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Abstract
Some actions intended to adapt to climate changemaydomore harm than good, especiallywhen they
consume energy,making itmore difficult to shift to decarbonized energy, orwhen, inmeeting theneeds
of one groupof people, they increase the vulnerability of others.Heatwave riskprovides a typical example:
air conditioning (AC) equipmentmay trigger large energy consumption andworsenoutdoorheat stress.
Alternative adaptation strategies exist, but it is not clearwhether they canprevent themassive use ofAC.
Here,with an interdisciplinarymodeling platform, takingParis as a case study,we provide afirst
quantified analysis of the efficiencyof adaptation strategies (large scale urbangreening, building insulation
policy, and generalized behavioral changes inACuse) in reducing future potential ACneed.Wefind that
even ambitious strategies donot appear sufficient to totally replaceACand ensure thermal comfort,
under amedian climate change scenario. They can, however, reduceACenergyuse byhalf during heat
waves andcompensate for theheat released to theoutdoor environment.Our results show that adaptation
actions, implemented early,mayplay a key role if we are to remainon a low-carbonpathway.

1. Introduction

Changes in the environment can incite a society to take
actions that result in its becoming worse off; this has
been a cause of collapse of several ancient societies
[1–5]. Today, with climate change, such a maladapta-
tion risk has already been identified. In particular, it
can occur when adaptationmeasures consume energy,
making it more difficult to shift to decarbonized
energy, or when they improve conditions for part of
the society by degrading them for another, more
vulnerable part [5, 6–8]. Reliance on individual air
conditioning (AC) equipment to respond to heat wave
risk may be considered a typical example, for two
reasons. First, the associated energy demand can be
large [9–11]. Second, if AC systems release heat into
the street, as is most often the case, the outside air is
warmed and the heat wave worsens [12, 13]. Although

it is an efficient solution for households that can afford
it, AC makes the situation worse for households who
cannot or do not want to adopt it [14].

According to the fifth IPCC report, it is almost cer-
tain that the risk of heat waves will increase over most
land areas during the 21st century. Such an increase
has already been observed in recent years [15] and
constitutes one of the few cases where recent increases
in mortality have been directly attributed to man-
made climate change [16–22]. AC is a tool that is parti-
cularly efficient to reduce heat wave impacts on com-
fort and health, and is being used more and more
[23, 24]. It is therefore important to understand how
alternative adaptation options could be implemented
to complement or replace AC, and towhat extent.

A number of alternative adaptation actions have
been identified in the literature [25, 26]. At the scale of
individual buildings, for instance, several techniques
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aiming to insulate against outside heat have been pro-
posed and discussed [27–31]. Neighborhood scale or city
scale actions, such as creating parks andmaking different
urban planning choices (street orientation or building
density) can also help to decrease outside air temperature
[32–36]. However, the potential of a combination of
thesemeasures, applied at the scale of a whole city, is not
yet fully understood. It is especially true for large-scale
options, because direct experimentation is not feasible.
Due to inertia in the evolution of cities, several years or
even decades may be needed to enable significant chan-
ges in urban shape or building characteristics. The speed
of these evolutions is comparable to that of climate
change, and this forces us to make decisions before their
impacts canbeobserved.

Here, we use an interdisciplinary modeling platform
to analyze such measures, testing the extent to which
they could replace AC and provide, alone, thermal com-
fort to the urban population during future heat waves.
Our analysis focuses on Paris, a city that was strongly
affected by the 2003 heat wave (about 5000 casualties).
AC use by people living in the city is rare at present as, so
far, they seem to have relied mostly on solutions such as
fans, and temporary behavioral changes (drinking more
water, changing working hours, limiting physical activ-
ity, etc) to cope with extreme heat. However, following a
succession of hot summers, the number of AC installa-
tions in homes is rising sharply (13% of French house-
holds hadAC in 2016, compared to 5% in 2005) [37, 38].
Adaptation to heat waves is one of the key priorities of
the climate change adaptation plans for the city and for
the surrounding region [39, 40].

2.Data andmethods

2.1. Future heatwaves in Paris
We employed a future heat wave database developed
by Lemonsu et al [41] and already used by several

studies on heat wave risk in Paris (see section 4 of
supplementary information is available online at
stacks.iop.org/ERL/15/075006/mmedia) [42, 43].
This database implements a statistical method to
extract the probability of the occurrence of heat waves
in Paris, together with their characteristics (intensity
and duration), from 9 regional climate model projec-
tions under a median greenhouse gas emission
scenario.

Figure 1 presents results from this work. By the
end of the century, the frequency and intensity of heat
waves are projected to increase markedly. Whereas in
1960–1989, the periodwithwhich heat waves returned
in the Paris region was about 9 years, at the end of the
present century (2070–2099), one or two heat waves
can be expected every year. Heat wave durations will
also increase, from 5 to 8 d (interquartile range) in
1960–1989 to 6–12 d at the end of the 21st century.
Heat waves with exceptional durations (e.g. of 5
weeks) can also be found in the simulations for the end
of the century [41].

2.2.Modelling framework
To simulate the heat island effect and potential future
air temperature distribution in Paris during these heat
waves, and for different city development scenarios,
we use an integrated framework gathering together a
physically based urban climate model, a building
energy model and a land-use/transport interaction
model (see Masson et al 2014, Lemonsu et al 2015 and
Daniel et al 2016 for more information on this frame-
work) [42–44]. This modelling chain is run over a
100 km by 100 km grid (1 km resolution) centered on
the city of Paris.

The land-use/transport interaction model is
Nedum-2D, a simulation model of urban expansion
[45, 46]. Based on a demographic and a socio-eco-
nomic scenario, and on two scenarios about future

Figure 1.Cumulated number of heat wave (HW) days calculated per year over the control period (1960–1989) and two future periods
(2020–2049 and 2070–2099) for the 9 regional climatemodel projections. The size of the circles corresponds to themean intensity of
the heatwaves.
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urban land-use regulations, it simulates scenarios of
urban expansion and the distribution of the popula-
tion in the Paris urban area over the 21st century.
Here, as our reference scenario for urban develop-
ment, we use a scenario assuming that city growth,
from now until 2100, will follow current trends in
terms of density decrease, and that population growth
will be moderate (see supplementary information
section 2 for more information on the model and the
scenario).

The urban climatemodel is TEB-SURFEX (section
5 of supplementary information) [47]. It is a physical
urban weather model that simulates heat and water
exchanges between a city and the atmosphere. Taking
land cover and building characteristics across the Paris
urban area as inputs, it simulates the effect of the
urban heat island on air temperature and humidity in
the streets in the different scenarios. It is run at hourly
resolution.

Finally, TEB-SURFEX includes a building energy
model, based on Energy Plus, which simulates air
temperature inside buildings and energy use for AC
(section 5 of supplementary information) [44, 48, 49].
To obtain conservative estimates for AC consump-
tion, we use optimistic assumptions for the efficiency
of air conditioners. As limiting the use of low effi-
ciency AC equipment is now widely advocated (e.g. by
IEA orWorldbank) and as technical progress can con-
tinue, we decided to consider that everybody would be
using AC systems with an energy efficiency ratio
slightly higher than the best equipment available today
(energy efficiency ratio between 12 and 15, see supple-
mentary section 7.1).

Details of the models and the scenarios are pre-
sented in the supplementary information.

2.3. Consequence of heat on health and comfort
The consequences of heat on health and comfort can
be estimated using indexes such as the universal

thermal climate index (UTCI), which takes temper-
ature, humidity and sunlight exposure into account
[50]. Discomfort and impact on health differ widely
between individuals, but they are statistically observed,
generally, when this index becomes higher than 26 °C
(medium heat stress conditions), and become notably
more pronounced when this index rises beyond 32 °C
(high heat stress conditions) [51]. The impact on
health is especially related to the duration of the
exposure to heat, and we therefore measure heat wave
impacts by the duration, each heat wave day, spent
under high heat stress conditions, averaged over the
city population [52, 53].

3. Results

3.1. Air temperature in the streets and inside
buildings if noAC is used
Figure 2 is an example of the simulation maps that we
found. It shows simulated air temperature (at 2 m) in
the streets at night (at 4 a.m.), for a heat wave
corresponding to the average conditions that occurred
during the 2003 heat wave, repeated over 9 d, and in
our reference scenario for urban development in 2100.
In this simulation, it is assumed that no AC is used in
the city.

This map presents a simulation for a given heat
wave and similar maps were simulated for all the dif-
ferent heat waves that we extracted from the climate
projections. When averaging over these future heat
waves, considering their probability of occurrence at
the end of the century, we find that, in the shade in the
streets, almost 15 h of each heat wave day are expected
to be spent under high heat stress conditions (see sup-
plementary section 9 for all the results). We also find
that, if no AC at all is used, the result inside buildings is
almost 7.5 h per day under high heat stress conditions.

Figure 2.Example of a simulationmap . Themap represents air temperature in the streets (at 2m) at 4 a.m., after 9 d of a heat wave
similar to that of 2003 (HW38), if noAC is used. This temperaturemapwas computed for a projection ofwhat Paris could be in 2100.
The urban heat island effect is clearly visible, with a 6 °C temperature difference between the center of Paris and the countryside.
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3.2. AC consequences on potential energy
consumption and air temperature in the streets
If we now suppose that AC is used massively to cool
buildings (to maintain a temperature of 23 °C in all
buildings), with an optimistic assumption for air
conditioner efficiency (energy efficiency ratio ranging
from 12 to 15 according to the type of building), and if
the heat generated by AC systems is released into the
streets, the simulations show an increase of about
1.134 TWhof extra final energy consumption per year,
on average.

This is equivalent to 2.4% of current (2017) yearly
electricity consumption for offices and housing in the
Paris region (see supplementary information section
7). So, over an entire year, the increase is moderate.
However, this estimate implicitly supposes that AC is
used only during heat waves, in order to prevent the
impacts of heat on health and comfort. If, after instal-
ling AC, households also decide to use it during non-
heat-wave days, the extra total energy consumption
over the year due toACwill bemuch larger than this.

It should also be highlighted that, during the heat
wave, the extra potential energy consumption is far
from negligible, as it is equal to 105 GWh each day.
This increase is equal to 81% of the current average
daily electricity consumption for offices and housing
in the Paris region. Such a momentary increase could
be an issue for electricity production, as well as for
electricity decarbonization, as, during heatwaves,
renewable energy production from wind, and solar
hydropower electricity generation is often less effi-
cient [54].

A significant degradation of external thermal com-
fort can also be seen in the simulations, as heat released
by AC systemswarms the outside air (see figure 3). The
temperature increases due to AC depend on the time
of day and on the characteristics of the heat wave,
mainly its intensity. On average, the duration spent

under high heat stress conditions in the streets is
increased by about 20min per day because of AC.

This illustrates the trade-off between indoor and
outdoor air temperature: indoor air temperature can
easily be kept low by AC but at the expense of outdoor
temperature. Increased outdoor temperature could
have many impacts on health and labor productivity
for people with no AC or those working outside, and
also for people working indoors in places with AC, if
their homes and commuting trips are not cooled [55].

3.3. Could adaptation strategies replace AC?
To assess whether alternative adaptation strategies
may help mitigate these issues, we first designed a
group of ambitious adaptation actions representing a
wide spectrum of potential policies. We then simu-
lated their impact on AC use, related energy demand
and external comfort degradation.

Adaptation actions can be grouped into various
categories [56]. We considered actions corresponding
to 3 categories (green infrastructure, physical infra-
structure, and behavior) and acting at three scales
(city-wide, individual building scale, and household
level) (see supplementary information section 7). We
did not consider actions related to crisis management,
such as warning systems or targeted interventions
towards particularly vulnerable people (e.g. relocation
during summer time) but focused our analysis on
actions aimed at improving the thermal comfort of the
inhabitants.

The first action considered was a large scale urban
reconfiguration policy leading to the addition of many
parks and green spaces in the Paris urban area. Adding
parks and green spaces is currently one of the main
policies against heat waves in the climate change adap-
tation plans of both Paris and the surrounding region,
even though such action is constrained by the high
price of land in urban environments [39, 40]. To

Figure 3. Impact of ACon air temperature: thesemaps show the temperature increase due to AC, under different heat wave
conditions. The heat released byAC systemswarms the outside air andworsens the heat wave. (a)Variations of air temperature in the
streets because of ACheat release, at 4 a.m., after 9 d of a heat wave similar tothat of 2003 (HW38). Air temperature is increased by up
to 2.4 °C. (b)Variations of air temperature in the streets because of ACheat release, at 4 a.m., after 9 d of themost intense type of heat
wave that we consider in this study (HW46) (see section 4 of supplementary information). Air temperature is increased by up to
3.6 °C.
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obtain an optimistic estimate of the consequences of
such policies, we assessed an ambitious action, assum-
ing that 10% of the surface of the city was devoted to
new parks. We also supposed that they were suffi-
ciently watered during the heat waves, so that the cool-
ing effect of the vegetation due to evapotranspiration
was optimal.

The second action was a building-scale policy.
French construction standards for new buildings and,
to a lesser extent, for existing buildings, include
requirements for comfort during heat waves since
2012 [57]. These norms should be reviewed around
2020, and there are calls to make themmore stringent
over time [58], even if numerous economic and policy
issues make this a complex subject [59]. We suppose
that strict building insulation rules and the use of
reflectivematerials for walls and roofs are applied to all
buildings of the city, here, except for historical build-
ings in the center of Paris.

The third action deals with behavioral changes, i.e.
changes in the way people use AC [60]. As a policy, it
might take the form of effective recommendations.
For instance, recommendations issued by Ademe
(French Environment and Energy Management
Agency) advise against lowering temperatures too
muchwhen using ACAlthough our reference scenario
supposes that AC is used to maintain 23 °C in all
buildings (see supplementary section 7.2), the adapta-
tion action that we assess leads people to choose to
maintain 28 °C in residential buildings and 26 °C in
offices.

When implemented together, the three actions
described above enable significant cooling of the out-
door air (by as much as 4.2 °C at night, see figures 4(a)
and (b)). However, it seems difficult to rely on such
actions to totally replace AC as we find that they only
reduce the duration of strong thermal heat stress
(UTCI temperature above 32 °C) inside buildings by

about an hour and a half (1 h 23 min) per day. A little
more than 6 h per day would still have to be spent in
high heat stress conditions in buildings if no AC was
used at all.

On the other hand, we also find that, when used
together with AC, these actions enable its potential
energy consumption to be reduced (by about 60%, see
figure 5) and more than compensate for the degrada-
tion of external thermal comfort it creates in the city
(see supplementary figure 12). Thus, although the
actions do not seem sufficient to replace AC, they
nevertheless allow large parts of its negative side-
effects to bemitigated.

3.4. Consequences of each adaptation action
Figure 5 compares the impacts of the actions with
respect to potential final electricity consumption for
AC and to air temperature in the city (measured as
outdoor average duration of heat stress per day;
indoors, by hypothesis, no heat stress is experienced if
AC is present).

Creating parks and green spaces across the city
decreases air temperature, mainly through a direct
cooling effect due to evapotranspiration. However,
this effect is not sufficient to have any significant
impact on potential electricity consumption for AC
(−2%). It should also be noted that the cooling effect is
strongly dependent on the water available for the vege-
tation: if we suppose that no water is available for
watering during heat waves, the cooling effect
becomes negligible. (It is divided by 4 in our
simulation.)

The quantity of water needed may be significant:
in our simulations, an average of 12.2× 106 m3 d−1 is
required on each heat wave day. This is of the same
order of magnitude as the projected mean flow of the
Seine river in 2100 (19.9× 106 m3 d−1) and larger

Figure 4. Impact of the combined three adaptation policies on air temperature in the streets at 4 a.m., after 9 d of a heat wave similar to
that of 2003 (HW38). (a) Simulationwith the three adaptation policies: this simulation is runwith exactly the same conditions as for
figure 2, except that AC is used in the city and the three adaptation actions (creation of parks, building insulation and use of reflective
materials, effective recommendations for amoderate use of AC) are assumed to have been implemented. (b) Impact of adaptation
actions. Thismap shows the difference between (a) and a simulation identical, except that the 3 adaptation actions are assumed not to
have been implemented. Air temperature can decrease by up to 4.2 °C thanks to the adaptation actions
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than the current (2009) drinkable water consumption
in the Paris Region (2.4× 106 m3 d−1) [43]. The envir-
onmental impacts of watering all the parks during all
heat wave days may be significant and should be taken
into consideration when assessing such an action, in
addition to the numerous economic, social and envir-
onmental consequences—positive or negative—of the
changes in urban fabric required to create more parks
and green spaces [42, 61].

Improvements in building insulation have a much
greater impact onpotential energy consumption forAC
inbuildings (−17%). They also lead to a fall of air temp-
erature in the city due to the decrease in AC use, and to
the directmodification of the urban heat island effect by
the reflective roofs. Beyond heat wave days, the impacts
of such an action are difficult to assess simply. A better
insulation of the buildings may indeed reduce heating
demand over the whole year, but the reflective roofs
have a more ambiguous impact. They may increase
heating demand in winter because of a loss of the pas-
sive benefits of solarwarming of the roof [25].

Finally, the behavioral change (increase in AC
temperature set point) has the largest impact on
potential AC energy consumption (−43%), and
decreases outdoor air temperature significantly (20
min less per day spent under strong heat stress)
because it cancels out a large part of AC heat release
into the streets. The high impacts of this action, in line
with other recent studies [60, 62], highlight the impor-
tance, beyond infrastructure changes, of actions tar-
geting behavioral changes in climate policies [63].

All three actions have similar impacts on air temp-
erature (each improves comfort time by about 15min)
but their impacts on potential electricity consumption
differ widely. This points out that choosing one indi-
cator rather than another leads to different messages:
decreasing air temperature in the city is not equivalent

to reducing AC use. Considering one or the other
objective when prioritizing adaptation actions may
therefore lead to different strategies.

4.Discussion and conclusion

To sum up, even though the actions that we have
simulated are ambitious, they do not seem sufficient to
cancel the heat stress caused by future heat waves if no
AC is used. It should therefore be expected that ACwill
be widely used in the future in Paris and in cities with
similar characteristics, if the population wants to
maintain its thermal comfort during heatwaves.

Over an entire year, the total energy consumed by
AC during the heat waves is not extremely high,
because the total duration of heat waves only repre-
sents a few weeks per year. However, during these
days, the extra potential energy consumption is parti-
cularly large, and occurs at a time when wind energy
production, for instance, may be difficult. It can also
be reasonably expected that households will use AC
during non-heat-wave days, once their house is equip-
ped. To prevent this from leading to a future rise in
greenhouse gas emissions, solutions need to be found
to decarbonize the electricity used, and to globally
limit AC energy use.

It should be noted that, in our simulations, we
derived conservative estimates for potential energy
consumption, assuming that all air conditioners
would have a slightly higher efficiency than the best
equipment available today. Similarly, we did not take
account of the greenhouse gas emissions due to the
fluids used in the air conditioners. If air conditioners
were less efficient than our hypothesis or the occur-
rence of potential fluid leaks during air conditioner
use was taken into consideration, the need to reduce
ACusewould be reinforced.

Figure 5.Comparison of adaptation action efficiencies. All values are per heat wave day. Reference case potential energy consumption
for air conditioning is 103GWhper heat wave day, so implementing all adaptation actions reduces this consumption by about 60%.
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Although the adaptation actions analyzed here do
not seem able to replace AC, they do enable the energy
it requires during heat waves to be reduced by more
than half. They also cancel out most of the outside air
temperature increase due to the heat released by AC
systems. Adequately planned adaptation strategies
may thus help to limit both the reliance on AC and its
negative effects. In the context of a progressively chan-
ging climate, they may also help to delay the year after
which AC will be required to ensure thermal comfort
and limit health impact for themajority of the popula-
tion, hence limiting the cumulated energy consump-
tion of AC. This highlights the profound link between
adaptation and mitigation, and shows that adaptation
may play an important role in securing a low-carbon
pathway in the long term.

Data availability
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umr-cnrm.fr/projects/teb.

Acknowledgments

This study received funding from the French Agence
Nationale de la Rercherche through the projects
VURCA (ANR-08-VULN-013), MUSCADE (ANR-
09-VILL-0003), VITE (ANR-14-CE22-0013-03) and
DRAGON (ANR-14-ORAR-0005). The authors are
grateful to Patrice Dumas and Gaetan Giraudet, who
provided helpful comments, and to Jean François
Toussaint and Samuel Somot for interesting insights.

Author contributions statement

All authors carried out the computational analysis. SH
initiated the study. AL andVV continued and finalized
its design. AL andVVbothwrote the paper.

Competingfinancial interests

The authors declare no competing financial interests.

References

[1] RappaportRA1977Maladaptation in so cial systems.Boletín
CF+ S37 (http://habitat.aq.upm.es/boletin/n37/arrap.en.html)

[2] Tainter J 1988TheCollapse of Complex Societies (Cambridge:
CambridgeUniversity Press)

[3] Orlove B 2005Human adaptation to climate change: a review
of three historical cases and some general perspectives Environ.
Sci. Policy 8 589–600

[4] HuntTLandLipoCP2012Ecological catastrophe andcollapse:
themythof ‘Ecocide’on rapanui (Easter Island)PERCResearch
PaperNo. 12/3 (https://doi.org/10.2139/ssrn.2042672)

[5] MagnanAK et al 2016Addressing the risk ofmaladaptation to
climate changeWiley Interdiscip. Rev. Clim. Change 7 646–65

[6] Hallegatte S 2009 Strategies to adapt to an uncertain climate
changeGlob. Environ. Change 19 240–7

[7] Moser SC and Ekstrom JA 2010A framework to diagnose
barriers to climate change adaptationProc. Natl Acad. Sci. 107
22026–31

[8] Hallegatte S, Lecocq F andDe Perthuis C 2011Designing
climate change adaptation policies: an economic framework
World Bank Policy ResearchWorking Paper Series vol

[9] DeCian E and SueWing I 2019Global energy consumption in
awarming climateEnviron. Resour. Econ. 72 365–410

[10] RastogiD,Holladay J S, EvansK J, Preston B L andAshfaqM
2019 Shift in seasonal climate patterns likely to impact
residential energy consumption in theUnited StatesEnviron.
Res. Lett. 14 074006

[11] RuijvenB JV,CianEDandWing I S2019Amplificationof future
energydemandgrowthdue to climate changeNat.Commun.
102762

[12] deMunckC et al 2013Howmuch can air conditioning
increase air temperatures for a city like Paris, France? Int. J.
Climatol. 33 210–27

[13] WangY, Li Y, Sabatino SD,Martilli A andChanPW2018
Effects of anthropogenic heat due to air-conditioning systems
on an extreme high temperature event inHongKongEnviron.
Res. Lett. 13 034015

[14] FarbotkoC andWaitt G 2011Residential air-conditioning and
climate change: voices of the vulnerableHealth Promotion J.
Australia 22 13–5

[15] SmithKR et al 2016The last summer olympics? Climate
change, health, andwork outdoors Lancet 388 642–4

[16] Stott PA, StoneDA andAllenMR2004Human contribution
to the European heatwave of 2003Nature 432 610–4

[17] Stott PA et al 2011 Single-step attribution of increasing
frequencies of very warm regional temperatures to human
influenceAtmos. Sci. Lett. 12 220–7
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