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Abstract: This article presents a novel methodology for the characterization of tree vegetation
phenology, based on vegetation indices time series reconstruction and adapted to urban areas.
The methodology is based on a pixel by pixel curve fitting classification, together with a subsequent
Savitzky–Golay filtering of raw phenological curves from pixels classified as vegetation. Moreover,
the new method is conceived to face specificities of urban environments such as: the high
heterogeneity of impervious/natural elements, the 3D structure of the city inducing shadows,
the restricted spatial extent of individual tree crowns and the strong biodiversity of urban vegetation.
Three vegetation indices have been studied: Normalized Difference Vegetation Index (NDVI) and
Normalized Difference Red Edge Index 1 (NDRE1), which are mainly linked to chlorophyll content
and leaf density and Normalized Burn Ratio (NBR) mostly correlated to water content and leaf
density. The methodology has been designed to allow the analysis of annual and intra-annual
vegetation phenological dynamics. Then, different annual and intra-annual criteria for phenology
characterization are proposed and criticized. To show the applicability of the methodology, this article
focuses on Sentinel-2 (S-2) imagery covering 2018 and the study of groups of London planes in an
alignment structure in the French city of Toulouse. Results showed that the new method allows the
ability to (1) describe the heterogeneity of phenologies from London planes exposed to different
environmental conditions (urban canyons, proximity with a source of water) and (2) to detect
intra-annual phenological dynamics linked to changes in meteorological conditions.

Keywords: urban tree vegetation; phenology; time series reconstruction; Sentinel-2; NDVI; NBR; NDRE1

1. Introduction

The presence of vegetation improves the responsible and sustainable development of urban
areas by offering several ecosystem services [1–3] such as: vegetation–climate interactions (air quality
increase, urban cool island, rain water management and thermal comfort) [4,5], energetic consumption
and CO2 track reductions [6], biodiversity conservation [6], human well-being [7], ambiance and
socio-cultural benefits [7]. Among this urban vegetation, alignment trees create shade contributing
to reduce the urban heat islands and fit the geometrical urban planning [8]. As an example in Paris,
about 100,000 street trees cover around 700 km of roads and concern approximately 1600 roads
out of 6000, inducing a shade covering about 3% of the city surface [9]. However, urban trees are
exposed to increasing anthropic and climatic pressures [10,11]. Hence, monitoring their health is
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essential to protect green areas in cities, anticipate changes in climatic forcing and guide environmental
policies [12]. Ground surveys performed by members of the city hall departments managing the green
areas of the city, or by external experts, have been traditionally used [13]. However, they are costly,
require human resources and suffer a lack of high temporal repeatability to give an accurate report of
health condition and its evolution. Remote sensing data is a good alternative and has been already
largely used in urban environments for vegetation classification [14–19] and health assessment [20–23],
with acquisitions from unmanned aerial vehicle sensors [15,24], airborne [14,20,25–27] and spaceborne
sensors [16–18,28]. However, most of these previous studies work on a limited number of acquisitions
along the year (often only one date) and as a consequence they cannot properly differentiate normal
vegetation dynamics from a change in health condition.

Actually, vegetation dynamics are essentially controlled by the annual phenology, which depends
on the climate seasonal variations determining key phases like greenup, maturity, senescence and
dormancy periods and also depends on the biome type [29,30]. In addition, each vegetation species
and individual has a specific phenology. Then, stress events can be detected by its intra-annual
and/or inter-annual fluctuations. Studying vegetation phenology from remote sensing data requires
a high temporal revisit, thus being mainly restricted to the use of satellite imagery. Thereafter,
the term “phenology” frequently refers to the analysis of time series of spectral Vegetation Indices
(VIs) computed from satellite images. The Normalized Difference Vegetation Index (NDVI) is the most
used VI correlated to green leaf density (LAI), green biomass and green vegetation cover and has
been historically obtained from AVHRR and MODIS sensors [29,31–34]. Although both of them take
daily images, their spatial resolutions are coarse (NDVI is obtained at 500 m and 250 m, respectively),
and only allow capturing the global phenology of vegetation communities from regional to national
scale, but not at the local or individual scale needed in urban environments. On the other hand, other
satellite sensors have a better spatial resolution such as the Landsat series (ground sample distance of
30 m), SPOT (10 m) and RapidEye (5 m) constellations, and with them more heterogeneous ecosystems
can be studied [35,36]. However for Landsat sensors, the spatial resolution is still not adapted to urban
tree crown dimensions and their lower temporal revisit of around 16 days considerably reduces the
number of cloud free acquisitions to integrate for building the phenological curve [35]. The use of
SPOT and RapidEye appears to be more adapted to study urban tree phenology with their higher
temporal revisit between 1 and 5 days. However, their images are not freely available and this can
represent a significant cost for accurate monitoring. Recently, new multi-spectral satellite sensors such
as the European Sentinel-2 and the Israeli–French Venµs with a spatial resolution of 10/20 m and 10 m,
and a temporal revisit of 5 and 2 days respectively, have the advantage to acquire information in a
larger number of spectral bands (more than the traditional Red Green Blue (RGB) + Near InfraRed
(NIR)). This opens the way to compute more VIs related to other vegetation bio-physico-chemical
and structural variables of interest for tree health monitoring [37–41], for instance with leaf pigments
content from the visible (VIS) and NIR spectral domains [42], and leaf water and dry matter content in
the Short-Wave InfraRed (SWIR) domain [42].

In addition, VI time series from satellite imagery contain noise induced by atmospheric
variability, cloud cover variability and illumination and observation geometries variability [43].
Consequently, dedicated techniques for noise reduction were developed and can be split into three
different approaches: function fitting methods [44,45], harmonic analysis methods [46,47] and local
filtering methods [48–50]. The first approach consists of fitting the measured VI time series with
a fixed mathematical function, assuming that healthy vegetation phenology behaves as a given
function of time. The main disadvantage is that this approach prevents us from observing possible
intra-annual phenological dynamics. Several fixed functions have been tested: double logistic (D-L)
function [51,52], double hyperbolic tangent (DHT) function [45] or assymetric Gaussian function [51].
Then, the harmonic analysis approach, based on modeling the VI curve by series of sines and cosines,
hypothesizes a symmetrical behavior of phenology, and so is not able to capture asymmetrical
phenological dynamics. Some methods belonging to this approach are: HANTS [53], Fourier Filtered
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Cycle Similarity [47] or the Sellers et al. 1994 Fast Fourier Transform technique [54]. Finally, local
filtering approach consists of time localized smoothing of the phenological curves constrained to some
given hypotheses. Among the most used filters are the Savitzky–Golay (S-G) filter [50] and Best Index
Slope Extraction (BISE) methods [48,49]. This last approach family allows us to observe asymmetries
and intra-annual events, but the smoothing hypotheses should be well chosen. Finally, Vrieling et al.
2018 showed the importance of the number of available images to correctly characterize phenological
dynamics with reconstruction methods (in their case D-L fitting) [45]. For instance, the performance of
the phenology reconstruction methodology decreases when the number of available images decreases
(for them from 27 to 15). In addition, they demonstrated that the distribution of the images across the
year is also important, being necessary to sample greenup and senescence periods as well as minimal
and maximal values (dormancy and maturity periods).

Previous studies characterizing the phenological dynamics of vegetation with the use of
VIs derived from satellite imagery focus on natural (woodlands and wild areas) or agricultural
environments [35,45,50–52], with urban environments remaining scarcely investigated [55–57].
In addition, they are mainly based on NDVI phenology curves [35,50–52] leaving the rest of VIs
only slightly analyzed [45], and so, the spectral richness of new satellites is not fully taken into account.
The lack of studies focused on the monitoring of urban tree phenological dynamics can be explained by
the additional issues due to the specificities of urban environments such as: the high heterogeneity of
impervious/natural elements and the high geometry variability of the city, as well as its 3D structure
heterogeneity inducing shadow effects, the restricted spatial extent of individual tree crowns (around
ten of meters) and the strong biodiversity of urban vegetation. Thus, studying phenology curves of
urban vegetation, not only needs satellites with a high temporal resolution, but also satellites with
high spatial resolutions (a few tens of meters). Nowadays, missions such as the European Sentinel-2 or
the Israeli–French Venµs [58] seem to be appropriate for urban areas.

The objective of this article is to propose a new methodology adapted to urban areas to characterize
tree phenology by using VI time series reconstruction from Sentinel-2 imagery. Globally, it is based
on (1) a classification of vegetation pixels relying on phenological curve fitting, considering healthy
tree phenology to approximately behave as a given fixed function and (2) the application of a filter
on raw VI time series for pixels classified as vegetation. This methodology has been developed
to successfully: face high heterogeneity of urban environments and shadows (challenge of mixed
pixels), face atmospheric, cloud cover, illumination–observation geometry and registration variability
between dates and characterize annual and intra-annual phenological dynamics. A first good study
case to test the new method has been selected based on criteria such as the choice of mono-species
trees (to avoid inter-species phenology variability which can hide or generate mixed phenological
dynamics) with a large tree crown size (in the order of magnitude of the satellite spatial resolution)
and in alignment structure (to facilitate the number of vegetation pixels). The London plane is a
common deciduous broadleaf tree species in European cities like Brussels, London, Madrid and
Toulouse, and its monitoring is extremely important since some trees have been sensitive to canker
stain disease and dying for the last 70 years in Italy, France, United kingdom, Spain and Greece [59,60].
So, the study case for this article is focused on alignment London plane trees in the city of Toulouse,
France, with a monitoring of their phenology over the year 2018 with Sentinel-2 imagery (2018 is the
first complete year for which S-2 has a revisit of 5 days). For that purpose, different environmental
conditions (urban canyons, the proximity with a source of water) for urban and peri-urban London
planes are investigated to observe variations in phenological curves as described by three distinct
VIs. The proposed methodology finally allows us to study both annual and intra-annual phenological
characteristics. The second is defined as anomalous events in the global annual dynamic [35,61,62]
possibly corresponding to stress/disturbance events when analyzed with meteorological information.

Section 2 describes the studied area, the satellite and climatological data used in the study.
In Section 3, the proposed methodology is presented together with the annual and intra-annual
criteria for phenology monitoring. Results are showed in Section 4 for the study case and the different
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environment scenarios for the London plane trees. Section 5 discusses the appropriateness of the
chosen hypotheses of the methodology formulation, the advantages and disadvantages of the criteria
to characterize the phenology and the influences of meteorological factors on phenological curves.
Finally, Section 6 presents conclusions and perspectives of this work.

2. Case Study and Data

2.1. Case Study

Toulouse is located in the south-west of France, close to the Pyrenees mountain range and between
Atlantic ocean and Mediterranean sea. With around 500,000 inhabitants, it is the fourth largest city
of the country. It is characterized by a humid temperate climate favoring vegetation development.
Toulouse is crossed by the Garonne river and by the historical “Canal de Midi” and “Canal de Brienne”
artificial canals. London planes are found in large avenues in the city center, but also along the river
and the canals.

In this work, five different areas of Toulouse, where London planes can be found exposed to
different environmental conditions, have been studied (see Figure 1):

(1) Canal de Brienne (Brienne): These old London planes are located near the city center and grow
along a canal. The orientation of this alignment is north-west, with two rows of trees (one at each
side of the canal) and crown widths between 10 and 20 m.

(2) Urban Canal de Midi (Midi Int): These London planes grow along a canal inside the city.
The orientation of this alignment is mainly north, with two rows of trees (one at each side
of the canal) and crown widths between 10 and 20 m.

(3) Peri-urban Canal de Midi (Midi Ext): Located outside the city, the orientation of this alignment
presents small variations between north and west. It contains two rows of trees (one at each side
of the canal) with crown widths between 10 and 20 m.

(4) Jules Guesde Avenue (JGuesde): Located in Toulouse city center, this alignment is oriented
north-east. It contains between two and four rows of trees with crown widths between 5 and
10 m.

(5) Boulevard Francois Verdier-Boulevard Carnot-Boulevard Strasbourg (FVerdier): Located in the
city center, the orientation of this alignment presents small variations between north and west.
It contains between two and four rows with crown widths of about 10–15 m.

London planes from the city center (Brienne, Midi Int, JGuesde and FVerdier) are supposed to be
exposed to pollution and high temperatures during summer due to the urban heat island effect [63],
while London planes from Midi Ext do not. In addition, London planes from city center avenues
(JGuesde and FVerdier) may be exposed to lack of water during droughts. This is not the case for
London planes from the canals (Brienne, Midi Int and Midi Ext), which do not suffer from lack of water
since water from canals moisten the soil under them, and in some cases roots reach directly the canal
water. Furthermore, London planes from the canals (Brienne, Midi Int and Midi Ext) are rooted on wide
soil surfaces, while planes from the city center avenues (JGuesde and FVerdier) are rooted on small soil
squares surrounded by impervious materials such as asphalt or slabs (see Figure 1). At last, London
planes from JGuesde also suffer from the impacts of their root system alteration and a soil replacement
due to 2011–2013 road works in order to extend a tramway line (information from Town-Hall).
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Figure 1. Above: Toulouse (France) Sentinel-2 Red Green Blue (RGB) composite image. The masked
areas correspond to: (1) Canal de Brienne (dark green), (2) Urban Canal de Midi (Cyan), (3) Peri-urban
Canal de Midi (light green), (4) J. Guesde Avenue (Magenta) and (5) F. Verdier Avenue (Red). The blue
point with the label MS indicates the location of the meteorological station. Below: Google “Streetview”
digital images from April 2019 (Brienne), May 2014 (MiDi Int), May 2019 (MiDi Ext), May 2015 (JGuesde)
and July 2016 (FVerdier) are used to illustrate the sites.

2.2. Sentinel-2 and Meteorological Data: Toulouse (France) 2018

Sentinel-2 is a VNIR-SWIR multi-spectral European mission composed of two similar satellites
Sentinel-2A and Sentinel-2B with 13 bands each. From the middle of 2017, when S-2B was launched
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(S-2A was launched in June 2015), Sentinel-2 can provide one image of Toulouse every 5 days,
with spatial resolutions of 10, 20 and 60 m depending on the spectral band, see Appendix A Table A1.
In addition, the viewing angle of both Sentinel-2 satellites is almost constant across the year and very
close to nadir (viewing zenithal angle θv

z ≈ 3◦ and viewing azimuthal angle φv
a ≈ 202◦). In Toulouse,

the illumination angles (zenithal θi
z and azimuthal φi

a angles) at S-2 acquisition time (≈11:00 local time)
varies along the year going from θi

z ≈ 165◦ and φi
a ≈ 65◦ during winter to θi

z ≈ 145◦ and φi
a ≈ 25◦

during summer, see Figure 2.
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Figure 2. Toulouse (France) zenithal and azimuthal illumination angles at S-2 acquisition time (11:00)
as a function of the Day of the Year (DoY).

THEIA platform (https:www.theia-land.fr) from CNES (Centre National d’Etudes Spatiaux
(France)) gives free access to Sentinel-2 Bottom Of Atmosphere reflectance (level 2A) processed
images of Toulouse. Moreover, THEIA provides co-registered images, with cloud masks, and quality
and atmospheric information. For Sentinel-2A and Sentinel-2B combined products, the multi-temporal
spatial registration performance varies between pixels, with approximately a third of pixels with
co-registration errors of 0–50% of the pixel size, another third with errors around 100–150% of the
pixel size, and the last third with errors in between [64]. For 2018, THEIA provides up to 37 S-2 images
of Toulouse, among which there are 20 exploitable ones (images with strong cloud coverage, higher
than 50% or hidden the studied areas, are not considered). These 20 exploitable images are distributed
across the year in such a way that they sample both dormancy and maturity period, as well as greenup
and senescence, thus allowing us to correctly apply phenology reconstruction methodologies.

Three VIs accessible with Sentinel-2 are studied in this work: NDVI and Normalized Difference
Red Edge Index 1 (NDRE1) were considered to give information on leaf density and chlorophyll
content [65] which are measured at 10 m and 20 m resolution respectively, and Normalized Burn
Ratio (NBR), which is supposed to provide information on leaf density and water content [65] at 20 m
resolution, see Table 1. Normalized indices are selected to facilitate quantification, comparison and
description of phenological dynamics.
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Table 1. Selected indices. Cab = Chlorophyll, LAI = Leaf Area Index, EWT = Water Content.

Variable Index Definition Bands S-2 Spatial Resolution Reference

LAI, Cab NDVI-84 ρ832−ρ664
ρ832+ρ664

b8−b4
b8+b4 10 m [65–67]

LAI, EWT NBR ρ854−ρ2200
ρ864+ρ2200

b8−b12
b8+b12 20 m [65,68]

LAI, Cab NDRE1 ρ740−ρ705
ρ740+ρ705

b6−b5
b6+b5 20 m [69–71]

The meteorological data used over the year 2018 come from the Meteopole-Flux station installed
on the Meteo France site 6.5 km south-west of the city center, see Figure 1. This permanent station has
been operational since 2012 and allows the long-term monitoring of radiation and energy exchanges,
meteorological variables and soil water and thermal status, for a grassland site on the outskirts of
the Toulouse urban area. For this study, the data analyzed are the incoming short-wave radiation
(in W·m−2) and the air temperature (in ◦C) recorded at 2 m above the ground, the soil water content
(in m3·m−3) recorded by 16 sensors installed at different depths (from 10 to 220 cm depth) and
precipitation (mm). Data are hourly available and are here post-processed to provide daily information
of mean global incoming radiation, maximum temperature and cumulative precipitation. For water
content, mean daily values are calculated by soil layers i.e., 10–50 cm, 50–100 cm and 100–220 cm,
because the temporal dynamics of soil water status (especially its response to daily and subdaily
precipitation) varies between near-surface layers and deep soil.

3. Methodology

3.1. Phenology Time Series Reconstruction

The proposed methodology presents four steps, see Figure 3.

2018
Raw S-2

cloud free
images

VI images
of the

differentiated
areas for
each date

1) Manual masking of vegetation areas
and 2) VI computation

Classification:
Vegetation

Mixed
Unvegetated

3) Pixel by pixel curve fitting of VI time series
for pixel classification

Mean of
S-G filtered

vegetation pixels
phenological

curves on each
masked area

4) Pixel by pixel Savitzky–Golay (S-G) filtering
on vegetation pixels

Measure of criteria for
phenology monitoring

Figure 3. Proposed methodology for vegetation index (VI) phenological curve reconstruction.

(1) A manual masking aims at discriminating the vegetation study areas (in this study five masks
are created, see Section 2.1). This mask is visually delineated by using S-2 images but also
georeferenced open access airborne images of the city (Google Earth images). Only one mask per
green studied area was used for the whole studied year. So, to entirely contain the vegetated area,
the mask should be set during the period of the year for which vegetation occupies the largest
area, both in terms of quantity of pixels and quantity of vegetation per pixel (this period usually
corresponds to the maturity period). For this work, QGIS software was used to create the masks.

(2) The chosen VI was calculated for each pixel of the masked areas and for all the available dates of
the year. Hence for each pixel, a raw VI time series, VI0

t , with a number of samples equal to the
number of available images, was obtained.

(3) Then, an unsupervised classification based on pixel by pixel weighted iterative fitting of
phenological curves was applied. Weighted iterative curve fitting has been traditionally used to
study vegetation phenology, by considering that healthy vegetation presents phenological curves
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that can be described by fixed functions [45,51,52]. The proposed methodology takes advantage
of this hypothesis and considers that pixels where the error fit is large are mixed or non-vegetated
pixels. On the other hand, pixels where the error fit is considerably small, i.e., behaving as the
imposed function, are considered vegetation pixels. In this work, double logistic function was
chosen to describe phenology time series of VIs, since it presents less free parameters than the
double hyperbolic tangent function and it has been shown to perform better than the asymmetric
Gaussian function [51]. The double logistic function is expressed as:

VI(t) = VImin + (VImax −VImin)×
(

1
1 + e−mS(t−S)

+
1

1 + emA(t−A)

)
(1)

where VImin, VImax, S, A, mS and mA are the free parameters of the fit. With VImin the minimum
yearly value of the VI, VImax its maximum yearly value, S the Day of the Year (DoY) indicating
the inflection point when the curve raises (greenup period), A the DoY indicating the inflection
point when the curve drops (senescence period) and mS and mA the slopes of the curve at days S
and A respectively.

The weighted iterative process relies on the hypothesis that in urban environments, small
co-registration errors between dates are the main source of noise induced on VI0

t time series,
and thus, considers that sudden increases or drops of VI0

t values between dates are mainly due
to changes in the fraction of vegetation within a pixel. To correctly characterize the vegetation
phenology and reduce mixed pixels effect, more weight should be given to high VI values.

Then from a first fit (VI1
t ) of the pixel raw time series (VI0

t ), a set of weights are computed to give
more prominence to high VIs values than to low ones (upper envelope of the curve):

Wti =

1 if VI0
ti
≥ VI1

ti

1− dti
dmax

if VI0
ti
< VI1

ti

(2)

where Wti is the weight of sample at date ti, VI0
t is the raw VI time series, VI1

t is the first fitted VI

time series, dti = |VI0
ti
−VI1

ti
| and dmax = max

{
|VI0

ti
−VI1

ti
|
}
∀i.

Once the weights have been fixed from the first fitting, an iterative process starts until minimizing
the fitting error defined as:

Fk =
N

∑
i=1

(|VIk
ti
−VI0

ti
| ×Wti ) (3)

where Fk is the error at iteration k and N is the number of samples in the time series. Fits are
performed with the Levenberg–Marquardt least squares method [72,73] of the SciPy library [74]
for Python 3.6.

Finally, pixel classification is based on Fk errors and two thresholds, Bv and Bm. If Fk < Bv then
the pixel is considered as vegetated, if Bv ≤ Fk < Bm the pixel is considered as mixed and if
Fk > Bm the pixel is considered as not (or poorly) vegetated. Bv and Bm were empirically chosen
to be respectively 5% and 10% of the annual maximal value VI of the pixel. For our study case,
these bounds appear strict enough to importantly reduce non-vegetated pixels in those classified
as vegetation. An additional condition was applied: among the pixels initially classified as
vegetation on each masked area, only pixels whose mean VI value during the maturity period
is comprised within one standard deviation (std) of the ensemble of vegetation pixels over the
same period, were retained. For London planes in Toulouse, we defined this period between 1st
of May and 1st of October, since for this species in Toulouse, greenup and senescence periods
correspond to the beginning of spring and the beginning of autumn respectively. Background
effects are major during winter (when there are no leaves) and during the start of the greenup
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period and the end of the senescence period. So, the choice of the maturity period bounds were
done considering that from 1st of May to 1st of October the vegetation cover should be enough to
minimize the influences of ground in the statistical measures. Adding this condition on the mean
VI values allows us to avoid, as much as possible, false-positives in the classification.

(4) A weighted iterative Savitzky–Golay filtering was applied on vegetation pixels as classified in
step (3). It allows us to reduce the noise that registration variability between dates induces on
time series, and as it does not fix the phenological behavior, it allows us to observe intra-annual
periods of disturbance and anomalies in vegetation phenological curves. The weighted iterative
Savitzky–Golay filter used in this work is our own implementation (in Python 3.6) of the filter
presented in Chen et al. 2004 [50], but it was adapted to process not uniformly sampled time
series. Savitzky–Golay filter presents two free parameters: the width of the smoothing window
(m) and the degree of the fitting polynomial (d).

(a) First, an automatic search of the best parameter values within a given range, m ∈ [6, 10] and
d ∈ [2, 4], was done [50]. These ranges were fixed following [50] and considering the number
of available dates. On one hand, too small m values may lead to an over-fit of the raw VI
time series, and so, difficulties can raise in capturing long-term trends. However, too large m
values may lead to neglecting some important variations in the phenological curve. On the
other hand, small values of d may lead to smoother results, and large values of d may over-fit
the raw VI time series and generate noisy results. In addition, to perform a polynomial fit,
the degree d of the polynomial must be lower than the size m of the smoothing window.

(b) Then, once the first filtering was performed providing VI1,filt
ti

, weights were assigned

following the same hypothesis as in Equation (2), and a new VI time series (VI1,ts
t ) is:

VI1,ts
ti

=

{
VI0

ti
if VI0

ti
≥ VI1,filt

ti

VI1,filt
ti

if VI0
ti
< VI1,filt

ti

(4)

where “filt” indicates filtered signal, and “ts” indicates built VI time series.

(c) Savitzky–Golay is applied iteratively on the new obtained VI time series (VI1,ts) with smaller
smoothing window size (m = 6) and greater polynomial order (d = 4). The iterative process
searches at minimizing the error defined such as in Equation (3).

From step (3), another characterization of vegetation health status can be directly obtained from
the D-L fitted curves of pixels classified as vegetation. Thus in Section 4.3, this alternative methodology
is compared to the proposed one. However, D-L fitting characterization does not allow us to describe
intra-annual dynamics and is then not advised. On the contrary, the proposed methodology by using
S-G filtering does not fix a given behavior for the phenological curve and then it allows us to reduce VI
time series noise without masking intra-annual anomalies in the phenological dynamics. So, annual
and intra-annual dynamics can be studied, see Sections 3.2 and 3.3.

3.2. Annual Phenology Characterization

The final VI time series obtained from the previous reconstruction methodology should be
analyzed by looking at different phenological information that can be compared from one year to
another [45]:

(a) VImax : The maximum value of the VI reached during the year, see Figure 4.
(b) Greenperiod : Normalized area under the curve during the maturity period (defined from 1st

of May to 1st of October), see Figure 4. Measured areas are normalized with respect to the
maximal possible VI area in this period. For normalized VIs (such as NDVI, NDRE1 and NBR),
the maximal possible area is equal to the area under the unity-valued square-shaped function
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between 1st of May and 1st of October. Thus, the measure is equivalent to a mean VI value for the
maturity period.

(c) SOS20 (Start Of Season), SOS50, PS90S (Peak Season): Days of the year at which the VI amplitude
is, respectively, 20%, 50% and 90% of the maximum amplitude, during the spring/summer period,
i.e., the greenup period, see Figure 4.

(d) EOS20 (End Of Season), EOS50, PS90E: Days of the year at which the VI amplitude is, respectively,
20%, 50% and 90% of the maximum amplitude, during the summer/fall period, i.e., the vegetation
senescence period, see Figure 4.
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PS90E
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Dormancy Greenup Maturity Senescence Dormancy

D-L fitting
S-G filtering
Stress Indicators

Figure 4. Phenological curve as described by Normalized Difference Vegetation Index (NDVI) (Double
logistic approximation in green and Savitzky–Golay filtering in black) and annual phenological
characterization criteria (blue), Greenperiod area is colored in light blue for clarity. Case study of
Canal de Brienne area, Toulouse, 2018. Main vegetation phenological periods are outlined in the top of
the figure: Dormancy, Greenup, Maturity and Senescence [44].

3.3. Intra-Annual Phenology Characterization

The S-G reconstruction methodology allows us to observe intra-annual dynamics, that might
be related to phenological disturbance periods during the year. Here, these periods are defined as
periods with anomalous dynamics (that are unpredictable with reconstruction methods imposing a
function behavior): periods where the concavity/convexity of the phenological curve is suddenly
broken [35,61,62]. Their quantification can be assessed with:

(e) SlVIti : Negative slope (VI/day) of the VI curve at the beginning of the phenological disturbance
period, see Figure 5. This indicator provides information on the strength of the perturbation.
The more negative the slope is, the more important the phenological disturbance is, i.e., the more
important is the concavity break.

(f) DiffA: Normalized area between the phenological curve and the straight line joining the start
and the end of the phenological disturbance period, see Figure 5. Normalization is applied over
the number of days corresponding to the phenological disturbance period. This straight line is
assumed to be the lower possible bound of a non-disturbed phenological curve. This indicator
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not only provides information on the importance of the perturbation but also on the capacity of
the vegetation to restore.
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Figure 5. Phenological curve as described by NDVI in black and its derivative (SlVIti ) in blue. DiffA is
also shown in the zoomed image. The value of SlVIti at the beginning of the phenological disturbance
period is surrounded by the red rectangle. Case study of Canal de Brienne area, Toulouse, 2018.

On a global overview of the chosen annual criteria, vegetation phenology is analyzed through the
maximum values of the VI (VImax), but also, by studying how long vegetation maintains high VI values
(Greenperiod, PS90S, PS90E), how fast is greenup (SOS20,SOS50) or when senescence arrives (EOS20,
EOS50). Two additional criteria are also proposed to quantify intra-annual anomalous phenology
events (slVIti and DiffA).

4. Results

This section studies the performances of the above presented methodology when it was applied
to characterize urban and peri-urban London plane phenological curves as described by NDVI, NBR
and NDRE1, see Table 1. First, the performances of the pixel classification and the S-G filtering steps
are shown. Then, the reconstructed time series are used to characterize the vegetation phenological
dynamics. The results obtained with the S-G filtered time series are compared to those obtained with a
fitting function (double logistic) time series reconstruction method applied on the pixels classified as
vegetation. Only pixels in the masked areas shown in Figure 1 are processed.
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4.1. Classification of Vegetation Pixels

Figure 6 shows the classification map obtained with curve fitting on the Canal de Brienne area,
with NDVI (10 m resolution), NBR (20 m resolution) and NDRE1 (20 m resolution) respectively. Based
on step (3) of the methodology described in Section 3.1, vegetation pixels are colored in fuchsia, mixed
pixels in cyan and non-vegetation pixels in blue. As expected, the number of vegetation pixels is higher
with NDVI than with NBR or NDRE1 due to the difference in spatial resolution. Further, the location
of the vegetation pixels at 20 m overlaps that of the vegetation pixels at 10 m. However, vegetation
pixel locations from NBR and NDRE1 do not fully coincide. Figure 7 shows the raw VI curves for
pixels classified as vegetation on the five studied areas for NDVI, NBR and NDRE1. After classification,
pixels classified as vegetation present a common phenology behavior associated to vegetation in any of
the studied sites. In addition, whatever the indices, the differences of the VI values between time series
are smaller on Brienne, Midi Int and Midi Ext compared to JGuesde and FVerdier sites. A larger range
of VIs value variations during the winter season is also noticed, whatever the location, but being larger
in FVerdier. This effect is due to the background heterogeneity, since during the dormancy period,
the lack of leaves increases the background influences on the phenological curve.

NDVI

Non Vegetated Pixels
Mixed Pixels
Pure Pixels

NBR NDRE1

Figure 6. The 2018 London plane classification map obtained by applying the proposed methodology
with NDVI (left) at 10 m resolution, Normalized Burn Ratio (NBR) (center) at 20 m resolution and
Normalized Difference Red Edge Index 1 (NDRE1) (right) at 20 m resolution for Canal de Brienne
area. Fuchsia indicates vegetation pixels, cyan indicates mixed pixels with an important quantity of
vegetation while blue indicates non-vegetation pixels. Background are the RGB (left) and B6-B8A-B12
(center and right) composite Sentinel-2 images for 25th July 2018.

Table 2 shows the number of pixels classified as vegetation together with the percentage they
represent in each studied area. It also shows, for each studied site, the standard deviation of the
VI values of the vegetation pixels during the maturity period. For every VI, Brienne and Midi Ext
present the lowest standard deviations (between 0.02 and 0.03 depending on the VI), followed by
Midi Int (0.03, 0.04 and 0.05 for NDVI, NBR and NDRE1 respectively). For NDVI, the percentage of
vegetation pixels is higher for Brienne and Midi Ext than over the other sites. On the other hand,
for both NBR and NDRE1 the highest percentages of vegetation pixels are found for Midi Ext and
JGuesde. Moreover, the percentage of pixels classified as vegetation obtained for the studied areas is
more regular with NDRE1 (between 29% and 40% of pixels), while for NDVI and NBR larger variations
are found (between 22% and 58% for NDVI and 13% and 46% for NBR). This can indicate that D-L
fitting classification with NDRE1 is less influenced by the type of background.
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Figure 7. The 2018 London plane raw phenological curves for pixels classified as vegetation with NDVI
(top), NBR (center) and NDRE1 (bottom) for the five studied sites from left to right: Brienne, Midi Int,
Midi Ext, JGuesde and FVerdier.

Table 2. Curve fitting classification performances for NDVI, NBR and NDRE1. # indicate the number
of pixels and “std” the standard deviation of the VI values of the vegetation pixels during the
maturity period.

NDVI NBR NDRE1

# pixels # vegetation std # pixels # vegetation std # pixels # vegetation std

Brienne 918 379 (41.2%) 0.02 229 66 (28.8%) 0.03 229 68 (29.7%) 0.03
MiDi Int 654 143 (21.8%) 0.03 154 41 (26.6%) 0.04 154 55 (35.7%) 0.05
MiDi Ext 1041 610 (58.5%) 0.02 257 120 (46.7%) 0.02 257 103 (40.0%) 0.03
JGuesde 219 70 (31.9%) 0.06 54 20 (37.0%) 0.05 54 22 (40.7%) 0.06
FVerdier 564 129 (22.8%) 0.04 145 20 (13.7%) 0.06 145 45 (31.0%) 0.06

4.2. Savitzky–Golay Filtering to Build Vi Time Series

Figure 8 allows to compare the NDVI (a), NBR (b) and NDRE1 (c) Savitzky–Golay filtered time
series for pixels from Canal de Brienne classified as vegetation, mixed and non-vegetation pixels. Green
lines represent pixels that are completely occupied by London planes. They show the highest VI values
and after application of the proposed methodology, no sudden variability between dates remains.
They also exhibit the smallest standard deviation. Black lines represent non-vegetated (or very few
vegetated, or very unhealthy vegetation) pixels. They show the lowest VI values and, after applying
the proposed methodology, noise remains important. This can be due to misregistration between dates,
i.e., the composition of the pixels varies from one date to another, sometimes partially containing
vegetation. In between, yellow line represents mixed pixels, with variable vegetation proportion.
It can also represent unhealthy vegetation pixels, i.e., pixels for which the phenology curve can not be
fitted by a given fixed function such as “double logistic” or “double hyperbolic tangent”. Both, mixed
and non-vegetated pixels present large standard deviations showing the existence of very different
phenology behaviors in these groups. However, Figure 8 shows that the yellow means are very close
to the green ones with a very similar behavior. This may indicate that the classification procedure has
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been restrictive. This strict classification is used to avoid false-positive vegetation pixels in the analysis.
Identical qualitative results are found for the other studied areas (data not shown).

Figure 8 also shows, in red, the mean of the D-L fitted curve for vegetation pixels. While for NBR
green and red curves are very similar, for NDVI and NDRE1 the red line does not describe the drop
appearing for the green one at DoY ≈ 205. In addition, D-L fitting, imposing a fixed function, provides
smoother VIs time series, as expected.
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Figure 8. Savitzky–Golay reconstruction of the 2018 phenological curves as described by NDVI (a),
NBR (b) and NDRE1 (c) for Canal de Brienne area and for vegetation pixels in green, mixed pixels in
yellow and non-vegetated pixels in black. Dashed lines and stars represent the mean of VI time series
and the area around represent the standard deviation. The red continuous curve represents the mean
behavior of D-L fits on vegetation pixels.
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4.3. Analysis of Phenological Dynamics from Vi Time Series

4.3.1. Annual Dynamics

Two methodologies to reconstruct vegetation phenological curves are compared in this section:
Savitzky–Golay filtering and double logistic fitting, both applied on pixels previously classified
as vegetation.

Figure 9 shows the phenology curves of London planes as characterized by NDVI (a, b), NBR
(c, d) and NDRE1 (e, f) for the five studied areas described in Section 2.1. Curves in left column
of Figure 9 are defined as the mean of the Savitzky–Golay filtered phenology curves, while curves
in right column of Figure 9 are defined as the mean of the double logistic fitted phenology curves.
In Figure 9a–d differences between the five sites can be observed with the NDVI and NBR reconstructed
time series, and independently of the reconstruction methodology. These differences are quantified
by VImax, and Greenperiod criteria, see Tables 3 and 4 for S-G and D-L methods respectively. Both
methods show that London planes along the artificial canals present the highest values in NDVI and
NBR, with peri-urban London planes from Canal de Midi (Midi Ext) presenting the highest values:
NDVIS-G

max = 0.90± 0.01 and NBRS-G
max = 0.72± 0.02. On the other hand, London planes from the

avenues (F.Verdier and J.Guesde) exhibit smaller NDVI and NBR values. Indeed, London planes from
J. Guesde avenue, with NDVIS-G

max = 0.77± 0.10 and NBRS-G
max = 0.58± 0.14, have the lowest values

during the maturity period. This is not the case for NDRE1 reconstructed time series (Figure 9e,f),
for which Brienne and Midi Ext present the highest NDRE1 values (for Brienne London planes
NDRE1S-G

max = 0.60± 0.03), with the other three sites showing lower values during the maturity period
(NDRE1S-G

max = 0.49± 0.06 for Midi Int, NDRE1S-G
max = 0.50± 0.07 for FVerdier and NDRE1S-G

max =

0.48± 0.06 for JGuesde).

Table 3. Mean of the annual phenological dynamics criteria on S-G filtered phenological curves
for NDVI, NBR and NDRE1 and for the five studied areas. Standard deviations are indicated
within brackets.

NDVI SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) V Imax (VI) Greenperiod (%)

Brienne 93 (4) 106 (7) 140 (21) 201 (6) 290 (11) 0.90 (0.05) 82 (5)
MiDi Int 95 (4) 108 (3) 144 (20) 202 (9) 285 (10) 0.88 (0.03) 80 (3)
MiDi Ext 97 (4) 110 (3) 142 (17) 202 (6) 290 (6) 0.90 (0.01) 84 (2)
JGuesde 91 (14) 112 (11) 154 (22) 210 (16) 290 (15) 0.77 (0.10) 72 (11)
FVerdier 92 (7) 105 (8) 150 (28) 200 (10) 289 (13) 0.85 (0.09) 78 (9)

NBR SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) VImax (VI) Greenperiod (%)

Brienne 95 (2) 105 (2) 136 (16) 221 (20) 304 (7) 0.69 (0.06) 65 (6)
MiDi Int 94 (3) 107 (3) 136 (14) 229 (22) 304 (7) 0.65 (0.05) 61 (6)
MiDi Ext 95 (3) 108 (3) 137 (12) 251 (27) 306 (5) 0.72 (0.02) 68 (2)
JGuesde 89 (7) 110 (11) 146 (17) 251 (36) 305 (9) 0.58 (0.14) 54 (15)
FVerdier 94 (4) 104 (3) 133 (14) 222 (23) 297 (11) 0.59 (0.12) 55 (12)

NDRE1 SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) VImax (VI) Greenperiod (%)

Brienne 94 (3) 108 (3) 165 (24) 196 (3) 244 (16) 0.60 (0.03) 48 (2)
MiDi Int 96 (8) 112 (5) 159 (21) 198 (5) 256 (15) 0.49 (0.06) 41 (5)
MiDi Ext 97 (7) 115 (8) 158 (18) 200 (10) 269 (13) 0.55 (0.03) 47 (3)
JGuesde 96 (3) 110 (5) 153 (20) 205 (14) 263 (24) 0.48 (0.06) 42 (5)
FVerdier 96 (2) 107 (3) 166 (23) 199 (9) 260 (16) 0.50 (0.07) 41 (6)
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Figure 9. Reconstruction of the 2018 London plane phenological curves with Savitzky–Golay filtering
as described by NDVI (a), NBR (c) and NDRE1 (e) and with double logistic fitting as described by
NDVI (b), NBR (d) and NDRE1 (f), both applied on the vegetation pixels of the five studied areas:
Canal de Brienne (olive), Urban Canal de Midi (cyan), Peri-Urban Canal de Midi (green), J. Guesde
(magenta) and F. Verdier (red). Black dashed vertical lines indicate DoY 170, 205 and 270 corresponding
to the start dates of the two intra-annual phenological disturbance periods and the end of the second
one respectively.
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Table 4. Mean of the annual phenological dynamics criteria on D-L fitted phenological curves for NDVI,
NBR and NDRE1 and for the five studied areas. Standard deviations are indicated within brackets.

NDVI SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) V Imax (VI) Greenperiod (%)

Brienne 90 (8) 103 (5) 125 (4) 224 (14) 285 (11) 0.87 (0.05) 83 (6)
MiDi Int 92 (5) 106 (4) 128 (8) 225 (16) 284 (12) 0.85 (0.03) 81 (3)
MiDi Ext 95 (2) 108 (3) 128 (2) 247 (12) 293 (6) 0.88 (0.02) 85 (2)
JGuesde 94 (15) 109 (13) 134 (17) 237 (26) 283 (24) 0.76 (0.10) 73 (11)
FVerdier 91 (10) 103 (11) 130 (19) 224 (20) 283 (18) 0.83 (0.09) 78 (9)

NBR SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) VImax (VI) Greenperiod (%)

Brienne 94 (2) 105 (2) 125 (7) 276 (14) 308 (10) 0.67 (0.06) 66 (6)
MiDi Int 94 (2) 106 (3) 127 (5) 268 (13) 309 (7) 0.63 (0.05) 62 (5)
MiDi Ext 95 (2) 108 (3) 128 (3) 278 (10) 310 (5) 0.70 (0.02) 69 (2)
JGuesde 92 (5) 108 (6) 136 (17) 276 (26) 308 (16) 0.56 (0.14) 55 (15)
FVerdier 93 (4) 104 (3) 125 (7) 249 (29) 296 (23) 0.58 (0.12) 56 (12)

NDRE1 SOS20 (DoY) SOS50 PS90S PS90E EOS50 (DoY) VImax (VI) Greenperiod (%)

Brienne 90 (4) 108 (4) 169 (25) 196 (2) 240 (12) 0.60 (0.03) 48 (2)
MiDi Int 96 (4) 112 (5) 158 (25) 197 (4) 245 (15) 0.49 (0.06) 41 (5)
MiDi Ext 96 (4) 113 (4) 142 (19) 207 (16) 261 (17) 0.54 (0.03) 47 (3)
JGuesde 92 (8) 108 (6) 145 (23) 206 (11) 253 (25) 0.48 (0.06) 42 (6)
FVerdier 94 (3) 106 (3) 160 (27) 200 (13) 247 (18) 0.50 (0.08) 42 (6)

On the other hand, criteria such as SOS20, SOS50, PS90S PS90E and EOS50 do not allow us to
observe differences between the annual phenological dynamics of the different sites as described
by NDVI, NBR and NDRE1, see Tables 3 and 4. For any studied site and with any VIs, the start
of greenup, indicated by SOS20, is found around DoY 90 with variations between sites of less than
one week and standard deviations between a couple of days and a couple of weeks. SOS50, which
indicates the midpoint of the greenup period, appears around DoY 105–115 depending on the site,
with standard deviations of the same magnitude as the differences. These results are independent
of the reconstruction methodology. The position of the peak of maturity, located between PS90S and
PS90E, varies between VIs and reconstruction methodologies. Thus, for NDRE1, independently of
the methodology, PS90S PS90E criteria predict the peak of maturity to be between DoY 140–170 and
DoY 195–210. However, for NDVI and NBR, PS90S and PS90E criteria present differences between
S-G and D-L time series. While S-G time series for both NDVI and NBR predict PS90S around DoY
140–150 for any studied area, D-L time series predict earlier greenup of about 20 days (DoY ≈ 120–130).
This behavior is inverted for PS90E. In this case, D-L time series estimate the starting of senescence
around DoY 220–240 for NDVI and 250–280 for NBR, while S-G ones estimate earlier starting of
senescence at DoY 200–210 for NDVI and 230–250 for NBR. In addition, whatever the selected VIs,
both PS90S and PS90E present high variabilities with high standard deviations of around 20 days,
especially when differences between the mean values for the different sites are more important. EOS50,
indicating the midpoint of senescence, also depends on the observed VI but is independent of the
methodology. Thus, for NDVI EOS50 approximately appears on DoY 280–290, for NBR it is around
DoY 300–310 and for NDRE1 around DoY 240–260. In the case of NDVI and NBR, the differences of
PS90S and PS90E between S-G and D-L time series are explained because D-L does not characterize
intra-annual sudden drops of VIs, which appear during the maturity period. Hence, we consider that
these criteria on S-G time series provide more confident values. In the case of NDRE1, the shape of the
phenology curve as described by this VI reduces the differences of PS90S, PS90E and SOS50 between
S-G and D-L methodologies.
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4.3.2. Intra-Annual Phenological Disturbance Events Analysis

Only the proposed methodology, with S-G filtering, allows to observe intra-annual phenological
disturbance events (defined as periods with anomalous phenological dynamics), while D-L curve
fitting method does not (see Figure 9). Thus for NDVI and NDRE1, Figure 9a,e shows a marked
disturbance period, characterized by a sharp fall of both VIs [35,61,62], occurring from the end of July
(DoY ≈ 205) to September (DoY ≈ 270). This period can be observed on every studied area with a
decrease of NDVI and NDRE1 going from around −0.01 NDVI (NDRE1) per week, for London planes
from Canal de Brienne, to -0.005 NDVI (NDRE1) per week, for London planes from peri-urban Canal
de Midi. Another (less important) intra-annual phenological disturbance period, also characterized
by a sharp decrease of VIs appears at the end of June (DoY ≈ 170) on every studied area. Table 5
shows that for NDVI and NDRE1 both, the slope and the area criteria, indicate that London planes
from peri-urban Canal de Midi are the less disturbed trees (for NDVI and NDRE1 SlVI205 = −0.005
VI/week, and DiffA = 0.010 and 0.007 respectively), while those of Canal de Brienne are more disturbed
(for NDVI and NDRE1 SlVI205 = −0.008 VI/week and −0.009 VI/week respectively, and DiffA = 0.025
and 0.033 respectively). The rest of areas present phenological disturbance in between.

For NBR, Figure 9c shows a slight phenological disturbance period occurring at the same moment
of the one observed in NDVI and NDRE1 (DoY ≈ 205), with a decrease of NBR of −0.004 NBR/week,
for London planes from Canal de Brienne, and of −0.002 NBR/week, for London planes from
peri-urban Canal de Midi. Thus, NBR seems to be less sensitive to the anomalous phenological
dynamics appearing during this period than NDVI or NDRE1. Table 5 shows that for NBR the slope
criterion agrees with the results obtained for NDVI and NDRE1. Peri-urban Canal de Midi trees have
the less anomalous dynamics, and newly, Canal de Brienne trees show the most anomalous dynamics.

Table 5. Mean of the intra-annual disturbance criteria on S-G filtered phenological curves for NDVI,
NBR and NDRE1 and for the five studied areas.

Site SlVIti (VI/DoY) Normalized DiffA (VI)

NDVI

Brienne −0.0011 0.025
MiDi Int −0.0010 0.018
MiDi Ext −0.0007 0.010
JGuesde −0.0008 0.015
FVerdier −0.0010 0.019

NBR

Brienne −0.0005 0.013
MiDi Int −0.0004 0.008
MiDi Ext −0.0003 0.002
JGuesde −0.0003 0.010
FVerdier −0.0005 0.011

NDRE1

Brienne −0.0013 0.033
MiDi Int −0.0008 0.015
MiDi Ext −0.0007 0.007
JGuesde −0.0008 0.019
FVerdier −0.0008 0.012

4.4. Climate Factor Influences on Phenological Curves

Figure 10 plots the meteorological data recorded at the Meteopole-Flux station during 2018.
These data describe a sudden change of weather condition between DoY 168 and DoY 170 (17–19 June
2018): the daily maximum temperature increases from 22 to 28 ◦C, and mean global solar radiation
from 345 to 515 W·m−2. Conditions durably remain warm until DoY 224 (12 August 2018) with
a maximum daily temperature greater than 30 ◦C associated to a high radiation forcing. A short
heat-wave event is even recorded from 2 to 6 August. In addition, precipitations are low during the
period DoY 170–287 leading to a drying of the soil that is more or less rapid and durable depending
on the depth of soil layers analyzed. The water content for the near-surface layer (10–50 cm) is very
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sensitive to short-term precipitation variation. A rapid decrease from 0.30 to 0.12 m3·m−3 is noted
from DoY 170 followed by a slight increase around DoY 197 due to some rainfall events, and then
the water content continues to decrease down to 0.09 m3·m−3 until the end of the dry period by
October. The water content of soil layer 50–100 cm decreases rapidly at the beginning of the dry period
(DoY 287) and then stabilizes at around 0.12 m3·m−3. At this depth, the water content is not sensitive
to short-term rainfall events. Finally the deeper soil layer presents a slower dryness following a linear
decrease in soil water content from DoY 168 to DoY 280 down to 0.19 m3·m−3, and then remains
unchanged for the rest of the year.
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Figure 10. Daily meteorological variables measured at the Centre National de Recherches
Meteorologiques (CNRM) de Toulouse: left) maximum air temperature (red) and global incoming
radiation (gray), right) soil water content at three depth levels (red, purple and pink) and precipitations
(blue). Black dashed vertical lines indicate DoY 170, 205 and 270 corresponding to the start dates of the
two intra-annual phenological disturbance periods and the end of the second one respectively.

Figure 9 gives the phenological curves as described by NDVI, NBR and NDRE1 for the five
studied areas together with the vertical dashed lines containing the intra-annual periods of anomalous
phenological dynamics (same dashed lines as in Figure 10). These intra-annual phenological
disturbance events seems to be linked with the meteorological conditions of the periods: increase
in temperatures and total received irradiance and decrease in precipitations and soil water content,
see Figure 10.

5. Discussion

5.1. Methodology Hypotheses and Performances

As said in Section 3.1, the proposed method supposes that for VIs time series in urban
environments, sudden falls are mainly due to noise induced by registration variability between
dates. The magnitude of these sudden drops for the same co-registration error can depend on the
spectral contrast between vegetation and background and on the chosen VI used to reconstruct the
phenological curve. For these reasons, both the D-L curve fitting and the S-G filtering contain a
weighting hypothesis to make reconstructed phenological curves converging to the upper VI envelope
and thus correcting this mixed-pixel effect.

The same hypothesis has been proposed for reconstructing VIs in natural environments [45,50,51],
where sudden falls in VI time series are considered to be due to atmospheric and cloud cover variability
and/or bi-directional effects [51]. Hence, in these cases, the hypothesis grounds on the NIR reflectance
decrease when atmospheric transmission is reduced. On the other hand, reflectances in the visible
domain increase due to additive path radiance [51]. However, in urban environments, registration
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variability between dates appears as the main source of noise due to the important heterogeneity of
impervious/natural elements, the 3D structure of cities inducing shadows and the restricted spatial
extent of vegetation. This is shown in Figure 8a,b, since the amplitude of the noise depends on the
pixel, this noise can not be due to atmospheric effects or the latter are strongly masked by the first.

In this work, classification is based on curve fitting and a statistical condition to avoid pixels with
low VI values during the maturity period, see Section 3.1. The main advantage of this classification
methodology based on curve fitting is that most of the non-vegetated pixels are excluded for next
analysis, see Figure 7. Its drawback is that strongly unhealthy vegetation pixels, with phenologies
not following the imposed function, may be considered as non-vegetated ones. In order to improve
the classification performances, refined definitions of Bv and Bm depending on VIs, background and
vegetation species are further recommended. In addition, to study other species, the bounds of the
maturity period may be re-defined following suggestions from Section 3.1.

In the S-G filtering, the weighting hypothesis may hide or reduce possible existing intra-annual
phenological disturbance periods, since the filter tends to approach the upper envelope of the time
series. However, even if these intra-annual periods are difficult to distinguish from noise, it can be
seen in Figure 8 that if these periods are marked enough, they are correctly characterized by the
methodology (comparison between green and red curves). The anomalous dynamics of the London
planes phenology during a punctual short period may be underestimated, but they are observed.

In addition, the proposed time series reconstruction methodology is semi-automatic since for both
steps: curve fitting classification and Savitzky–Golay filtering, the configuration of input parameters
is done by the algorithm. Thus, in the minimization needed to time-series fitting, the initial values
of the parameters of Equation (1) are directly approximated by the code from the raw time series.
For the S-G filtering only two parameters are needed, the size of the smoothing window (m) and
the degree of the smoothing polynomial (d). As explained in Section 3.1, the code selects those
parameters that lead to smaller errors. Only the range of possible m and d values should be defined,
see Section 3.1. Finally, this methodology is generic and appears as applicable on any large-enough
group of mono-species urban vegetation, the main limitation being the resolution of the satellite used
in the study. The phenology of mono-species grouped trees located in non-urban environments where
mixed pixel problems can appear, such as in orchards [75,76] or woodlands/savannas [77–79], might
be also studied with the proposed methodology.

5.2. Vegetation Phenology Characterization

Contrary to other works that focus on NDVI time series to describe vegetation phenology [50–52],
the proposed methodology enlarges to study other VIs such as: NBR and NDRE1. The use of
normalized indices simplifies the quantification of the magnitude of intra-annual phenological
disturbance periods, as well as the comparison between VI phenological curves, since the maximum
and minimum possible values of the indices are fixed. In addition, analyzing several VIs allows for a
more complete characterization of the phenological dynamics since: 1) the different VIs provide
information on different vegetation functional and structural variables helping to have a better
assessment of vegetation health [37–41] (Table 1) and 2) the sensibility to background, shadows
and atmospheric effects varies between VIs.

Among the criteria considered as characterizing the annual phenological dynamics of urban
vegetation, VImax, and Greenperiod provide the best performances for describing the heterogeneity of
the phenological dynamics of the studied sites. While VImax characterizes the annual dynamics with
single-date information, that for some VIs can be interpreted as the maximal capacity of vegetation
production along the year, Greenperiod is not based on a single-date but on the whole maturity period,
and is thus less dependent on the number of available images. Taking both of them into account
allows to well characterize the VI behavior during the green period. Several potential factors can
lead to the obtained phenological dynamics heterogeneity between sites, among them, differences
in: 1) The magnitude of the influence of background (including self and cast shadow effects) on
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the phenology characterization, 2) the illumination and viewing conditions, 3) the environmental
conditions (root space, water availability, temperature differences, etc.), 4) the age of the trees and
5) the orientation of the alignment, etc. To reduce the impact that background and shadows can
introduce on the phenology characterization, the pixel classification was performed to discriminate
pixels mainly covered by vegetation (where the effects of background are supposed to be lower) from
mixed and non-vegetated pixels. Furthermore, the S-G filter applied on vegetation pixels has been
also developed to reduce possible remaining influences of mixed pixel effects. In addition, for the
five studied areas, buildings are smaller than London planes (except marginal exceptions), and so, no
shadows are expected to be cast on the tree top of canopy. The illumination and viewing conditions can
be discarded since illumination evolves across the year equally for the five studied sites, and for S-2
used images the viewing angles does not vary, see Section 2. Environmental differences between the
studied sites are clear and explained in Section 2.1, for example, the Toulouse town hall indicated that
London planes from J. Guesde avenue present health issues due to the long term impact of road works
on their root system development and the quality of the soil that has been replaced for this purpose.

The other studied annual criteria: SOS20, SOS50, PS90S, PS90E and EOS50, based on the
characterization of phenological asymmetries [80], are not able to capture the heterogeneities between
the different sites. These indicators are based on the date of a given VI amplitude and are very affected
by the number of available images, the maximum and minimum VI values and the existence of
intra-annual periods of phenological disturbance. Hence, their interpretation when characterizing the
phenological dynamics heterogeneity of urban mono-species vegetation is difficult, since differences on
start of greenup and senescence are expected to be small. Nevertheless, Vrieling et al. 2018 and Zhou
2019 showed that these criteria are adapted when discriminating different species of vegetation [45,80].

For every tested annual criteria, S-G filtering and D-L fitting methodologies, both on pixels
previously classified as vegetation, present similar performances. Since S-G filtering takes into account
intra-annual phenological disturbance periods, its description seems to be more accurate even for
annual characterizations. However, noise can remain in the S-G reconstructed time series, being a
source of error.

Two criteria to quantify the influence of intra-annual phenological disturbance periods
(characterized by concavity breaks [35,61,62]) on VIs reconstructed time series have been used: SlVIti

and DiffA, see Figure 5. While the slope criterion allows us to quantify the disturbance period, very
locally in time, by its initial and sudden effect on VI, the area criterion allows to quantify its whole
effect on vegetation phenology. The comparison between the reconstructed phenology curve and the
straight line has been chosen since the straight line represents the most disturbed possibility for the
phenology curve without breaking the concavity/convexity of the time series. Another option would
have been to compare, during the intra-annual phenological disturbance period, the S-G reconstructed
phenology area to the D-L reconstructed phenology area, see Figure 8. However, the D-L method
is based on curve fitting, and thus, the estimated area during the punctual disturbance period will
depend on every date of the fitted raw phenology time series. The area criterion should be used
carefully, because the same disturbance period can last more or less depending on the used VI. This is
not surprising since different VIs provide different information on the vegetation health status and
are differently influenced by background. However, intra-annual disturbance events represent slight
modifications of phenological curves and then fine spatial resolutions and band widths are important.
NDVI, NBR and NDRE1 are calculated at different spatial resolutions: 10 m for NDVI and 20 m for
NBR and NDRE1; and band widths: around 100–150 nm for NDVI and NBR and 15 nm for NDRE1.
Thus, both low spatial resolutions and wide band widths can hide intra-annual details on phenology
curves. The spatial resolution and band widths of NBR may also explain the difficulty to observe the
phenological disturbance period during the first week of August 2018 on NBR time series.



Remote Sens. 2020, 12, 639 22 of 28

5.3. Meteorological Influences on Intra-Annual Phenological Dynamics

The analysis of the evolution of meteorological conditions during 2018 shows their possible
influence on the intra-annual phenological disturbance phases of the London planes that have been
identified on the monitoring of NDVI, NBR and NDRE1, see Figures 9 and 10. First, air temperature
and vapor pressure deficit are the two environmental parameters that govern stomatal opening and
plant transpiration. The rapid change to very high heat conditions can also increase rapidly the
vapor pressure deficit, that can hasten the decline of vegetation [81,82]. Thus, several works indicated
the “strong statistical association between phenology and temperature” [83–86]. On the other hand,
the drop in precipitation and soil water availability limits the capability of trees to uptake water by
roots for transpiration [82]. For 2018, there are no measurements available at different points in the city
to assess the specific meteorological conditions at the different studied sites. This would allow for a
better understanding of the intra-annual phenological dynamic differences between sites, since such
as Wang et al. 2016 suggested, presenting VI phenology time series versus temperature cumulative
indices, and not versus DoY, allows us to better discriminate phenological dynamics [87]. Despite
this lack of multiple meteorological stations, in terms of temperature, data collected over Toulouse in
2004–2005 during the CAPITOUL field campaign [88] allows us to visualize the temperature differences
according to urban typologies [89]. During summertime, daytime air temperature differences of 1–2 ◦C
were observed between city center and outskirts. These differences was larger at night up to 3–4 ◦C.
Hence, London planes from Midi Ext are considered to be exposed to lower temperatures than London
planes from the city center. On the other hand, precipitations are supposed to not strongly vary from
one point to the other of the city (especially taking into account the anticyclonic weather prevailing
during the most part of the summer of 2018). Thus, the precipitations measured at Meteo-France can
illustrate the precipitations at the studied sites. From this consideration, the soil water content sensors
located in a grassland ecosystem at Meteo-France can be interpreted as the maximal soil water contents
at the Toulouse city center, where impervious surfaces reduce the soil moisture. This hypothesis is
only valid for sites far from canals. Then, when soil water content at Meteo-France is low due to lack
of precipitations, it is supposed to also be low in the city center far from water sources.

Finally, for Canal de Brienne, Urban Canal de Midi and Peri-urban Canal de Midi, the trees
are planted near a water source in an undisturbed natural soil. Consequently, the roots can develop
freely (down to deep soil) and uptake soil water. For J. Guesde Avenue and F. Verdier Avenue, trees
are planted in a built-up environment where the ground is disturbed and heterogeneous. The root
system has less space to expand, which limits access to water and nutrient supplies [90]. In addition,
these trees are less exposed to precipitation due to the limited space of soil in which they are planted.
In such conditions, trees may be more sensitive to specific disturbance events.

6. Conclusions

This work proposes a new methodology that enables the monitoring of urban tree vegetation
phenological dynamics from Sentinel-2 VIs time series reconstruction. First, a pixel by pixel curve
fitting classification was performed, based on the hypothesis that healthy vegetation phenology follows
a given fixed annual behavior. This allows us to discriminate vegetation, mixed and non-vegetation
pixels. Then, on vegetation pixels, a Savitzky–Golay filter is applied to reduce induced noise mainly
due to registration variability between dates. This methodology does not describe the phenology curve
with a fixed function. So that, with the appropriate criteria, it allows us to characterize annual and
intra-annual vegetation phenological dynamics for groups of mono-species urban trees.

In this article, London planes located at five sites with different environmental conditions have
been studied during a single year (2018). From one side, VImax and Greenperiod criteria show the
phenology heterogeneity existing between London planes located at the different sites. However,
from another side, criteria based on the date of a given VI amplitude such as SOS20, do not appear to
be adapted to illustrate this heterogeneity.
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The ability of the proposed methodology to detect the existence of intra-annual phenological
disturbance events, that may be linked to environmental conditions, is also shown. Two intra-annual
periods of anomalous phenological dynamics were detected during summer. Their influence on the
phenological curves has been quantified with two different criteria: SlVI measuring the negative VI
time series slope at the beginning of the disturbance period, and DiffA measuring the lose of VI area
due to the disturbance event. Furthermore, these phenological disturbance periods have been related
to summer meteorological conditions.

Future steps will focus on multi-year studies, for which annual criteria are expected to show
differences between phenological curves from one year to another. Combined with meteorological data
and field campaigns, these differences would be linked to different yearly meteorological conditions,
diseases, pests, pollutants, climate change, etc. Furthermore, the proposed methodology is applicable
to single-season deciduous vegetation. However, for evergreen and double-season vegetation (as it
appears on tropical climates) the curve fitting classification step should be adapted [52,91]. Finally,
the methodology should be tested for different satellites. The new mission VENµS with a spatial
resolution of 10 m with all its bands (400–900 nm), and with a revisit time of 2 days appears as a
good candidate.
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Appendix A. Sentinel-2 Spectral and Spatial Configuration

Table A1. Spectral and spatial configuration of Sentinel-2.

Sentinel-2 Band Wavelength Spatial Resolution

Band 1 - Blue 1 433–453 nm 60 m

Band 2 - Blue 2 458–523 nm
10 mBand 3 - Green 543–578 nm

Band 4 - Red 1 650–680 nm

Band 5 - Red 2 698–713 nm
20 mBand 6 - Red 3 733–748 nm

Band 7 - Red 4 773-793 nm

Band 8 - NIR 1 785–900 nm 10 m

Band 8a - NIR 2 855–875 nm 20 m

Band 9 - NIR 3 935–955 nm 60 mBand 10 - CIRRUS 1360–1390 nm

Band 11 - SWIR 1 1565–1655 nm 20 mBand 12 - SWIR 2 2100–2280 nm
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