared error sense. In the latter case the basis vectors coincide with
the snapshots themselves, carefully selected through some optimality strategy, which significantly
reduces the cost of the offline computation when compared to POD [22, 40]. In addition, the
greedy approach provides approximation rates comparable to the optimal ones, expressed through
Kolmogorov widths.

By u(Θ) = {uθ, θ ∈ Θ} we denote the control manifold consisting of all optimal controls associ-
ated to problem (1.1) + (3.1) as the parameter ranges over the whole set Θ. As explained in the
introduction, each such control can be uniquely determined by the relation

uθ = B∗
θ e

(T−t)A∗
θϕ1

θ,

where ϕ1
θ is the unique minimiser of the quadratic functional

Jθ(ϕ1) = 1

2
∫

T

0
∣B∗
θϕ(t)∣2dt − ⟨x1

θ, ϕ
1⟩ + ⟨x0

θ, ϕ(0)⟩, (3.2)

and ϕ is the solution to the adjoint system with datum at time T given by ϕ1.
Furthermore, this minimiser can be equivalently determined as the solution to the system

Λθϕ
1
θ = x1

θ − eTAθx0
θ, (3.3)

where Λθ is the controllability Gramian associated to (Aθ,Bθ). The last system is well posed due
to the assumed controllability property which implies that Λθ is a regular matrix. In particular, it
defines the mapping θ ∈ Θ ↦ ϕ1

θ ∈ RN , whose smoothness is transferred from the mappings of Aθ
and Bθ at all levels. In the sequel by ϕ1(Θ) ⊂ RN we denote the image of that mapping.

Having assumed these maps are Lipschitz continuous and the parameter θ ∈ Θ varies on a
compact set, both the set of all minimisers ϕ1(Θ), as well as the set of corresponding optimal
controls u(Θ) are compact sets. However, as the control manifold consists of time dependent func-
tions, while the minimisers ϕ1

θ are vectors from RN , we prefer to work in the latter framework and
to construct an approximating subspace for the set ϕ1(Θ). By using the one-to-one correspondence
between the minimisers ϕ1

θ and the associated controls uθ, this will in turn provide approximation
of the control manifold as well. For these reasons we formulate our problem as follows.

1. Construct a reduced basis Vn that approximates the manifold ϕ1(Θ) within the given preci-
sion δ.

2. For an arbitrary given parameter value θ ∈ Θ construct an approximate control of the form
u⋆θ = B∗

θ e
(T−t)A∗

θϕ1,⋆
θ , with ϕ1,⋆

θ ∈ Vn such that it steers the system (1.1) to the prescribed
target x1

θ as close as possible.
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The first part of the problem corresponds to the offline phase, while the second one should
enable efficient computation of an approximate control during the online procedure.

Of course, the problem is feasible due to the compactness of the parameter set Θ and the
continuous-dependence assumption of dynamics with respect to θ. However, the goal is to minimize
the number of basis vectors n and to obtain the most efficient approximation. The type of the
approximation error (uniform, mean square, . . . ) to be considered depends on the method selected
for the construction of reduced basis, and will be discussed in the next subsection.

In the subsection devoted to the online phase we shall see how to construct approximation ϕ1,⋆
θ

for a particular given parameter value, and discuss performance of the associated approximated
controls.

3.1 Selection of a reduced basis

When dealing with a continuous range of parameter values, in order to do any kind of numerics,
the first step requires discretization of the parameter set. From now on, by Θh we denote a finite
set of cardinality m = ∣Θh∣ obtained by intersecting a regular lattice with Θ with the property

∀θ ∈ Θ dist(θ,Θh) < h.

3.1.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition is the reduced basis method that provides an optimal approxi-
mation space in the root-mean-square (RMS) error sense. Beside their numerous successful appli-
cations in different areas, here we just refer to those related to the control theory ([7, Chapter 1]
and the references therein).

In general, for a finite set of vectors {y1, ..., ym} in RN , POD results in the n <m dimensional
space that minimizes the quantity

¿
ÁÁÀ 1

m
∑
i

dist(yi, Vn)2

over all n-dimensional subspaces Vn of the Span{y1, ..., ym}.
To construct the POD space one introduces the correlation matrix C = 1

m
Y ∗Y ∈ RN×N , where Y

is the matrix consisting of column vectors yi, i ∈ {1, . . . ,m}. Then the (orthogonal) POD basis Vn
consists of eigenvectors of C corresponding to its largest n eigenvalues λi (sorted in a decreasing
order), and it satisfies the following estimate

1

m
∑
i

dist(yi, Vn)2 =
N

∑
i=n+1

λi, (3.4)

where we sum the remaining eigenvalues of the correlation matrix.
Thus, the construction of the POD basis corresponds to the singular value decomposition (SVD)

of the matrix 1√
m
Y .

In the context of parameter dependent control problems, we formulate the corresponding algo-
rithm as follows.

The estimate (3.4) implies directly that the subspace Vn constructed by Algorithm 5 approxi-
mates the set ϕ1(Θh) = {ϕ1

θ ∣ θ ∈ Θh} with the RMS error less than δ/
√

2. In addition, the above
algorithm provides the mean square approximation over the whole range of parameter set Θ, i.e.,
one obtains an estimate on the expected value of dist(ϕ1

θ, Vn)2, where we assume that θ obeys
some probability distribution law.
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Algorithm 5 POD Control Algorithm

Initialize: Given precision δ > 0.
1: Choose discretization constant h ⩽ δ/(

√
2Lϕ), where Lϕ is the Lipschitz constant of the map-

ping θ ↦ ϕ1
θ.

2: Construct Y, the matrix consisting of column vectors ϕ1
i , i ∈ {1, . . . ,m}, associated to the

ordered values θ1, . . . , θm of Θh.
3: Perform SVD of 1√

m
Y . Denote by λi obtained singular values indexed in a decreasing order,

and by ξi corresponding left-singular vectors.
4: Denote by n the smallest integer satisfying ∑mi=n+1 λi < δ2/2
Return: The reduced POD subspace Vn is given by Span{ξ1, . . . , ξn}.

For simplicity let us assume that θ is uniformly distributed over the set Θ. Let us denote by
(Θi)i∈{1,...,m} a disjoint union of Θ consisting of equal measure sets centered around θi ∈ Θh. More
precisely we suppose Θi ⊆ B(θi, h) (where h is the discretization constant from Algorithm 5) and
∣Θi∣ = 1/m for every index i. Then

E(dist(ϕ1
θ, Vn)2) = 1

∣Θ∣ ∫Θ
dist(ϕ1

θ, Vn)2 dθ

⩽ 1

∣Θ∣ ∑i
∫

Θi
∣ϕ1
θ − ϕ1

i ∣2 dθ + 1

m
∑
i

dist(ϕ1
i , Vn)2.

(3.5)

By exploring the Lipschitz continuity of the mapping θ ↦ ϕ1
θ and the choice of the discretization

constant h it follows
∣ϕ1
θ − ϕ1

θi ∣
2 ⩽ Lϕ∣θ − θi∣2 ⩽ δ2/2.

Finally, combining the last estimate with the RMS error bound of the set ϕ1(Θh) we obtain

√
E(dist(ϕ1

θ, Vn)2) ⩽ δ. (3.6)

Remark 3.1. It should be noted that the Lipschitz constant Lϕ for a general system might not be
available in practice. However, as there exists an explicit expression for ϕθ (cf. (3.3)), Lϕ can be
bounded from above in terms of the Lipschitz constants of the mappings θ → (Aθ,Bθ,x0

θ,x
1
θ). Thus,

for specific examples, where the dependence of the system dynamics and data on the parameter is
given explicitly, one can calculate the latter constants, and use the upper bound for Lϕ in order
to estimate an optimal value of the discretization constant h.

In general, when we lack an estimate on Lϕ, Algorithm 5 still provides the approximation over
the discretized parameter set Θh, while the discretization constant h has to be chosen arbitrarily
small.

3.1.2 Greedy algorithm

One of the most popular methods for constructing reduced basis relies on the so called greedy
algorithms. These were successfully introduced and analysed in works of A. Patera and his col-
laborators two decades ago (cf. [49]) with the aim of solving parametric PDEs. Later they were
applied to optimal control problems [20, 23, 24], while the application to controllability of linear
systems was introduced in [31].

The method provides a linear subspace of a relatively small dimension that approximates a
compact subset K in a Banach space X with a given precision δ. A general greedy algorithm is
given in Algorithm 6 below.
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Algorithm 6 (Weak) Greedy Algorithm

Initialize: Fix a constant γ ∈ (0,1] and precision δ > 0.
1: Choose x1 ∈ K such that ∥x1∥X ⩾ γmax

x∈K
∥x∥X .

2: V1 = Span{x1} and σ1(K) = max
x∈K

dist(x,V1).
3: k ← 1.
4: while σk(K) ⩾ δ do
5: Choose xk+1 such that dist(xk+1, Vk) ⩾ γ σk(K).
6: k ← k + 1.
7: Compute

σk(K) ∶= max
x∈K

dist(x,Vk). (3.7)

8: end while
Return: Vn = Span{x1, . . . , xn}, where n is a number of chosen snapshots, that uniformly ap-

proximates set K with precision δ.

The choice of the constant γ equal to one corresponds to the pure greedy algorithm. Reduction
of its value simplify implementation of the algorithm as the optimization problem (3.7) does not
have to be solved fully but only up to some fixed percentage extent. On the other side, as we shall
see below, the relaxation of the pure greedy algorithm to a weak greedy (with γ ∈ (0,1)) does not
significantly reduce the efficiency of the algorithm.

One of great advantages of greedy algorithms is their approximation efficiency, which is com-
parable with the optimal ones expressed through Kolmogorov widths. The latter is defined as

dn(K) ∶= inf
dimY =n

sup
x∈K

inf
y∈Y

∥x − y∥X ,

and they measure how well K can be approximated by a subspace in X of a fixed dimension n.
The following theorem (taken from [13, Corollary 3.3]) gives a comparison of σn(K) with dn(K).

Theorem 3.2. For the weak greedy algorithm with constant γ ∈ (0,1] in a Hilbert space X, we
have the following: If the compact set K is such that, for some α > 0 and C0 > 0

dn(K) ⩽ C0n
−α (n ∈ N),

then
σn(K) ⩽ C1n

−α (n ∈ N),

where C1 ∶= γ−225α+1C0.

This theorem implies that in the case of a polynomial decay the (weak) greedy algorithms
perform with the same rate as Kolmogorov widths. A similar estimate holds for subexponential
decays as well (cf. [13]). Note that the weak greedy constant γ does not influence decay rates, as
it enters the above estimate only through the multiplicative constant C1.

However, in practical implementations, the compact set K to be approximated is often unknown
(e.g. it consists of solutions to parameter dependent problems, as in our case) which poses a
significant challenge when dealing with the maximisation problem (3.7). Actually, it requires to
evaluate the distance of a vector from the constructed reduced space without knowing that vector!
Of course, computing all the elements of the set K is not a remedy, as it would require to solve a
problem for each parameter value what is exactly we want to avoid. In order to solve this issue,
instead of calculating the exact distance appearing in (3.7), one use some surrogate distance which
is easier to compute.
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The next theorem demonstrates that such replacement still provides a greedy approximation
of the set K and it only affects value of the weak greedy constant γ.

Theorem 3.3. Let f ∶X ×X ↦ R be a function satisfying

c ∥x − y∥X ⩽ f(x, y) ⩽ C ∥x − y∥X (x, y ∈ K), (3.8)

for some constants C, c > 0. Perform the Algorithm 6 with the distance dist(x,Vk) replaced by
infy∈Vk f(x, y). Then the such modified algorithm provides a weak greedy search of the set K with
the weak greedy constant γ′ = γc/C.

Proof. In order to demonstrate the theorem it is enough to show that the vectors selected by the
modified algorithm in each step satisfy

dist(xk+1, Vk) ⩾ γ′ max
x∈K

dist(x,Vk).

To this end note that for any x ∈ K we have

cdist(x,Vk) ⩽ inf
y∈Vk

f(x, y)

⩽ 1

γ
inf
y∈Vk

f(xk+1, y) ⩽
C

γ
dist(xk+1, Vk),

(3.9)

where the middle inequality results from the selection criteria of the modified algorithm for the
next reduced basis vector xk+1, while the remaining two from the equivalence relation (3.8).

Therefore, for practical implementations of (weak) greedy algorithms it is essential to detect a
surrogate distance which is easy to compute even without knowing the vectors itself.

In the context of control problems for parameter dependent systems, the set to be approximated
is the manifold ϕ1(Θ) that consists of all minimisers of a functional Jθ given by (3.2) as the
parameter ranges over the compact set Θ. Of course, we do not have these minimisers at our
disposal, thus we need to find a surrogate that will enable implementation of the greedy algorithm.

Let us suppose that ϕ1
1 is a reduced basis vector selected through the weak greedy search

of ϕ1(Θ). In order to estimate distance of other vectors from the space spanned by ϕ1
1, note that

for any θ ∈ Θ we have
Λ−∥ϕ1

θ − ϕ1
1∥ ⩽ ∥Λθϕ1

θ −Λθϕ
1
1∥ ⩽ Λ+∥ϕ1

1 − ϕ1
1∥, (3.10)

where the uniform coercive and boundedness constants on the Gramian operators (i.e. Λ−I ⩽ Λθ ⩽
Λ+I for every θ ∈ Θ) follow from the compactness of the set Θ and the regularity of mappings
θ ↦ Aθ,Bθ.

Although this note provides ∥Λθϕ1
θ − Λθϕ

1
1∥ as a surrogate distance of ϕ1

θ from ϕ1
1, it will

turn useful only if we can calculate it (much) easier than the exact one. However, by using
characterisation of the optimal adjoint datum (3.3) we know that Λθϕ

1
1 can be expressed in terms

of the corresponding initial and target data, which are prescribed in advance, i.e., we have them at
our disposal. As for the other term entering the expression of the surrogate distance, it represents
the final state of the system corresponding to the parameter value θ run by a control of the form
u = B∗

θϕ, where ϕ is the solution of the adjoint system with datum at time T equal to ϕ1
1. In

other worlds, Λθϕ
1
1 is a residual obtained by replacing the optimal adjoint datum ϕ1

θ by a reduced
basis vector (Figure 3). Its calculation thus requires solving consecutively the adjoint plus primal
system, which of course is much cheaper than calculating ϕ1

θ.
Based on the above discussion we propose the greedy control algorithm (Algorithm 7) as follows,

see [31].
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Algorithm 7 Greedy Control Algorithm

Initialize: Given precision δ > 0.
1: Choose discretization constant h ⩽ δ/2Lϕ, where Lϕ is the Lipschitz constant of the mapping
θ ↦ ϕ1

θ.

2: if max
θ∈Θh

∣x1
θ − eTAθx0

θ ∣ <
δ

2
Λ− then

3: Stop the algorithm.
4: end if
5: Select the first snapshot ϕ1

1 as the minimiser of functional Jθ corresponding to θ = θ1, where
θ1 = argmax

θ∈Θh
∣x1
θ − eTAθx0

θ ∣.

6: Compute Λθϕ
1
1 and set ΛθΦ

1
1 = Span{Λθϕ

1
1}, and compute σ1 = max

θ∈Θh
dist(x1

θ − eTAθx0
θ,ΛθΦ

1
1).

7: k ← 1.
8: while σk ⩾ δ

2
Λ− do

9: Set θk+1 ∶= argmax
θ∈Θh

dist(x1
θ − eTAθx0

θ,ΛθΦ
1
k).

10: k ← k + 1.
11: Select ϕ1

k as the minimiser of Jθ corresponding to θ = θk.
12: Compute Λθϕ

1
k and set ΛθΦ

1
k = Span{Λθϕ

1
1, . . . ,Λθϕ

1
k}, and compute

σk ∶= max
θ∈Θh

dist(x1
θ − eTAθx0

θ,ΛθΦ
1
k) (3.11)

13: end while
Return: The approximating space Φ1

n = Span{ϕ1
1, . . . , ϕ

1
n}, where n is a number of chosen snap-

shots (specially Φ1
0 = {0} for n = 0).

Obviously, the set {ϕ1
1, . . . , ϕ

1
n} is linearly independent due to the selection criteria (3.11).

Furthermore, as it consisis of vectors in RN , the algorithm stops after, at most, n ⩽ N iterations,
and it fulfils the requirements of the weak greedy theory. More precisely Theorem 3.4 holds.

Theorem 3.4 (Theorem 4.1 of [31]). Algorithm 7 provides a week greedy approximation of the
manifold ϕ1(Θ) with the constant γ = Λ−/(2Λ+) and the uniform approximation error less than δ.

Comparing the last algorithm with the POD method, we note that the first requires solving
the control problem only for n chosen parameter values, for which the corresponding minimisers
of a functional Jθ given by (3.2) constitute the reduced basis. On the other hand, the latter
method requires the optimization problem for (3.2) to be solved for every parameter value from
the training set Θh, and eventually extracts a small number of most important directions out of
collected solutions. Although the greedy selection, in addition to construction of the reduced basis
vectors, requires computation of residual in each iteration for all parameter values from Θh, its
total cost is still cheaper than the cost of calculating ϕ1

θ for all values of Θh (a precise estimate
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on its computational cost can be found in [31]), which makes the greedy control strategy more
efficient than the POD one.

Of course, existence of an affordable surrogate (given by (3.10)) plays an essential role in the
above analysis. For general problems, that might lack an appropriate surrogate, the choice of an
optimal method is not straightforward, and depends on particular characteristics of each problem
of interest.

Remark 3.5. Theorem 3.4 remains valid if instead of Lipschitz continuity we merely assume
continuous dependence with respect to the parameter. Namely, as Θ is a compact set, the assump-
tion directly implies uniform continuity, which suffices for the proof of Theorem 3.4. The only
difference in that case is that the discretization constant h can not be given explicitly in terms
of precision δ, unlike it was given in Algorithm 7. This is also important in the case when the
Lipschitz constant Lϕ might not be available (cf. Remark 3.1).

3.2 The online procedure

In this subsection, given any parameter value θ ∈ Θ, we aim to build an approximation ϕ1,⋆
θ of

an optimal adjoint datum by selecting an appropriate linear combination of reduced basis vectors.
The selection criteria is prescribed by the Problem formulation, where the ultimate goal is to reach
the prescribed target x1

θ as close as possible. Hereby we assume that we have at our disposal a
reduced basis space Vn = [ϕ1

1, . . . , ϕ
1
n] constructed in the offline phase by some of the methods

explained above.
The state of the system at final time T driven by the approximate control determined by ϕ1,⋆

θ

is given by
x⋆θ(T ) = Λθϕ

1,⋆
θ + eTAθx0

θ,

By exploring relation (3.3) we see that its distance from the prescribed target equals

∣x1
θ − x⋆θ(T )∣ = ∣Λθ(ϕ1

θ − ϕ
1,⋆
θ )∣,

and it reaches the minimal value if ϕ1,⋆
θ is selected as the solution to the problem

ϕ1,⋆
θ = argmin

ϕ1∈Vn
∥Λθ(ϕ1

θ − ϕ1)∥ = argmin
ϕ1∈Vn

∥(x1
θ − eTAθx0

θ) −Λθϕ
1∥. (3.12)

This choice of ϕ1,⋆
θ corresponds to the minimization of the functional Jθ, determined by (3.2), over

the space Vn.
The minimum in (3.12) is obtained if Λθϕ

1,⋆
θ equals the projection of x1

θ − eTAθx0
θ to the space

Span{Λθϕ
1
1, . . . ,Λθϕ

1
n}. As Λθ is a linear operator, the coefficients of that projection in the latter

basis will also provide the optimal choice of ϕ1,⋆
θ .

For these reasons we formulate the online algorithm as follows (see [31]).

Remark 3.6. Note that for a parameter value θ that belongs to the discretization set Θh used in
the construction of the reduced basis space Vn some steps of the last algorithm can be skipped as
the corresponding terms have already been calculated within the offline part of the algorithm. In
particular, steps 1-3 in the case of a greedy selection of Vn, while for θ ∈ Θh the whole algorithm
turns superfluous if the POD method was used in the offline phase. As explained above, this is
due to the specific characteristic of the latter approach that first explores the solution over a large
number parameter, and subsequently compress relevant information out of it in order to construct
the reduced basis.
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Algorithm 8 Control algorithm-online part

Initialize: A parameter value θ ∈ Θ is given.
1: Calculate Λθϕ

1
θ = x1

θ − eTAθx0
θ.

2: For i ∈ {1, . . . , n}, calculate Λθϕ
1
i = e(T−t)AθBu⋆i , where u⋆i = B∗

θ e
(T−t)A∗

θϕ1
i .

3: Project Λθϕ
1
θ to Span{Λθϕ

1
1, . . . ,Λθϕ

1
n}. Denote the projection by PΛθ,n(Λθϕ1

θ).
4: Solve the system PΛθ,n(Λθϕ1

θ) = ∑i αiΛθϕ1
i for αi, i ∈ {1, . . . , n}.

Return: The approximate control u⋆θ given by

u⋆θ = ∑
i

αiu
⋆
i ,

where u⋆i are already determined within Step 2.

Algorithm 8 differs from the standard online procedure used in reduced basis methods (cf. [22]).
The latter choose the approximate solution to the problem as its Galerkin projection to the selected
reduced basis. In particular, in our setting this would determine an approximate adjoint datum
as Galerkin projection to Span{ϕ1

1, . . . , ϕ
1
n} considered as solution to Λθϕ

1
θ = x1

θ − eTAθx0
θ. More

precisely it would result in a vector ϕ1,GAL
θ = ∑αGAL

i ϕ1
i , where the coefficients αGAL

i are chosen as
solution to the system

∑
i

⟨Λθϕ1
i , ϕ

1
j ⟩αGAL

i = ⟨x1
θ − eTAθx0

θ, ϕ
1
j ⟩.

On the other hand, the coefficients αi obtained by Algorithm 8 are determined by orthogonal
projection of x1

θ − eTAθx0
θ to the Span{Λθϕ

1
1, . . . ,Λθϕ

1
n}, and they satisfy the system

∑
i

⟨Λθϕ1
i ,Λθϕ

1
j ⟩αi = ⟨x1

θ − eTAθx0
θ,Λθϕ

1
j ⟩.

The reason for specific design of the online control algorithm lies in the particular goal of our
problem – that is to steer the system to the prescribed target as close as possible, and the proposed
algorithm ensures the best control performance.

Finally, the precise estimates on the deviation of the system from the target follows from
estimates on the reduced basis approximation developed through the online phase. Indeed, as ϕ1,⋆

θ

is the solution to the minimization problem (3.12) it follows

∣x1
θ − x⋆θ(T )∣ = ∣Λθ(ϕ1

θ − ϕ
1,⋆
θ )∣

⩽ ∣Λθ(ϕ1
θ − Pnϕ1

θ)∣ ⩽ Λ+∣(ϕ1
θ − Pnϕ1

θ)∣,
(3.13)

where Pn denotes the projection to the reduced basis space Vn, while Λ+ is a positive constant
satisfying Λθ ⩽ Λ+I for every θ ∈ Θ. Note that the finitude of Λ+ follows from the assumed Lipschitz
dependence on the parameter and compactness of the set Θ.

For these reasons, the estimates obtained in the offline procedure on the approximation of
the manifold ϕ1(Θ) by the reduced basis transfer to the online phase. In particular, taking into
account (3.6), for the POD selection we obtain the RMS bound

√
E(∣x1

θ − x⋆θ(T )∣2) ⩽ Λ+δ.

Similarly, the uniform estimate obtained by the greedy procedure provides

∣x1
θ − x⋆θ(T )∣ ⩽ Λ+δ (θ ∈ Θ).

The last two estimates allows one to carefully design the whole process (including both the offline
and online phase) in order to ensure a desired control performance. In particular, if we want to
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steer the system to the prescribed target within the precision ε, than the reduced basis error should
satisfy δ ⩽ ε/Λ+.

We finish this subsection by a numerical example.

Example 3.7. We consider the control system (1.1) with the governing matrix of the form Aθ =
θ(N + 1)2Ã, where

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0
0 1 −2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −2 1
0 0 0 ⋯ 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ RN×N . (3.14)

The control operator is assumed to be of the parameter-independent form

B = (0, . . . , 0, (N + 1)2)∗ ∈ RN .

Such system corresponds to the space-discretisation of the heat equation problem with N internal
grid points and the control on the right boundary:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tv − θ∂xxv = 0, (t, x) ∈ (0, T ) × (0,1),
v(t,0) = 0, t ∈ (0, T )
v(t,1) = uθ(t), t ∈ (0, T )
v(0, x) = v0(x), x ∈ (0,1).

(3.15)

The parameter θ represents the diffusion coefficient and is supposed to range within the set Θ =
[1,10]. We aim to control the system from the initial state v0(x) = sin(πx) to zero in time T = 1/10.

The offline greedy algorithm has been applied for the system of dimension N = 100 with the
stopping constant Λ−δ/2 = 10−4, and the uniform discretisation of Θ in k = 100 values. The
algorithm stops after only three iterations, choosing parameter values (out of 100 eligibles) in the
following order:

1.00, 1.18, 1.45 .

The corresponding three minimisers ϕ1
i constitute the reduced basis V3, and the approximate con-

trols corresponding to all other parameter values are constructed as their suitable linear combina-
tion during the online phase. A rather small number of snapshots required to obtain approximation
performance within the given accuracy is partially due to the strong dissipation effect of the heat
equation, providing an exponential solution decay even in the absence of any control.

Here we present the results of the online algorithm applied for a specific parameter value θ = π.
The corresponding approximate control is ploted on Figure 4a. It exhibits rather strong oscil-

lations when approaching the final time which is an intrinsic feature for the heat equation. The
elapsed time of the online procedure was 3.58 seconds only, compared to 286 seconds required to
construct the optimal exact control. This huge difference is due to a rather small dimension of the
reduced basis, and it reconfirms computational efficiency of the greedy approach when compared
to the standard one.

Evolution of the solution, presented by a 3-D plot is given by Figure 4b. The system is driven
to the zero state, as required, within the error ∣x(T )∣ = 1 ⋅ 10−6.

3.3 Other approaches

Throughout this section we have dealt with a problem of constructing a reduced basis of the
set ϕ1(Θ) of all minimisers of the functional Jθ, given by (3.2), as θ ranges over the compact
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Figure 4: Evolution of the approximate control (a) and of the solution to the semi-discretised
problem (3.15) governed by the approximate control u⋆θ (b) for θ = π.

set Θ. By exploring the one-to-one correspondence between the minimisers ϕ1
θ and the associated

optimal controls uθ such approach enables rapid approximation of the latter during the online
stage.

Of course, there are other methods at disposal by which one can construct (approximatively) a
control function steering the system of interest under particular circumstances, determined by the
exact realisation of the parameter, to a prescribed target.

Construction of reduced basis for u(Θ). As an example, instead of dealing with the set ϕ1(Θ),
one can apply the reduced basis approach to the control manifold directly. A suggested method in
that case would rely on a POD-Greedy strategy. This one is explored in case of time-dependent
problems and it successfully combines two, above defined procedures (e.g. [18]). In particular, each
greedy step is accompanied by a corresponding POD process. The first selects a snapshot, which is
a solution to time dependent problem for a specific parameter value, while the latter selects a single
vector that approximates in the optimal manner the values of the snapshot evaluated at different
time instants. It is important to mention that the method preserves convergences rates of greedy
algorithms. More precisely, it maintains algebraic convergence rates of the Kolmogorov n-widths
with the same exponent, and preserves their exponential decay with a slightly lower exponent (cf.
[18, Section 4.2]).

The POD-Greedy approach has been applied to evolutional equations and parabolic control
problems (e.g. [22, 23]), but, as far as we know, it has not yet been developed in the context of
controllability.
Construction of reduced basis for Λ(Θ). The analysis and methods discussed so far apply
to control problems where the initial and target data are prescribed a priori, either depending on
the parameters or not. In particular, the above presented algorithms provide a reduced basis for a
particular data selection, and each change of it requires running the algorithm from scratch again.

From the point of view of applications it would be therefor interesting to develop efficient
methods for control of parameter dependent systems that are robust with respect to these data.
This requires construction of a reduced basis for the approximation of the Gramians Λθ, within
the space of bounded linear operators.

A development of appropriate greedy procedure in that case, as explained above, requires
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identification of a feasible and easy executable surrogate. The key point in that direction is that
Gramian operators satisfy a linear matrix relation: a differential Lyapunov equation in a case of a
finite time Gramian, or an algebraic Lyapunov one for an infinite time horizon. In particular, the
infinite time Gramian associated to the system (1.1) is the solution to

AθΛθ +ΛθA
∗
θ = −BθB∗

θ (3.16)

and is given by Λθ = ∫
∞

0 etAθBθB
∗
θ e
tA∗
θ dt.

In order for the last integral to be convergent, one has to assume that Aθ is an exponentially
stable operator for every θ ∈ Θ, thereby restricting the analysis to dissipative systems.

As for a surrogate distance of two Gramians associated to different parameters θ1, θ2, one
attempts to follow the lines of § 3.1.2 and estimate it by a residual obtained by plugging one
operator into the equation satisfied by the other one:

c∥Λθ1 −Λθ2∥ ⩽ ∥LAθ1 (Λθ1 −Λθ2)∥ ⩽ C∥Λθ1 −Λθ2∥ .

where LA stands for the Lyapunov operator given by LA(P ) = AP + PA∗.
The above inequalities are easy to obtain in case of finite dimensional systems (cf. [46]), while

appropriate result in case of an unbounded operator Aθ requires subtle analysis and development
of necessary estimates in appropriate functional spaces [29].

4 Conclusion

In this chapter we have presented three approaches for the computation of a control for parameter
dependent system.

In the first approach, averaged controllability, we only build a control which steers the average
of the system with respect to the parameter. This control is independent of the parameter and can
be easily obtained. However, for a given realisation of the parameter, there is no guarantee that
the system solution will be close to the target.

In the second approach, ensemble controllability, we build a single, parameter independent
control such that all the realisations of the parameter dependent system approximately reach the
target. This is the ideal situation. However, not all systems are ensemble controllable, and the
numerical computation of the control involves to solve a system of high dimension which might be
ill conditioned.

Finally, the last approach is to compute a control for each realisation of the parameter value.
This approach is time consuming if we have to repeat the control construction for every realisation
of the parameter. For this reason, we proposed a reduced basis approach, allowing a fast com-
putation of an approximate control what ever the realisation of the parameter is. This approach
implies an offline part consisting in building an adequate reduced basis.

For all these approaches, we have provided corresponding theoretical background (including
convergence results), numerical algorithms and illustrative examples.

Some specific comments and open question are listed below.
Robust control. Roughly speaking, the aim of robust control is to build a feedback controller K,
independent of the parameter, such that the origin is a stable point for the system ẋθ = (Aθ +
BθK)xθ, for every realisation of the parameter θ. This approach has been proposed in many text
books and has not been developed in this chapter. We then refer the interested reader to books
[2, 10, 15, 50].
Averaged controllability. In this chapter, we illustrated averaged controllability with an inter-
polation method based on the mid-point rule. However, if the set of parameters is a compact in Rd,
and if we have enough regularity with respect to the parameter, then any numerical integration
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will be fine. When the parameter set is unbounded, the major difficulty is to find or develop a
convergent method for the numerical integration on this parameter set.
Ensemble controllability. In this chapter, we only consider the uniform ensemble controllability.
As far as we know, there do not exist numerical approaches for finding a control for Lq-ensemble
controllability (for 1 ⩽ q < ∞), without assuming that the system is L∞-ensemble controllable.

Let us also point out that up to our best knowledge, there do not exist ensemble controllability
results for PDE systems (with an infinite set of parameters). In regard to the sufficient conditions
given in Proposition 2.14, checking the assumptions on the spectral map is a real challenge due to
the infinite number of eigenvalues for PDE operators.
Reduced basis for solutions to differential Lyapunov equations. In Section 3.3 we have
described the procedure of obtaining a greedy approximation to solutions of parameter dependent,
algebraic Lyapunov equations. It would be interesting to develop a similar algorithm for their
differential counterparts. As finite time Gramians are solutions to the latter, this would in turn
allow application to control problems in finite time horizon, and this for general systems, either of
dissipative nature or not. However, it remains to check the efficiency of such approach, as potential
residuals are a priory time-dependent which might enlarge the computational cost and the required
memory capacities.
Model order reduction. For all the methods proposed in this paper, the control is obtained by
solving the primal and dual systems (of potentially large dimension). In particular, when applying
a reduced basis approach, we repeat this in the offline phase for each value from the discretized
parameter set, which makes its computational cost very high.

In order to bypass that problem, it would be useful to implement model reduction techniques
which enable one to substitute a high dimensional system by an approximate one of a smaller
dimension. Recent overviews of model order reduction methods for parametric (time) dependent
problems is given in [7, 8, Chapter 9] (cf. also the other chapters of the same book). These have
been successfully implemented for elliptic and parabolic optimal control problems [24, 23], but, as
far as we know, they have not been developed in the context of controllability. Preliminary work
in that direction is presented in [17], but rigorous error bounds still remain open.
Neural networks. A data-driven approach based on combination of reduced basis (RB) methods
and machine learning has been the object of intense investigation during the last years. Although
there is a vast literature on application of neural networks in mathematics, the available references
significantly reduce when it comes to the issue of solving parameter dependent problems. In [21, 45]
non-intrusive RB methods that rely on neural networks were successfully applied for computing
solutions to parametric PDEs.

It would be interesting to develop a similar approach with the aim of efficiently treating pa-
rameter dependent control problems. The reduced basis algorithms were successfully developed
in this context during the last decade, with the offline phase mainly exploring POD or a greedy
sampling procedure. However, the cost of the corresponding online phase might still appear high,
as the computation of projection (of solution to reduced basis) relies on the full-order model. An
alternative approach would employ neural networks and train them to accurately predict the co-
efficients of solutions in reduced basis, with a computational cost independent of the dimension of
the full-order model.

In addition, similar approach can be used in the context of simultaneous or ensemble con-
trollability. Practical applications would include power and gas networks where recent attempts
have been made at developing optimal control policies by using machine learning techniques in the
offline phase [42].
PDEs. In this chapter we have restricted the exposition to finite dimensional linear systems.
However, it is important to stress that a number of positive control results has been obtained in
the context of parameter dependent PDEs. This is in particular the case for averaged controllability
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and reduced basis approach. Note that all the methods proposed in this chapter will work well
for discretized PDEs. However, some finer numerical analysis ensuring appropriate convergence
results in that case is still missing. More precisely, one has to design the discretization of the PDE
in terms of the discretization of the parameter set (or inversely), so that convergence of the method
is ensured when both discretization constants go to 0. This remains as a challenging open problem
for future investigations.
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