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Monte-Carlo simulations, fully constrained by experimental parameters, are found to agree well
with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size poly-
dispersity over a broad range of salt concentrations, cs, and volume fractions, φ. Upon increasing φ,
the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc)
before they melt into a glass forming liquid. The surprising stability of the bcc solid at high φ and
cs is explained by the interaction (charge) polydispersity and vibrational entropy.

How do polydisperse particles pack and order? This
basic question concerns diverse systems, including gran-
ular beads, micro-emulsions, micro-gels, macromolecules
and solid nanoparticles and is, thus, largely debated. For
a fluid of hard-sphere (HS) particles, Pusey et al. [1, 2]
proposed a critical value of polydispersity (δ), above
which particles would not crystallize. This concept of
a terminal polydispersity was first based on experimen-
tal observations, and later supported also by numerical
simulations [3, 4]. However, using simulations of HS sys-
tems, Kofke et al. [5] found that the concept of a terminal
polydispersity should only apply to a solid phase, rather
than the entire system of particles. More precisely, that
a stable crystalline phase whose constituent components
exceeded a polydispersity of 5.7% could not be formed
from a fluid phase. Questioning the ultimate fate of an
amorphous solid of high δ, they proposed that fractiona-
tion should enable an HS fluid of arbitrary polydispersity
to precipitate in a fcc solid phase in coexistence with a
fluid phase. Sollich et al. [6, 7] further theorized that,
when compressed, a relatively polydisperse HS system
should crystallize into a myriad of coexisting fcc crys-
talline phases each having a distinct size distribution and
a narrower δ than the mother distribution, as in Fig. 1(a).

Our recent experiments [8] on dispersions of charged
hard spheres (CS) with a broad and continuous size poly-
dispersity (δ = 14%) empirically demonstrated the case
of the fractionation of a colloidal fluid into multiple coex-
isting phases. Interestingly, this crystallization turns out
to be more complex than that theorized by Sollich et al.
for HS. Indeed, as in Fig. 1(b), the CS were observed to
coexist in a fluid phase, a bcc lattice and a Laves MgZn2
superlattice. The latter had been previously known only
from binary distributions of particles [10–12]. Matching
lattice simulations can also reproduce the experimental
findings, including the Laves phase [8, 13]. Very recent
simulations [9, 14, 15] with polydisperse HS of δ > 6%
show a similar, or even greater, level of complexity and
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FIG. 1. Colloidal crystallisation in a polydisperse system can
lead to: (a) A set of distinct crystals of the same structure
(e.g. fcc) and narrow monomodal size distributions, which
together span the available range of particle sizes [6]; (b)
More complex phases such as AB2 [8] or AB13 [9] structures,
which utilise a bimodal subset of particles. These may coexist
with simpler phases (e.g. as above, bcc [8]); (c) The appear-
ance of crystals of different structures (e.g. bcc, fcc, hcp) and
monomodal size distributions, as reported in this paper. In
all sketches the shaded area shows the parent particle size dis-
tribution while the various open curves describe the particles
found in any specific crystal structure and site.

thus indicate that our findings with CS are representative
of a more general rule: polydispersity enables complex
crystal formation. In particular, Frank-Kasper phases, as
well as various Laves AB2 and AB13 phases were found
in simulations of HS of δ from 6% to 24% and at high
packing fractions (φ). These results are also in line with
the earlier simulations of Fernandez el al. [16], of neutral
soft spheres, even though the exact natures of the crystal
phases obtained there were not identified. On the other
hand, the coexistence of multiple crystal phases of the
same symmetry, but different lattice constants, has only
been observed in systems of plate-like particles [17].
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FIG. 2. As the dispersion is concentrated, colloidal crystals
appear. The scattering intensities, I, of the spectra shown
here, for cs = 5 mM, demonstrate the typical sequence of
(a) fcc (φ = 19%), (b) a mixture of fcc and bcc (φ = 20%)
and (c) bcc (φ = 21%) crystals, as φ increases. A broad
liquid peak is present in all spectra, and the most prominent
crystal peaks are typically at least twice as intense as this
liquid background. Additionally, a much weaker peak is often
visible at lower q, consistent with an hcp structure of the same
particle density, or stacking faults in an fcc lattice.

Here, we demonstrate that even with a moderate size
polydispersity CS systems can show a complex phase be-
havior. This is achieved on a similar CS system to that
in [8] but with a moderate size dispersity (9%). The mag-
nitude and polydispersity of the charge, and thus of the
interaction polydispersity, are tuned with the salt concen-
tration, cs and pH of the bulk solution (see Supplemental
Material [18]). Using x-ray scattering methods the cs – φ
phase diagram is constructed. We observe that on gradu-
ally increasing the osmotic compression the CS fluid crys-
tallises and fractionates into coexisting phases of different
structures, i.e. bcc, fcc and hcp, as in Fig. 1(c). Unex-
pectedly, the stability region of the bcc crystals covers a
large area of the phase diagram, considerably more than
in the monodisperse case. The first appearance of the bcc
phase is always at a higher φ than that of fcc crystals, at
the same cs (i.e. opposite to their order of occurrence in
monodisperse CS [19]). Upon further compression, the
system becomes a glass forming liquid. To help explain
these results, we use Monte Carlo (MC) simulations of
our multi-component model (MCM) for charge regulat-
ing polydisperse colloids parametrized with independent
experimental data [20]. Allowing for only a slight adjust-
ment of δ, the simulations almost perfectly reproduce the
experimental phase diagram.

For the experiments, we used industrially produced,
nanometric and highly charged silica particles, dispersed
in water (Ludox TM50, Sigma-Aldrich). These were
cleaned and concentrated as detailed elsewhere [8, 21–
23]. Briefly, dispersions were filtered and dialysed against
aqueous NaCl solutions of various concentrations (from
0.5 to 50 mM) at pH 9 ± 0.5 (by addition of NaOH).
Next, they were slowly concentrated via the osmotic
stress method, by the addition of polyethylene glycol
(mw 35000, Sigma-Aldrich) outside the dialysis sack.
Samples were then taken and sealed in quartz capillary
tubes, on which small-angle x-ray scattering (SAXS) ex-
periments were performed at the ESRF, beamline ID02
[24]. The particle size distribution was measured in the
dilute limit (see the Supplemental Material [18]) to have
a mean size of R = 13.75±1 nm and a polydispersity of
δ = 9±1%, consistent with prior observations [25]. Over
a range of concentrations the scattering spectra showed
sharp peaks characteristic of fcc and bcc crystal phases,
as shown in Fig. 2. A weak peak representing a minority
hcp phase (or evidence of stacking faults [26]) was fre-
quently seen alongside either crystal phase. Additional
characterisation of the liquid and glass phases is given in
the Supplemental Material [18].

The experimental phase diagram in the cs – φ plane is
given in Fig. 3(a), and represents the phases that have
nucleated and are experimentally stable over days-to-
weeks. Whatever the background salinity, a fluid region
is observed for low φ followed by a region with crystal
formation at intermediate φ, which ends in a re-entrant
amorphous phase at high φ. The latter behaves macro-
scopically as a solid (i.e. retains its shape as a soft gel
or paste). As cs is increased, the first appearance of
crystals shifts to higher φ, in response to the screening
of the electrostatic interactions. The same is true for
the re-entrant melting transition. Both observations are
consistent with phase diagrams of other experimental CS
systems although at much lower cs, (e.g. [27, 28]). The
predominant ordered phases appearing are bcc and fcc
crystals, also known from monodisperse CS systems (al-
though the hcp phase is not typically seen there, other
than in shear-ordered samples [29]). However, the sta-
bility region of the bcc phase is observed at higher φ
than the fcc phase, for all screening lengths studied (i.e.
all cs). This was also the case where we made a more
continuous probe across φ as assessed by interdiffusion
experiments (see the Supplemental Material [18] for de-
tails). This phase behavior contrasts strongly with that
of monodisperse particles, where a bcc-fcc transition with
increasing φ (rather than the fcc-bcc transition seen here)
is invariably observed [27, 28]. Essentially, this demon-
strates that even a moderate polydispersity can have a
complex influence on crystal stability, and modify the
relative stability of various phases.

Although predicted to occur for soft colloids [30, 31] an
inversion of the stability regions of the bcc and fcc phases
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FIG. 3. Phase diagram in the cs −φ plane of the TM50 silica
dispersion at pH 9 as obtained from (a) SAXS analysis of
dialysed samples and (b) MC simulations of the MCM. For
clarity, the hcp phase is not represented. The shaded areas
of (a,b) delimit the region where crystals are found in the
simulations, and demonstrate the good correspondence with
experiments.

has rarely been observed. To our knowledge, it has only
been reported for soft spheres [32]. The possibility that
polydispersity could help stabilise the bcc phase in CS
systems was conjectured by some of us, based on an en-
ergetic argument which shows that the bcc structure is
more tolerant to interaction polydispersity than the fcc
one [13]. This argument was made via lattice MC sim-
ulations in the Gibbs ensemble on a system with a pre-
supposed bcc/fcc coexistence of CS with δ = 15%. The
particles were found to be divided up between a narrow
monomodal distribution (fcc) and a bimodal one (bcc),
similar to the situation given in Fig 1(b). However, our
reanalysis of this model shows that it also predicts the
formation of a CsCl structure on the sites of the bcc phase
(i.e. alternating larger and smaller particles), which is
not compatible with our experimental findings (as addi-
tional scattering peaks would be present in this case).

Here we employed, instead, MC simulations for con-
tinuous systems at set density (NVT) or pressure (NPT)
which do not require any prior information on the phases
at equilibrium. They were performed at the experimental
cs and pH conditions in the framework of the MCM de-

FIG. 4. Simulation results (at pH 9) show: (a) agreement
of the simulated and measured equation of state (EoS) of the
TM50 silica dispersion at various ionic strengths; (b) the pre-
dicted variation of the phase composition with φ at cs = 5
mM; (c) and particle size distributions of the various crys-
talline phases in comparison with the parent size distribution
(dashed curve) for the model silica dispersion at φ = 20.5%,
cs = 5 mM.

tailed in Ref. [20], which includes the charge regulation of
the silica particles through the pH dependent ionization
of their surface active groups, Si−OH −−⇀↽−− Si−O−+H+.
A truncated and discretized Gaussian size distribution
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with the same R as measured was used, but with a some-
what lower polydispersity of δ = 7% (rather than 9%).
Simple particle translations combined with swap moves
[33] allow for efficiently sampling the phase space up to
high φ [34]. Simulations were run with N = 19 991 par-
ticles in a cubic box with periodic boundary conditions.
Up to several tens of million of MC cycles (each consisting
of N MC moves) for equilibration were used; production
runs lasted for 105 MC cycles. The local bond order pa-
rameters were used to analyze the obtained structures
[35], and further details of the analysis and simulation
are given in the Supplemental Material [18].

As shown in Fig. 3(b), a very good agreement
is achieved between the experimental and simulated
(MCM) phase diagrams. The same is true for the equa-
tion of state (EoS) of the TM50 silica dispersion in the
all range of cs and φ studied as seen in Fig 4(a) (exper-
imental data from Refs. [23, 36]). Not only is the in-
version of the stability regions of the bcc and fcc phases
well predicted, but also the position of the freezing tran-
sition matches with the experiments, although an exact
phase diagram would require a free energy calculation
not developed here (see the Supplemental Material for
discussion). In line with the experimental observations
[23], a re-entrant amorphous phase at high φ is found, in
which colloids present very weak diffusion.

The phase composition of the system upon compres-
sion at cs = 5 mM and an example of the size distri-
butions at the coexistence of the hcp/bcc/fcc phases are
shown in Fig 4(b,c). The freezing transition is found to
be first-order, and is characterized by both a disconti-
nuity in the EoS and an abrupt change in the liquid/fcc
phase composition at φ ≈ 16%, as in Fig 4(a). The
fcc-bcc phase transition is, on the other hand, found to
be much more progressive. Simulation snapshots at the
bcc/fcc/hcp phase coexistence show, instead, textures
characteristic of a micro-phase separation (for further de-
tail, see the Supplemental Material [18]).

The fcc-bcc phase transition is also characterized by a
small size fractionation, as in Fig 4(c), which tends to in-
crease with φ (see the Supplemental Material [18]). The
bcc phase is found to be more tolerant to polydispersity,
while incorporating a larger number of small particles
than the fcc structure. The particle distribution of the
bcc phase thus presents a larger δ and smaller R than
of the fcc phase. One consequence of this is that there
will be only a small difference in the calculated particle
number densities between both crystalline phases and the
bulk, less than 4%, with a slight tendency of the fcc phase
to be the densest. This is consistent with our experimen-
tal observations, although the difference in phase densi-
ties falls within the uncertainty of the measurements (see
the Supplemental Material [18]).

These results are in line with our energetic argument
mentioned earlier [13]. In other words, the interaction
polydispersity favors the formation of bcc crystals with a

larger particle distribution (or charge distribution), thus
being more tolerant to polydispersity, as compared to fcc
crystals. As φ is progressively increased, the fcc phase,
compared to the bcc phase, becomes less and less tolerant
to the charge polydispersity. Note that the latter is not
constant but increases with φ, see [20]. Consequently,
the fcc ordered phase progressively disappears in favor
of the bcc and fluid phases. Conversely, in the absence
of interaction polydispersity the system can, to a good
approximation, be reduced to that of point Yukawa par-
ticles [19]. In such a case, the charge of colloid i satisfies
the equality Z∗i exp(−κ∗Ri)/(1 + κ∗Ri) = C 6= 0 ∀ Ri,
where C is a constant (see the Supplemental Material
[18]). The inversion of the stability regions of the bcc
and fcc phases is then lost [37]. In this case also, the
stability region of the bcc phase is restricted to the very
diluted cs − φ domain only. In absence of charge (i.e.
C = 0), the bcc phase simply disappears, see e.g. the
recent work of Bommineni on polydisperse HS systems
[9]. All this further illustrates the importance of charge
dispersity in the inversion of the stability regions of the
bcc and fcc phases.

Obviously, the phase behavior observed in our exper-
iments and simulations is not only a consequence of the
system’s internal energy, but the result of the balance
between energy and entropy. In an attempt to eluci-
date the entropic contributions in the stabilization of the
bcc phase we further performed lattice simulations in the
Gibbs ensemble, as in Ref. [13], with the MCM of the
TM50 silica dispersion. As in the continuous simulations,
a small size fractionation is obtained. However, a CsCl
superlattice structure, instead of a bcc phase, is found
(see the Supplemental Material [18]). Recognizing that
lattice simulations only account for the mixing contribu-
tion to the entropy, one can deduce from this qualitative
difference that the bcc phase observed in our experiments
(and continuous simulations) is most probably stabilized
by vibrational entropy (the missing thermodynamic in-
gredient in lattice simulations). A large size fractionation
in distinct phases is, on the other hand, prevented by the
mixing entropy at this relatively small δ and range of φ.
When the size polydispersity is increased (see the Supple-
mental Material [18]), the mixing entropy takes over, and
a MgZn2 Laves phase in coexistence with a bcc phase is
predicted to occur in good agreement with our previous
experimental findings [8].

Not discussed so far is the striking agreement obtained
between the simulations and experiments on the position
of the re-entrant melting line. At a first sight, this would
suggest that the amorphous phase is stable. Prelimi-
nary results obtained well inside the amorphous region
with more advanced simulation techniques show, how-
ever, that it can crystallize. A close look at the EoS also
shows a sudden increase in the osmotic pressure. These
results, which will be developed elsewhere, strongly sug-
gest that it is a glass forming liquid. Still, we were
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unable to come with a reasonable explanation for the
troubling coincidence between our simulation and exper-
imental results on the (non-thermodynamic) re-entrant
melting transition.

To conclude, using a combined and detailed theoreti-
cal and experimental study of charged nano-colloids with
a moderate polydispersity, we provide evidence that the
packing of polydisperse particles into crystals is much
more diverse than initially thought, even for relatively
small polydispersities. In particular, the system is found
to separate into coexisting solid phases with a limited size
fractionation. Under compression, the system first solid-
ifies in compact lattice structures, fcc/hcp. Upon further
compression, the fcc phase dissolves progressively into
a less compact bcc structure, which proves to be more
tolerant to the interaction (charge) polydispersity. Our
simulations strongly suggest that the limited size frac-
tionation and the stabilization of the bcc phase are due to
the mixing and vibrational entropies, respectively. Com-
pressed even further, the colloidal crystals melt into an
amorphous phase, most probably a glass forming liquid.
The astonishingly good agreement obtained between our
experimental results and simulated predictions further
gives a strong support to the simulation methods em-
ployed and the parameter-free force field developed. We
anticipate that these tools should help in the finding of
new colloidal crystal phases and in providing a better un-
derstanding of colloidal glasses in CS systems. Still, the
exact phase boundaries and equilibrium phase behavior
of polydisperse CS, in particular at high densities, re-
main open questions which will require the development
of advanced simulation techniques to be tackled.
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