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Dispersing solid fillers into a polymer matrix is a common strategy to enhance and tailor its
properties. The polymer nanocomposites so obtained with fractal-like aggregates have exceptional
rheological behavior that have long been exploited in the tire industry. However, due to the disparity
of time and length scales, our understanding of the relation between nanocomposites structure and
rheology remains far from complete. We propose in this work a mesoscopic model to address the
dynamics and the rheology of aggregate nanocomposites. While aggregates are represented explic-
itly as groups of interacting particles, we use for the polymeric matrix an implicit description based
on generalized Langevin and Stokes equations, that captures the average effect of a viscoelastic
medium. These two-level modelling allows us to simulate large systems containing dozens of aggre-
gates. Focusing here on the linear viscoelastic properties of PNCs, we characterize the influence of
aggregate size, volume fraction, rigidity and polydispersity. We demonstrate that rigid aggregates
systems display salient features of the phenomenology of PNCs, namely slow relaxation in the stress
relaxation response, non-Maxwell elastic response at low frequency and supralinear dependence of
their storage modulus with volume fraction. We also point out the critical role played by aggregate
rigidity, and show that for either flexible aggregates or well dispersed nanofillers, the effects are far
less spectacular. Our findings should help in designing nanocomposites with enhanced mechanical
properties.

I. INTRODUCTION

Dispersing a tiny amount of solid nanofiller within a
polymer matrix can yield a new material with strik-
ingly distinct properties compared to the pure system [1–
3]. The relentless interest in designing such polymer
nanocomposites (PNCs) rests on the ever growing va-
riety of fillers available [4, 5]. They come in many shapes
(spherical nanoparticle, plate-like clays, graphene sheets,
carbon nanotubes, or metallic nanorods) and they now
extend over three decades in size, from the subnanomet-
ric OAPS additive [6], to the silica or carbon particles
typically a few dozen of nanometers in diameter, which
are the building blocks for aggregates and agglomerates
reaching microns [1]. By tuning the functionalizations
and adding grafted chains with well-chosen length and
density, one may also control the state of dispersion,
and generate large-scale, self-assembled structures such
as sheets or strings [7], thus opening the way to a hierar-
chical arrangement of nanofillers [8]. Given those count-
less possibilities, PNCs are being sought for a variety of
applications, ranging from gas separations to electronic
devices [4, 5, 9]. To fully come to fruition, the design of
PNCs should ideally rest on a fundamental understand-
ing of their properties. Yet, this endeavor has proved a
recurrent challenge, and many puzzles remain [10].

Though one of the oldest application, PNCs based
on solid, fractal-like aggregates are no exception. Car-
bon black has been studied as an additive as early as
the 1940s, later followed in the 1990s by silica aggre-
gates. Both aggregates are built of up to hundreds of
primary particles organized in ramified structure with

size in the range 100 − 500 nm. When introduced in a
polymer or rubber matrix, even in moderate amount,
they are known to yield mechanical reinforcement, en-
hance dissipative properties and augment shock and wear
resistance [1, 2]. Such outstanding viscoelastic prop-
erties [11–15] have long been exploited in tire applica-
tions [2, 3]. Despite heavy commercial use and decades
of research [16–20], our account of the relation between
the PNC structure and its rheology is still incomplete.

This lack of understanding is to be related to the
competing mechanisms whereby nanofillers may affect
the material behavior and contribute to reinforcement.
Schematically, four classes of mechanisms may be dis-
tinguished. First, even at low volume fraction, the pres-
ence of solid additives can change the polymer dynamics,
by shifting the spectrum of relaxation times [21], reduc-
ing the segment mobility, or increasing the entanglement
density near the particle surface [22]. Second, chains that
are surface-immobilized by adsorption, bonding, or en-
tanglement may connect the particles into a long-lived,
percolating filler-polymer network [23–28]. Third, parti-
cles at high volume fractions might percolate or jam, thus
ensuring efficient stress transmission [16]. Such filler-filler
network might involve the formation of a gel [29]. Finally,
an alternative scenario focuses on filler-induced shift in
the glass transition temperature [30–32]. Immobilized
layers may form a network of glassy bridges that pro-
vides preferential stress-sustaining paths, and enhanced
dissipation under strain-induced yielding. Which mecha-
nism is relevant will heavily depend on the experimental
conditions, physical chemistry details and composition of
of PNCs. For aggregates, the parameter space is partic-
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ularly rich. The volume fraction, the morphology, size
and polydispersity are all expected to play an important
role, not to mention the polymer matrix itself.

Given the multiplicity of phenomena and the large pa-
rameter space, disentangling the contribution of each ef-
fect from experiments alone is fraught with difficulties.
Accordingly, a large body of simulation work [17, 20, 33],
has sought to obtain a microscopic view of the processes
at play in PNCs. Molecular dynamics can offer a de-
tailed description of the chain structure and dynamics in
the vicinity of the nanofiller [34]. By resorting to more
coarse-grained approach, such as DPD simulations [35]
or slip-links models [28], one can address PNCs systems
comprising a small number of nanoparticles while keeping
an explicit description of the polymeric chains.

Not surprisingly, the case of PNCs comprising large ag-
gregates has not been tackled so far, as the length scale
required remains out of reach by microscopic methods.
Simulations at the scale of a single aggregate 100 nm
in radius can already be quite demanding in computa-
tion resources. Moreover, a faithful representation of the
PNCs requires that many aggregates be included, so that
structures appearing at a higher level, such as a network,
can also be captured. Only in large systems containing
dozens of aggregates can the role of morphology, size and
polydispersity be investigated. Given the wide disparity
of time and length scale present in the system, an explicit
representation of the chains is currently impossible.

We propose in this work a mesoscopic model capable
of reaching the length scale relevant to fractal aggregate
PNCs. The idea is to climb one more step in the level
of coarse-graining, by resorting to an implicit description
of the polymer medium, for which no degrees of freedom
are allocated explicitly. Rather, its presence is accounted
in an effective manner through a non-Markovian friction
force. This force depends on the history of the velocity of
the filler and on a memory kernel that directly embodies
the viscoelastic behavior of the polymeric matrix. In con-
trast with the surrounding medium, the aggregates are
represented explicitly in our simulation. We are thus free
to chose their size, interaction and morphology. Our ap-
proach is in line with recent efforts to model the behavior
of jack-shaped and fractal aggregates [36–38] suspended
in a purely viscous fluid, but addressing the case where
the matrix is viscoelastic.

With this model in hand, we investigate the rein-
forcement and viscoelastic properties of aggregate PNCs.
We find that even moderate volume fractions of aggre-
gates strongly enhance the stress response of the model
nanocomposite. We examine the influence of aggregates
volume fraction, size, rigidity and polydispersity. We also
describe the slow relaxation in stress response and pro-
vide an interpretation based on the aggregate rotation.
We focus exclusively on linear rheology. A subsequent
study will be devoted to non-linear effects.

The remainder of this article is structured as follows.
We introduce in Sec. II the generalized Langevin equa-
tion and generalized Stokes relation that underlie our

approach, and explain the numerical method employed.
Section III describes our choice of aggregates, their mor-
phology and interactions, together with two other fillers –
flexible and individual nanoparticles– as reference points.
Results and discussion are presented in Sec. IV.

II. MODEL AND METHOD

The central idea of our model is an implicit descrip-
tion of the polymer matrix. Given the length scale tar-
geted — not only a single aggregate but a whole distri-
bution of them —, the explicit representation of poly-
meric chains is challenging, to say the least. This is ob-
viously the case with molecular dynamics, which would
require immense computational resources, but also with
more coarse-grained approaches such as slip-links [39] or
DPD [35]. Therefore, there is no choice but to go one step
up in the ladder of coarse-graining levels. One possibility
to do so is to forget all degrees of freedom of the medium,
by resorting to an implicit description. The effect of the
medium on an embedded particle is then reduced to two
distinct forces: a friction force that represents the average
drag, and a random force that originates in thermal fluc-
tuation. From Brownian dynamics to DPD, this method
has been widely used when the medium is a viscous liq-
uid. As we detail in this section, the same approach can
be used when the medium is a viscoelastic polymer. For
simplicity, we first focus on the motion of a single par-
ticle. Extension to our model aggregates immediately
follows since they are represented as a group of particles.

A. Implicit description of medium by GLE

The generic tool to describe the motion of a particle in
an implicit medium is the generalized Langevin equation
(GLE). For a particle of mass m, position r and veloc-
ity v, it reads as

m
dv(t)

dt
= F (r(t))−

∫ t

−∞

Γ(t− t′)v(t′) dt′ +Fr(t). (1)

The first term F in the right-hand side is the conserva-
tive force accounting for the interactions with other par-
ticles. The second term in the RHS of Eq. (1) is the drag
force Fd exerted by the medium. Importantly, it does not
only depend on the instantaneous velocity but involves
all values taken in the past, as weighted by the memory
kernel Γ(t). Such non-locality in time makes the evolu-
tion equation non-Markovian. Finally, the last term Fr is
the random force, whose time correlation function is non-
trivial, since it is directly related to the memory kernel
by the fluctuation-dissipation theorem

〈Fr(t)Fr(t
′)〉 = kBT Γ(t− t′)δ, (2)

with kB the Boltzmann’s constant, T the temperature
and δ the identity matrix. The simple Langevin equation
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is recovered as a particular case for a kernel instantaneous
in time Γ(t) ∼ δ(t).
The influence of the medium on particle dynamics is

entirely encoded in the memory kernel, which should
therefore depends on the material properties. For a
viscoelastic polymer matrix, the connection is provided
by a generalized Stokes law [40]. The kernel Γ(t) is
thus directly proportional to the stress relaxation modu-
lus Gp(t) of the polymer matrix. For a spherical particle
of radius R,

Γ(t) = 6πRGp(t). (3)

The case of a viscous fluid with viscosity η leads back
to the usual Stokes law Γ(t) = 6πRηδ(t). Equation (3)
derives from a correspondence principle [41]. To find the
flow of a viscoelastic medium, it suffices to consider the
equivalent problem with a purely viscous fluid, and work-
ing in the frequency domain (ω), to substitute the viscos-
ity η with G∗

p(ω)/iω, where G∗

p(ω) is the complex mod-
ulus of the material. Because G∗

p(ω)/iω is the Fourier
transform of Gp(t), one immediately gets Eq. (3).
Though its derivation is exact, the generalized Stokes

equation is based on a number of approximations [41]:
(i) The medium is described as a continuum. (ii) The
medium is incompressible. (iii) Only viscoelastic proper-
ties in the linear regime are relevant, implying that the
medium remains in the vicinity of equilibrium. (iv) The
effect of bead and medium inertia are both neglected. In
particular, this includes the Basset force that would be
relevant at very high frequencies. For the nanocomposite
systems considered in this work, assumptions (ii) to (iv)
are well justified. As regards requirement (i), it certainly
applies for large aggregates whose size is above entangle-
ment length, but it would break down for a nanoparti-
cle [42–44]. For small aggregates, Eq. (3) should be seen
as a zero-order approximation. As a minor point, we also
note that a no-slip boundary condition is assumed at the
particle surface, which does not necessarily hold for poly-
mers (see discussion in [45]), but this assumption is easily
relaxed [55].

B. Dynamics and numerical method

Having defined our model for the medium, we now ex-
plain how it can be put to work in practice. To describe
the particle motion in the viscoelastic matrix, it is nec-
essary to solve the GLE numerically. With respect to
the simple Langevin equation used in Brownian dynam-
ics, Eq. (1) differs in two ways. First, instead of taking
independent values at each time step, the noise is cor-
related, thus requiring a sequence of correlated random
numbers. Second, instead of involving only the current
velocity, the drag force is obtained by convoluting the
memory kernel with all past values of the velocity. For a
large number of particles, the storage of velocity histories
and the convolution will become demanding in memory
and computation time. Fortunately, Baczewski and Bond

have recently proposed a method to circumvent this is-
sue [46]. The principle is to introduce new variables to
rewrite the non-Markovian GLE in an expanded state
space where the evolution becomes Markovian.
The method is applicable on the condition that the

memory kernel can be developed as a Prony series, i.e.
a sum of exponentially decaying terms [56]. The stress
relaxation modulus is thus written as

Gp(t) =
M
∑

m=1

Gp,m exp

(

−
t

τm

)

, (4)

where Gp,m and τm are the amplitude and decay time
of mode m, and M the total number of modes. The
coefficients Γm = 6πRGp,m of the memory kernel are de-
noted as cm/τm for convenience. For simplicity, let us
consider in the GLE equation only one vectorial compo-
nent of the velocity. For each mode, two new variables
are introduced. The first is

Zm(t) = −

∫ t

0

cm
τm

exp

(

−
t− t′

τm

)

v(t′) dt′, (5)

which satisfies

τm dZm(t) = −Zm(t) dt− cmv(t) dt. (6)

The second intermediate variable Fr,m is the contribution
of mode m to the random force, defined from

τm dFr,m(t) = −Fr,m(t) dt+
√

2kBTcm dWm(t), (7)

where Wm(t) is a standard Wiener process. Importantly,
since Fr,m obeys an Ornstein-Uhlenbeck process, its time
correlation function is an exponential, with characteristic
time τm:

〈Fr,m(t)Fr,m(t′)〉 = kBT
cm
τm

exp

(

−
t− t′

τm

)

. (8)

Finally, using the total random force Fr(t) =
∑M

m=1 Fr,m(t), one finds that the variable Sm(t) =
Zm(t) + Fr,m(t) satisfies

mdv(t) = Fc(t) dt+
M
∑

m=1

Sm(t) dt, (9)

τm dSm(t) = −Sm(t) dt− cmv(t) dt

+
√

2kBTcm dWm(t). (10)

In contrast with the original GLE, those equations no
longer involve time convolution: they are local in time,
since they only require the current value of each variable.
In practice, the Baczewksi and Bond method has

been implemented in the molecular dynamics open code
LAMMPS [47], which can be used to solve the GLE dy-
namics.
To summarize the approach so far, the implicit de-

scription of the medium eliminates all associated sol-
vent degrees of freedom but to solve the resulting non-
Markovian GLE, it is convenient to make the evolution
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equation Markovian by introducing additional variables.
If there are Np particles in a three-dimensional system
and M modes in the memory kernel, their total number
is 3MNp, which in general is much smaller than the num-
ber of variables required by an explicit description of the
chains, hence the interest of the method.
It remains to discuss the choice of the memory kernel.

For a viscoelastic matrix, there are actually several routes
possible. The first is to rely on an analytical model of the
polymeric melt. In this regards, we note that both the
Rouse model and reptation model lead to relaxation mod-
ulus that are Prony series [48]. The amplitude and char-
acteristic time of each mode are then known exactly [57].
The second possibility to specify the modes in the Prony
series is simply to fit a given relaxation modulus, with a
number of modes determined by the accuracy required.
The target Gp(t) may come directly from experimental
data, thus allowing to describe a specific polymer matrix.
Alternatively, Gp(t) may also be obtained from simula-
tions where the polymer chains are represented explicitly
(such as molecular dynamics, dissipative particle dynam-
ics or slip-links models). By measuring the correlation of
the random force acting on an embedded particle, one im-
mediately gets the memory kernel of the medium, thanks
to the fluctuation-dissipation theorem Eq. (2). The abil-
ity to integrate information obtained at a lower level of
coarse-graining makes the implicit medium approach an
attractive scheme for a multi-scale strategy.

III. AGGREGATES

The second ingredient of our model is an explicit de-
scription for the aggregates. They are represented as
groups of interacting particles, whose size, morphologies
and interaction can be chosen at will. There is thus con-
siderable freedom in this modelling step. Here we de-
scribe our particular choice for the ramified aggregates
used in this work.

A. Aggregate model

We model an aggregate as a group of repulsive particles
connected through a spring network that maintains its
shape and integrity. Specifically, all particles interact
through a repulsive potential UR defined as

UR(r) = ULJ(r)− ULJ(rm) if r < rm, (11)

= 0 otherwise,

where

ULJ(r) = 4ǫ
[

(σ/r)12 − (σ/r)6
]

(12)

is the Lennard-Jones (LJ) potential, r is the distance be-
tween the particles, ǫ is the depth of the potential, and σ
(resp. rm) is the distance at which the potential is zero

(resp. minimum). Particles are seen as spheres of diam-
eter σ that are thus in contact when r = σ. As shown
in Fig. 1, an aggregate is represented as a collection of
particles at contact, endowed with two sets of springs.
On the one hand, the connective springs join neighbor-
ing particles, with a quadratic potential

US(r) =
k

2
(r − lc)

2, (13)

where k is the spring constant and the rest length lc is
chosen so as to keep spheres at contact [58], thus pre-
serving the aggregate connectivity. On the other hand, a
set of virtual springs is added to preserve the aggregate
geometrical structure. Each particle is linked by three
virtual springs to particles randomly chosen among those
that are are not neighbors. The virtual springs have the
same spring constant k and their rest length is individu-
ally fixed by the structure of the aggregate [59]. As long
as the spring constant is sufficiently high, the rigidity of
the spring network will ensure that the aggregate struc-
ture is maintained, and represents a good approximation
to the solid aggregates used in real nanocomposites.

FIG. 1: Schematic (bidimensional projection) model of our
aggregates. A group of repulsive particles are linked by two
spring networks. The connective springs (black solid lines) be-
tween neighbors ensure the connectivity. The virtual springs
(red dashed lines) maintain the geometry. For clarity, the
latter are shown for only one particle.

Whereas we are primarily interested in the rigid aggre-
gates defined above, it is useful for comparison purpose
to introduce two other kinds of systems. First, the in-
dividual particles, devoided of any springs, will provide
a reference point. Second, we also define the flexible ag-
gregates, which include only connective springs. Because
their shape can fluctuate, they are reminiscent of star
polymers. They will help to assess the role of aggregate
rigidity in the rheology of the nanocomposite. For all
type of filler, the volume fraction φ of filler is defined as

φ =
πNpσ

3

6V
, (14)

where Np is the total number of particles and V the vol-
ume of the system.
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B. DLA morphology

We have chosen to consider aggregates generated by
a diffusion-limited aggregation (DLA) algorithm [49].
Briefly, the process starts with an aggregate of one par-
ticle at the system center. A particle released far away
diffuses until it touches the aggregate and irreversibly
becomes part of it. The process is then repeated many
times. In the limit of a large number of particles, the ag-
gregates have a branching, disordered structure [49, 50],
whose average coordination number is 2.0, and with frac-
tal dimension df = 2.5.
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FIG. 2: Characteristics of our DLA aggregates. (Top) Aggre-
gate of size N = 20 and 50. (Middle) Distribution of radius
of gyration Rg for several aggregate sizes. The average Rg is
shown in the inset. (Bottom) Distribution of aspect ratio κ,
as defined in the text.

Our aggregates are generated by stopping the DLA
process when it reaches a prescribed number of par-
ticles N . Because only moderate sizes are considered
(N ≤ 100), the aggregates are not genuine fractal ob-
jects, but nonetheless exhibit a loose, ramified structure.
To better characterize their properties, it is useful to in-

troduce the gyration tensor

S =
1

N

N
∑

n=1

xnx
T
n , (15)

Here, xT
n is the transpose of xn = rn − rcm, with rn

the position of the nth particle, and rcm the position of
the center of mass. The spatial extent of an aggregate is
given by the radius of gyration Rg defined from

R2
g = TrS =

1

N

N
∑

n=1

(rn − rcm)
2
. (16)

The eigenvectors and eigenvalues (λ2
1 > λ2

2 > λ2
3) of the

gyration tensor define the orientation and the dimension
of an equivalent ellipsoid. Shown in Fig. 2 are the radius
of gyration for various aggregates sizes. The distribution
indicates that most of the aggregates share a size close to
the mean value, which exhibits a modest increase, from
Rg = 2.2 to 3.3 for N = 20 to 50. Besides, the aggre-
gates are anisotropic objects as revealed by the aspect
ratio κ = λ1/λ3, whose distribution shows significant de-
parture from unity.

C. Polydispersity

We will examine both monodisperse and polydisperse
ensembles of aggregates. In the former, all aggregates
have the same size N [60]. In the latter, which is the
relevant situation in experiment, the size distribution is
governed by a probability distribution P (N), which can
be quite broad [14]. For the sake of simplicity, we use a
gamma distribution

P (N) =
Nα

Γ(α+ 1)βα+1
exp

(

−
N

β

)

, (17)

where Γ is the gamma function and α and β are free
parameters. The most frequent aggregate size is then
N∗ = αβ and the mean is N̄ = (α + 1)β. As an illus-
tration, the distribution given by Eq. (17) is plotted in
Fig. 3, with α = 2 and β = 10, leading to N∗ = 20 and
N̄ = 30 and a size polydispersity around 30%. This is
the default case, unless otherwise mentioned. Note that
in practice, the largest aggregates generated have size
N = 100.

D. Initial configurations

Once the aggregates are generated and their size dis-
tribution chosen, it remains to obtain the initial configu-
rations by placing them in the simulation box. We used
two different methods to do so. In the insertion method,
the aggregates are placed one after another. Random
positions and orientations are attempted for the new ag-
gregate until it has no overlap with any neighbors. For
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FIG. 3: Aggregate size distribution P (N) given by Eq. (17)
with α = 2 and β = 10. The most frequent aggregate size is
N∗ = 20 and the mean size is N̄ = 30.

polydisperse aggregates, it is more efficient to place the
aggregates in order of decreasing size. In the compres-
sion method, the aggregates are initially placed in a very
large box, whose dimensions are then gradually reduced.
At each compression step, the system can relax so as
to minimize overlap between aggregates. Applying this
process to rigid aggregates may change their shape. To
make sure that they keep their original structure, ag-
gregates are treated as undeformable objects during the
compression process [61]. Their relaxation thus involve
only rigid motion, through translation and rotation in-
duced by the total force and torque. In both initializa-
tion methods, the aggregates once placed are subject to
an additional relaxation process governed by Brownian
dynamics, which is stopped when the global energy and
pressure of the system have converged to constant values.
For individual particles and flexible aggregates, which

can deform to accommodate constraints, it is easy to
generate initial configurations with high volume frac-
tions. This is much more difficult with rigid aggre-
gates. It seems that the compression method works best
with monodisperse aggregates and the insertion method
with polydisperse systems. Shown in Fig. 4 are the vol-
ume fractions accessible for monodisperse aggregates as
a function of their size N and the number Na of aggre-
gates in the box. For small aggregates (N = 20), the
highest volume fraction is φ = 17%, whereas for larger
aggregates (N = 50), it decreases to φ = 10%. Except
at the highest volume fraction accessible, the total num-
ber of aggregate in the box Na can be varied from 20
to 50, suggesting that finite size effects are weak. For
polydisperse systems, the densest available systems have
φ in the range 18 − 15%, as the aggregate number Na

increases from 200 to 1000. Thus, our simulated systems
do not reach the highest nominal volume fractions (up
to 30%) that are reported in experiments. Note however
that our volume fractions are not directly comparable to
that used with experimental systems [62]. Accordingly
one should be cautious in comparing absolute values and
should focus primarily in the trends induced by changing
the volume fraction.
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=50

FIG. 4: Volume fraction of initial configuration accessible by
the compression method, as a function of aggregate size N for
different number Na of aggregates in the system.

IV. RESULTS AND DISCUSSION

In this section, we will examine how the linear rheology
is influenced by the filler and matrix parameters. We first
briefly describe our reference system and how the results
were obtained.

A. Preliminaries

1. System studied and parameters

As explained in Sec. IIA, the viscoelasticity of the ma-
trix can be chosen so as to match experimental data for
particular polymer, which allow us to examine a specific
nanocomposite. The corresponding Prony series would
involve multiple modes. Here, our goal is to understand,
generically, the role of the polymer viscoelasticity and the
interplay with filler characteristics. Besides, the param-
eter space is already quite large. For these two reasons,
we have preferred to start with a simpler situation, where
the medium is a Maxwell fluid. The polymer relaxation
is thus assumed mono-mode

Gp(t) = G0
p exp

(

−
t

τ0p

)

, (18)

where G0
p is the plateau stress modulus and τ0p the termi-

nal relaxation time of the polymer matrix. For a typical
system – a polybutadiene of molecular weight 40K [51]
–, one gets G0

p = 0.5MPa and τ0p = 1ms.
It remains to specify our choice of units and numer-

ical parameters. Unless mentioned otherwise, the unit
length is the particle diameter σ, the unit time is τ0p and
the unit energy is kBT . Accordingly, the pressure unit is
Pu = kBT/σ

3. Throughout the study, we consider par-
ticles with diameter 9.4 nm. For the system considered
above, and always working at room temperature, this im-
plies G0

p = 100Pu. We fix ǫ = 1 throughout the study,
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a choice expected to be inconsequential since only repul-
sive interaction are taken into account. Besides, we note
that the particle mass enters the dynamics only through
its combination with a time step (see Eq. (10)). For
the sake of numerical efficiency, the mass is not set to a
realistic value (we always set m = 1 in reduced units)
but serves only to set the value of the time step. We
use ∆t = 0.01 τ0p . The units and some typical param-
eters are summarized in Tab. I. Finally, our simulated
systems contains typically 103 particles, thus including
dozens of aggregates (Na in the range 10-50 depending
on the aggregate size). We have checked that finite size
effects, though sometimes detectable, would not change
significantly the results presented below.

Quantity Symbol Simulation Typical value
Energy kBT 1 4.1 10−21 J
Nanoparticle diameter σ 1 9.4 nm
Polymer terminal time τ0

p 1 1 ms
Polymer plateau modulus G0

p 100Pu 0.5 MPa

TABLE I: Choice of units and parameters for the typical poly-
mer nanocomposite considered in simulation.

2. Stress relaxation modulus

The stress tensor is computed from the position and
conservative forces between particles

σαβ = −
1

V

∑

i<j

〈Fij,αRij,β〉. (19)

Here, Fij,α is the α component of the interaction force
applied on particle j by particle i, Rij,β is the β coor-
dinate of the vector joining particle i to particle j, and
indices i and j run over all Np particles in the system. It
is important to note here that the interaction force which
appears in the expression of the stress is the conservative
force, which derives from a pair potential

Fij,α = −
∂U

∂Rij,α

(20)

where U(R) is the interparticle potential that includes
the repulsion UR(r) and the spring potentials US(r) rele-
vant to the case of aggregates (Eqs. (11) and (13) respec-
tively).
In the linear regime, the stress relaxation modulusG(t)

can be obtained from the time correlation of the shear
stress, via the linear response theory [52],

G(t) =
V

kBT

1

3

3
∑

α=1

3
∑

β>α

〈σαβ(t)σαβ(0)〉, (21)

where 〈. . .〉 denotes an ensemble average. The complex
modulus G∗(ω) = G′(ω) + iG′′(ω), where G′ and G′′ are

the storage and loss modulus, is obtained from the G(t)
by the Fourier transform of G(t) as

G∗(ω) = iω

∫

∞

0

G(t) exp (−iωt) dt. (22)

Two others remarks apply to all the data shown be-
low. i) The stress relaxation modulus G(t) and other
computed quantities all result from an average over at
least 10 independent simulations. This is necessary to
improve the statistics, especially for the behavior of the
observables at long times. ii) In all curves, including the
stress relaxation modulus or the dynamic moduli, only
the contribution of the filler is shown. The contribution
of the polymer matrix is not taken into account.

B. Influence of aggregate properties

1. Effect of filler type

The stress relaxation modulus G(t) is shown in Fig. 5
(left) for the three types of solid fillers and a volume frac-
tion φ = 10%. One common feature is the existence of an
oscillatory response in the early regime. Even though it
may be influenced by the springs properties, it is already
present in the nanoparticles alone and seems to origi-
nate primarily from the interplay between inertia and
the elastic behavior of the polymer matrix at short time.
Whatever the filler type, oscillations occurs at a time
t ≃ 0.1 significantly smaller than the polymer relaxation
time [63] and therefore do not affect the intermediate and
long-time behavior which are the focus of this work.
Nanoparticle and aggregate systems exhibit striking

differences in their stress relaxation modulus, both in
terms of relaxation time and level of reinforcement. Let
us consider the former first. In the case of nanoparticle,
the decay ofG(t) is well described by a single exponential,
whose characteristic time is of the order of τ0p . In con-
trast, both the flexible and the rigid aggregates display
a mechanical response whose decay is not purely expo-
nential at long times but better described by a stretched
exponential G(t) ∼ exp(−(t/τ)β) with β ≃ 0.4, in line
with the idea that the response involves a distribution
of relaxation times, some of them much larger than τ0p .
The origin of such large relaxation times will be discussed
in Sec. IVC in relation with the microscopic motion of
the particles. As regards reinforcement, the effect of filler
type is also clearly seen. At short and intermediate times,
the presence of flexible and rigid aggregates induces a me-
chanical response which exceeds by respectively one and
two orders of magnitude that observed with nanoparti-
cles. Perhaps surprisingly, the difference of G(t) between
flexible and rigid aggregates subsides at long times, sug-
gesting that in this regime the effect of connectivity tends
to dominate over rigidity.
The effect of the filler type may be equally evidenced

by looking at the storage and loss moduli G′ and G′′,
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FIG. 5: Effect of the filler type on the stress relaxation modulus (left) and storage and loss moduli (right, filled and empty
symbols respectively). The aggregates are monodisperse with size N = 50 and the volume fraction is φ = 10%.

as displayed in Fig. 5 (right). Because those quantities
are often measured in experiments, and carry the same
physical content as the stress relaxation modulus, they
are used from now on to present our results. Consistent
with the Maxwell model, the simple exponential decay
in the stress relaxation of the nanoparticle system now
translates into a power-law dependence ω2 and ω1 at low
frequency for G′ and G′′ respectively. In the aggregate
systems, power-law dependence are also seen at low fre-
quencies, but with different exponents. Though numeri-
cal noise and a limited range of data prevent an accurate
estimate, the exponents are unambiguously below their
Maxwell values, and seem to be rather similar both for
G′ and G′′ and for the two types of aggregates. As above,
it is clear that at all frequencies the aggregates systems
display a large reinforcement with respect to individual
nanoparticles. Below, we focus primarily on the behav-
ior of rigid aggregates, since they are more relevant to
experimental systems.

Two remarks are in order. i) It is worth pointing our
that in our model, the only way particles pertaining to
different aggregate may interact is by pure repulsion. The
absence of any polymer-mediated interactions that could
induce polymer-bridging between particles does not pre-
vent the existence of relaxation times much longer than
that of the polymer matrix. ii) Long relaxation times
have been observed experimentally in the stress relax-
ation modulus of polybutadienes filled with individual sil-
ica nanoparticles (see Fig. 2 of Ref. [51]). The existence
of long relaxation times is often attributed to polymer
bridging between neighbouring particles. Alternatively,
our results suggest that aggregated particles may be the
cause of slow stress relaxation, even in the absence of
polymer bridging.

2. Effect of volume fraction

The filler volume fraction is known to have a major
influence on the mechanical and rheological properties

of PNCs [14, 17, 27]. Figure 6 (top) shows the stor-
age modulus for various volume fractions up to 17% in
nanoparticles and rigid aggregates systems. The stronger
reinforcement induced by the latter is again visible: the
response of nanoparticle PNC remains below that of ag-
gregates, even when the loading is threefold higher (17%
vs 5% respectively). Besides, in the case of nanoparti-
cles, the change in volume fraction induces only a shift
of G′(ω) over the whole range of frequencies. With rigid
aggregates, the behavior is modified at low frequencies.
While it remains power law, G′ ∼ ων , the exponent de-
creases from approximately 2 to 1/2, when the volume
fraction increases from 5 to 17%.
The relative enhancement of the storage modulus with

the volume fraction is further illustrated in Fig. 6 (bot-
tom). Two distinct behaviors may be distinguished de-
pending on the frequency. At relatively high values
ω > 0.1, the increases in modulus is almost linear with
the volume fraction: G′ ∝ φ. In contrast, for small ω,
because the exponent changes with φ, the increase of G′

is clearly superlinear. For instance, when ω = 0.01, one
finds G′ ∝ φm, with m ≃ 2.4. One can expect an even
sharper variation, and a higher exponent at lower fre-
quencies. This phenomenology is typical of PNCs [19].
The experimental observation of superlinear behav-

ior is commonly interpreted as the signature of perco-
lation [19], and the existence of mechanical paths per-
taining to transmit the stress across the system. This
interpretation is in line with the possible formation of
a gel mediated by physical interactions between fillers.
Our simulations show that this phenomenon occurs for
fractal repulsive aggregates. Conversely, for individual
nanoparticles no superlinear behavior is seen.

3. Effect of aggregate size

The number N of particles in an aggregate controls
its spatial extent, as illustrated in Fig. 2 with the radius
of gyration and aspect ratio. How the aggregate size af-
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nanoparticles. (Bottom) Storage modulus renormalized by
its value at 10% volume fraction, Ḡ′ = G(ω, φ)/G(ω, 0.1), for
various frequencies.

fects the storage modulus is shown in Fig. 7. Clearly,
the larger the aggregates, the stronger the mechanical
response. However, we note that the low frequency ex-
ponent G′ ∼ ων seems to remains relatively independent
of size, at least when N > 5. In this regime, increasing
the aggregate size or volume fraction has thus qualita-
tively different consequences. For high and intermediate
frequencies, the situation is different. The level of re-
inforcement is best visualized by representing G′ as a
function of the volume fraction, as done in Fig. 8 for
various aggregate size. Two behaviors are observed, de-
pending on the frequency ω analyzed. At high frequency
ω = 1 (top), the storage modulus of all the systems con-
sidered increases almost linearly with volume fraction :
G′(φ) ∝ φ. For rigid aggregates, the modulus increases
with aggregate loading and size. Both dependence are
approximately linear over the range considered. As a
result, the reinforcement is left unchanged if aggregates
are twice larger but half less numerous (compare N = 20
and 40, at φ = 16% and 8 for instance). As a side note,
one can see that somewhat unexpectedly, in flexible ag-
gregates, reinforcement at ω = 1 is almost independent
of size. At lower frequency ω = 0.01 (bottom), a differ-

ent scenario appears. First, the storage modulus of rigid
aggregates no longer increases linearly with volume frac-
tion. Rather, we observe a superlinear behavior which
can be rationalized under the form : G′(φ) ∝ φm where
m is an exponent which depends slightly on the aggregate
size and takes values between 1.8 and 2.5 for the cases
shown here. The behavior of flexible aggregates and indi-
vidual nanoparticles is again clearly different from rigid
aggregates. Both systems are characterized by a linear
dependence of G′ with volume fraction, and lower levels
of reinforcement as compared to rigid systems. For flexi-
ble aggregates, a small size dependence appears. Overall,
the level of reinforcement depends sensitively on aggre-
gate type, size and content and on frequency regime. It
is also clearly evident that aggregate rigidity is key to ob-
serving superlinear behavior, as observed experimentally
in the same volume fraction range [51].
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FIG. 7: Effect of the aggregate size on the storage modulus of
rigid aggregate PNCs. The case of nanoparticle is also shown
(circle). The volume fraction is φ = 10%.

4. Effect of polydispersity

So far, we have considered only monodisperse aggre-
gates characterized by a fixed number of particles N .
However, aggregates in real polymer nanocomposites
may be polydisperse, which may affect the reinforcement.
To address this point, we show in Fig. 9 the storage mod-
ulus of a polydisperse system with polydispersity around
30%. The corresponding size distribution is represented
in Fig. 3, and has mean N̄ = 20 and most frequent size
N∗ = 20. The storage moduli of monodisperse system
with size N̄ and N∗ are also reported for comparison.
Whatever the frequency, the mechanical response of the
polydisperse system turns out to be slightly stronger.
This effect may be ascribed to the existence in the poly-
disperse system of a few large aggregates (N > 30), which
may have a significant effect on the rheology of the model
PNC.
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C. Slow relaxation times

Structure factors

We gave evidence in Sec. IVB of the long relaxation
times which emerge in the stress relaxation function in
the presence of aggregates (Fig. 5). Here, we aim at

providing a microscopic analysis of the slow dynamics
of fillers. To this end, we probe the particle dynamics
through several observables. Specifically, we will consider
the standard, self and intra-aggregate dynamic structure
factors, that are based on the time correlation of different
microscopic density fields.
The standard dynamic structure factor characterizes

the collective dynamics of the particles

S(q, t) =
1

Np

〈ρ(q, t)ρ∗(q, 0)〉 , (23)

since it involves the density field of the whole system

ρ(q, t) =
∑Np

i=1 exp(−iq ·ri(t)), with Np the total number
of particles, q the wave vector and ri the position vector
of particle i. The self dynamic structure factor probes
the motion of individual particles

F (q, t) =
1

Np

Np
∑

i=1

〈 ρi(q, t)ρ
∗

i (q, 0) 〉, (24)

where ρi(q, t) = exp (−iq · ri) is the local density asso-
ciated to particle i. Last, the intra-aggregates structure
factor, is useful to probe the relationship between the
local density field and the motion of the aggregates

Sintra(q, t) =
1

Na

Na
∑

k=1

〈ρk(q, t)ρ
∗

k(q, 0)〉. (25)

Here, Na is the total number of aggregates, and ρk(q, t) =
∑Nk

n=1 exp (−iq · rn(t)) is the local density field of aggre-
gate k, which contains a number Nk of particles. The
observable Sintra is useful to probe the change in the dy-
namics due to the interaction between the aggregates.
The three dynamic structure factors are shown in

Fig. 10 for the different types of fillers. Two values of the
wave vectors have been considered: q = 2π corresponds
to the primary particle scale, and q = 2π/3 provide hints
on the dynamics at the scale of a single aggregate (whose
radius of gyration is Rg ≃ 3, see Fig. 2). Focusing first
on S(q, t), we see that at the particle scale, individual
nanoparticles and flexible aggregate systems relax their
density with comparable decay times on the order of τ0p .
The local dynamics of rigid aggregates is slower, and dis-
plays long time tails that are absent from other systems.
Thus, the existence of these long relaxation times does
not derive from the connectivity but primarily from the
rigidity of the aggregates. When considering the scale of
the aggregates q ≃ 2π/Rg, the difference between flexi-
ble and rigid aggregates is even more pronounced: rigid
aggregates relax their density field after a time approx-
imately one order of magnitude larger than the relax-
ation time characterizing the flexible aggregates. This
observation is again in line with the conclusion that the
rigidity of the aggregates is key to slow dynamics. Fi-
nally, it is clear that, whatever the scale analyzed, the
relative difference between the density relaxation of flex-
ible and rigid aggregates appears to be independent of



11

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0,5

1

S(
q,

t)

nanoparticles
flexible aggregates
rigid aggregates
q=2π
q=2π/3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0,5

1

F(
q,

t)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0,5

1

I(
q,

t)

FIG. 10: Dynamic structure factors computed for individual nanoparticles, flexible and rigid aggregates, with aggregate size
N = 50 and volume fraction φ = 10%. From left to right, shown are the standard, self and intra-aggregate dynamic structure
factors, as defined by Eqs. (23), (24), and (25), and computed for wave vector q = 2π and q = 2π/3 ≃ 2π/Rg, where Rg is the
aggregate radius of gyration.

the dynamic structure factor considered. In particular,
for rigid aggregates, the relaxation probed by the stan-
dard, self and intra-aggregate structure factor is almost
the same. As the intra-aggregate structure factor is a
measure of the relaxation of the aggregate density field,
we shall conclude that interactions between aggregates
are the primary cause of the slow dynamics highlighted
in the dynamic structure factor, and intra-aggregate in-
teractions play a subdominant role.

Orientational dynamics

The structure factor considered so far to probe the
system dynamics all rely on densities. To investigate
further the microscopic internal dynamics of the aggre-
gates, we now examine their individual rotational mo-
tion. Whereas flexible aggregates would also feature de-
formation, the motion of rigid aggregates (that are nearly
undeformable) may be decomposed in two contributions:
diffusion of the center of mass and rotation with respect
to it. To measure the latter, we have used the gyration
tensor given in Eq. (15) to define for each aggregate an in-
stantaneous orientation vector u as the eigenvector with
the largest eigenvalue and computed its correlation func-
tion C(t) = 〈u(t) · u(0)〉 [64]. The result averaged over
all aggregates is shown in Fig. 11. In all cases considered
(aggregate size of N = 20 and 50), rigid aggregates have
a slower orientational dynamics than flexible aggregates
having the same size N . Note that the typical relaxation
times associated to orientation are more than one order
of magnitude larger than those associated to stress relax-
ation modulus. The orientation decorrelation times are
also larger than the decay times of the dynamic structure
factors probed at the aggregate length scale. Thus the
densities field at the particle, aggregate or global scales
that all relax much faster than the orientation. In conclu-
sion, we have highlighted the very slow internal rotation
of the aggregates. The corresponding kinetics is slower
than the relaxation of G(t), implying than the slow inter-
nal motion does not participate to the stress relaxation

of the system.

10
0

10
1

10
2

10
3

10
4

t

0

0,2

0,4

0,6

0,8

1

C
(t

)

flexible aggregates N=20
           "                   N=50
rigid aggregates      N=20
           "                   N=50

FIG. 11: Correlation of the orientation vector for flexible and
rigid aggregates of size N = 20 and 50. The volume fraction
is φ = 10%.

V. CONCLUSION

We introduced a mesoscopic model aimed at describ-
ing the dynamics and the rheology of polymer composites
containing fractal-like aggregates. Resorting to an im-
plicit description of the polymer matrix through the gen-
eralized Langevin and Stokes equations allows to reach
the relevant time and length scales, while at the same
time keeping an explicit representation of fillers. We
have shown how the filler type, loading, size, rigidity
and polydispersity can all affect the mechanical response.
Our simulations reproduce salient features of the phe-
nomenology of PNCs: existence of long relaxation times
in G(t), power law behavior G′ ∼ ωa with an exponent
a < 1 and superlinear increase of reinforcement with
loading: G′ ∝ φm, with m in the range 1.7 − 2.5. These
features are all observed experimentally [19, 51]. Impor-
tantly, our study shows the importance of the aggrega-
tion and rigidity of the aggregates: for individual well
dispersed nanoparticles, the suspension linear rheology
is more akin to a Maxwell like model described by the
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polymer matrix terminal time. Superlinear behavior is
primarily dependent on the aggregate rigidity: the stor-
age modulus of flexible aggregates increases linearly with
loading. We have finally interpreted the emergence of
slow dynamics in rigid aggregates systems as resulting
from interaggregate interactions.
It is worth pointing out that our model is minimal in

the sense that it includes only two basic ingredients: i)
the effect of viscoelastic polymer matrix on the particle
motion and ii) the repulsive interactions between aggre-
gates. Accordingly, among the mechanisms put forward
to rationalize the PNCs behavior, several are absent:
no polymer-mediated network between fillers or glassy
bridges can occur. Yet, for the fractal-like rigid aggre-
gates considered here, the filler-filler repulsive interac-
tions and the presence of a viscoelastic medium are suffi-
cient to generate a rich phenomenology typical of PNCs.
There are several possible extensions and directions

that remain to be explored within the present frame-
work. First, we considered a single exponential memory

kernel as a simple proxy to the rheology of a polymer
melt. It is clearly possible, through the memory kernel,
to obtain the kernel from more microscopic calculations,
where the polymer degrees of freedom are explicitly taken
into account. This would open the way to build a multi-
scale description of the rheology of PNCs with aggregated
fillers. Second, we focused on DLA-generated aggregates
but it is straightforward to examine any type of mor-
phology [37, 53]. Likewise, filler interactions were repul-
sive only but the effect of attraction between particles,
originating in physical forces or short-range interactions,
deserves to be investigated. This is work in progress. Fi-
nally, as in Brownian dynamics, hydrodynamic interac-
tions are neglected. Accounting for such generalized (vis-
coelastic) interactions is an interesting perspective that
is left for future work. We anticipate though that aggre-
gates would interact with each other before contact and
the presence of aggregates would modify the mechanical
response at even lower volume fraction.
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