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Abstract

We consider the zero-range process with arbitrary bounded monotone rates on the complete

graph, in the regime where the number of sites diverges while the density of particles per site

converges. We determine the asymptotics of the mixing time from any initial configuration,

and establish the cutoff phenomenon. The intuitive picture is that the system separates into a

slowly evolving solid phase and a quickly relaxing liquid phase: as time passes, the solid phase

dissolves into the liquid phase, and the mixing time is essentially the time at which the system

becomes completely liquid. Our proof uses the path coupling technique of Bubley and Dyer,

and the analysis of a suitable hydrodynamic limit. To the best of our knowledge, even the order

of magnitude of the mixing time was unknown, except in the special case of constant rates.
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1 Introduction

1.1 Model

Introduced by Spitzer in 1970 [24], the zero-range process is a widely studied model of interacting

random walks, see, e.g. [18, 19, 9] and the references therein. It describes the evolution of m ≥ 1

indistinguishable particles randomly hopping across n ≥ 1 sites. The interaction is specified by

a function r : {1, 2, . . .} → (0,∞), where r(k) indicates the rate at which particles are expelled

from a site when k particles are present on it. We will here focus on the mean-field version of

the model, where all jump destinations are uniformly distributed. More formally, we consider a

continuous-time Markov chain X := (X(t) : t ≥ 0) taking values in the state space

Ω :=

{
x = (x1, . . . , xn) ∈ Z

n
+ :

n∑

i=1

xi = m

}
, (1)

and whose Markov generator L acts on observables ϕ : Ω → R as follows:

(Lϕ)(x) =
1

n

∑

1≤i,j≤n

r(xi) (ϕ(x+ δj − δi)− ϕ(x)) . (2)

Here (δi)1≤i≤n denotes the canonical basis of Zn
+, and we adopt the convention that r(0) = 0 (no

jumps from empty sites). The generator L is clearly irreducible, with reversible law

π(x) ∝

n∏

i=1

xi∏

k=1

1

r(k)
. (3)

The present paper is concerned with the problem of estimating the speed at which the convergence

to equilibrium occurs, as quantified by the so-called mixing times:

tmix(x; ε) := min {t ≥ 0: ‖Px (X(t) ∈ ·)− π‖
tv

≤ ε} . (4)

In this definition, ‖µ− ν‖tv = maxA⊆Ω |µ(A)− ν(A)| denotes the total-variation distance, and the

parameters x ∈ Ω and ε ∈ (0, 1) specify the initial state and the desired precision, respectively. Of

particular interest is the worst-case mixing time, obtained by maximizing over all initial states:

tmix(ε) := max {tmix(x; ε) : x ∈ Ω} . (5)

Understanding this fundamental parameter – and in particular, its dependency in the precision

ε ∈ (0, 1) – is in general a challenging task, see the books [21, 17] for a comprehensive account. Our

current knowledge on the total-variation mixing time of the zero-range process is embarrassingly

limited in comparison with the numerous functional-analytic estimates that have been established

over the past decades [16, 13, 4, 6, 2, 22, 5, 11, 10, 12]. In fact, to the best of our knowledge, the

exact order of magnitude of the mixing time of the zero-range process has only been determined in

the very special case where the rate function r is constant [15, 14, 20, 12].
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1.2 Main result

The rate function r will remain fixed throughout the paper, and will only be assumed to be non-

decreasing and bounded. Upon re-scaling time by a constant factor if necessary, we take

lim
k→∞

↑ r(k) = 1. (6)

Our results will be expressed in terms of a certain generating series associated with r, namely

Ψ(z) :=
zR′(z)

R(z)
, where R(z) :=

∞∑

k=0

zk

r(1) · · · r(k)
. (7)

All asymptotic statements will refer to the regime where the density of particles per site stabilizes:

n → ∞,
m

n
→ ρ ∈ [0,∞). (8)

To lighten the notation, we will keep the dependency upon n implicit as often as possible. Our

main result is the following explicit asymptotics for the worst-case mixing time:

Theorem 1 (Worst-case mixing time). For any fixed ε ∈ (0, 1),

tmix(ε)

n
−−−→
n→∞

γ :=

∫ ρ

0

ds

1−Ψ−1(s)
, (9)

where Ψ−1 : [0,∞) → [0, 1) denotes the inverse of the (increasing) bijection Ψ: [0, 1) → [0,∞).

Although it seems intuitively clear that the worst-case mixing time should be achieved by

initially placing all particles on the same site, there does not appear to be any direct justification

of this fact. We will thus determine the asymptotics of the mixing time from every possible

configuration x ∈ Ω, see Corollary 1 below for the detailed result. The notable disappearance of

ε on the right-hand side of (9) reveals a sharp transition in the convergence to equilibrium of the

process, known as a cutoff [1, 7]. To the best of our knowledge, the occurence of this phenomenon

for the mean-field zero-range process was only known in the special rate-one case, where the function

r is simply constant equal to 1 [20]. This choice trivially fits our setting (6), with

R(z) =
1

1− z
, Ψ(z) =

z

1− z
, Ψ−1(s) =

s

1 + s
, γ = ρ+

ρ2

2
. (10)

Beyond the obvious complications raised by the non-explicit nature of the rates, Theorem 1 requires

new ideas for at least two reasons. First, the crucial spectral gap estimate of Morris [22], on which

the whole argument of [20] ultimately relies, is only available in the rate-one case. Second, the

stationary distribution (3) is no longer uniform, making the entropy computations from [11, 20]

unapplicable. As a result, even the order of magnitude tmix(ε) = Θ(n) appears to be new. We

circumvent these obstacles by resorting to the powerful path coupling method of Bubley and Dyer

[3]. This alternative route turns out to be so efficient that the proof of our generalization ends up

being significantly shorter than that of the original result [20], without using anything from it.
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1.3 Proof outline

Intuitively, the system may be viewed as consisting of two regions evolving on different time-scales:

• a slow solid phase, consisting of those sites which are occupied by Θ(n) particles

• a quick liquid phase, formed by those sites which are occupied by o(n) particles.

The presence of a solid phase is a clear indication that the system is out of equilibrium, since under

the stationary law π, the maximum occupancy is easily seen to be Θ(log n) (see, e.g., (30) below).

What is less obvious, but true, is that conversely, any completely liquid system reaches equilibrium

in neglible time. To make this rigorous, we use the path coupling method of Bubley and Dyer [3].

Note that in the regime (8), there is ρ < ∞, independent of n, such that

m

n
≤ ρ. (11)

By a dimension-free constant, we will always mean a number which depends only on ρ and r.

Theorem 2 (Fast mixing). There is a dimension-free constant κ < ∞ such that

tmix(x; ε) ≤ κ‖x‖∞ + (lnn)κ, (12)

for every x ∈ Ω and every ε ∈ (0, 1), provided n ≥ κ/ε.

When combined with the worst-case bound ‖x‖∞ ≤ m, this already yields the correct order of

magnitude tmix(ε) = O(n), for any fixed ε ∈ (0, 1). However, the real interest of Theorem 2 lies in

the linear dependency in ‖x‖∞, which implies that the equilibrium is attained in negligible time

when the initial configuration x = x(n) is completely liquid: for any fixed ε ∈ (0, 1), we have

‖x‖∞ = o(n) =⇒ tmix(x; ε) = o(n). (13)

By the Markov property, this reduces our task to that of understanding the time it takes for an

arbitrary initial condition x ∈ Ω to become completely liquid. By symmetry, we may assume

without loss of generality that the coordinates of x are arranged in decreasing order:

x1 ≥ . . . ≥ xn. (14)

In the regime (8), we may further assume (upon passing to a subsequence) that for each k ≥ 1,

xk
n

−−−→
n→∞

uk. (15)

Note that the limiting profile (uk)k≥1 must then satisfy u1 ≥ u2 ≥ . . . ≥ 0 and
∑∞

k=1 uk ≤ ρ. In

this setting, our second step will consist in establishing a deterministic approximation of the form

Xk(nt)

n
≈ [uk − f(t)]+ , (16)
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for fixed t ≥ 0 and k ≥ 1, where f : R+ → R+ is a smooth increasing function describing the

dissolution of the solid phase, and where we have used the notation [a]+ = max(a, 0).

Theorem 3 (Hydrodynamic limit). If x = x(n) satisfies (14)-(15), then for any fixed T ≥ 0,

Ex

[
sup

k∈[n],t∈[0,T ]

∣∣∣∣
Xk(nt)

n
− [uk − f(t)]+

∣∣∣∣

]
−−−→
n→∞

0, (17)

where the function f : R+ → R+ is characterized by the differential equation

f ′(t) = 1−Ψ−1

(
ρ−

∞∑

k=1

[uk − f(t)]+

)
, f(0) = 0. (18)

Moreover, for each i ≥ 1, we have the explicit expression

f−1 (ui) =
∞∑

k=i

1

k

∫ ρk−1

ρk

ds

1−Ψ−1(s)
, (19)

where the numbers ρ = ρ0 ≥ ρ1 ≥ . . . ≥ 0 are given by ρk := ρ+ kuk+1 −
∑k

i=1 ui.

The proof relies on a separation of timescales argument: the liquid phase relaxes so quickly

that, on the relevant time-scale, the solid phase can be considered as inert. Consequently, the

liquid phase is permanently maintained in a metastable state resembling the true equilibrium,

except that the density is lower because a macroscopic number of particles are “stuck” in the solid

phase. This imposes a simple asymptotic relation between the number of particles in the solid

phase and the dissolution rate, from which the autonomous equation (18) arises. Note that this

limiting description gives access to the dissolution time of the system: for any t ≥ 0, we have

‖X(nt)‖∞ = o(n) ⇐⇒ t ≥ f−1(u1). (20)

Combining this with (13), we readily obtain the following complete description of the mixing time.

Corollary 1 (Mixing time from any state). In the regime (14)-(15), we have for fixed ε ∈ (0, 1),

tmix(x; ε)

n
−−−→
n→∞

f−1(u1) =

∞∑

k=1

1

k

∫ ρk−1

ρk

ds

1−Ψ−1(s)
. (21)

Note that in the degenerate case where u1 = 0, the right-hand side of (21) vanishes, in agreement

with (13). From this detailed description, the worst-case mixing time can finally be extracted by

maximizing the right-hand side of (21) over all possible profiles (uk)k≥1: we trivially always have

∞∑

k=1

1

k

∫ ρk−1

ρk

ds

1−Ψ−1(s)
≤

∫ ρ

0

ds

1−Ψ−1(s)
, (22)

and the equality is moreover attained when u1 = ρ and u2 = u3 = . . . = 0. The maximizer corre-

sponds to placing all particles on the same site, as anticipated. This clearly establishes Theorem 1,

and the remainder of the paper is devoted to the proofs of Theorems 2 and 3, in Sections 2 and 3.
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2 Fast mixing in the absence of a solid phase

2.1 Preliminaries

We start by enumerating a few standard facts that will be used repeatedly in the sequel.

Graphical construction. Let Ξ be a Poisson point process of intensity 1
n
dt⊗du⊗Card⊗Card

on [0,∞)× [0, 1]× [n]× [n] (where Card denotes the counting measure), and consider the piece-wise

constant process X = (X(t) : t ≥ 0) defined by the initial condition X(0) = x and the following

jumps: for each point (t, u, i, j) ∈ Ξ,

X(t) :=

{
X(t−) + δj − δi if r (Xi(t−)) ≥ u

X(t−) otherwise.
(23)

Then X is a Markov process with generator L and initial state x. We always use this construction.

Monotony. Since r is non-decreasing, the above construction provides a monotone coupling of

trajectories: if we start from two configurations x, y ∈ Z
n
+ satisfying x ≤ y (coordinate-wise), then

this property is preserved by the jumps (23), so the resulting processes X,Y satisfy

∀t ≥ 0, X(t) ≤ Y (t). (24)

This classical fact will play an important role in our proof.

Stochastic regularity For any i ∈ [n] and 0 ≤ s ≤ t, we have by construction

−Ξ ([s, t]× [0, 1] × {i} × [n]) ≤ Xi(t)−Xi(s) ≤ Ξ ([s, t]× [0, 1] × [n]× {i}) , (25)

and the Poisson random variables Ξ(·) appearing on both sides have mean t− s.

Mean-field jump rate. For any observable ϕ : Ω → R, the process M = (M(t) : t ≥ 0) given by

M(t) := ϕ (X(t)) − ϕ (x)−

∫ t

0
(Lϕ) (X(s)) ds (26)

is a zero-mean martingale, see e.g. [8]. In particular, when ϕ(y) = yi (i ∈ [n]), we obtain

M(t) = Xi(t)− x+

∫ t

0
r (Xi(s)) ds−

∫ t

0
ζ(s) ds, (27)

where the mean-field jump rate ζ(t) is defined by

ζ(t) :=
1

n

n∑

j=1

r (Xj(t)) . (28)

Understanding the evolution of (ζ(t) : t ≥ 0) will constitute an important step in the proof.
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2.2 Uniform downward drift

Our first task consists in showing that the number of particles on a site can not stay large for long.

Proposition 1 (Uniform downward drift). There are dimension-free constants θ, δ > 0 such that

Ex

[
eθXi(t)

]
≤ 2

(
1 + eθ(xi−δt)

)
, (29)

for all x ∈ Ω, i ∈ [n] and t ∈ R+. In particular, for any a ≥ 0,

Px

(
Xi(t) ≥ [xi − δt]+ + a

)
≤ 4e−θa. (30)

The intuition behind this result is as follows: if Xi(t) is large, then by (6) and (27), the drift of

Xi(t) is essentially ζ (t)− 1, which is uniformly negative thanks to the following lemma.

Lemma 1 (Mean-field jump rate). There is a dimension-free constant ε > 0 such that

Px (ζ(t) ≥ 1− ε) ≤ e−εn,

for all x ∈ Ω and all t ∈ [1,∞), provided n ≥ 2.

Proof. Since r is [0, 1]−valued with r(0) = 0, we clearly have

ζ(t) ≤ 1−
1

n

n∑

j=1

1(Xj(t)=0). (31)

Now, because of (11), we can find a region I ⊆ [n] of size |I| = ⌈n/2⌉ such that maxi∈I xi ≤ 2ρ.

Note that |Ic| = ⌊n/2⌋ ≥ n/3, since n ≥ 2. For each site i ∈ I, consider the “good” event

Gi := {Ξ ([0, 1] × [0, 1] × [n]× {i}) = 0}
⋂

{Ξ ([0, 1] × [0, r(1)] × {i} × Ic) ≥ 2ρ} .

The first part forbids any new arrival at i during the time-interval [0, 1], while the second ensures

that the xi ≤ 2ρ particles will depart (recall that r(k) ≥ r(1) for k ≥ 1). Thus, Gi ⊆ {Xi(1) = 0}.

Writing P(λ; k) for the probability that a Poisson variable with mean λ is at least k, we have

P (Gi) = e−1P

(
r(1)⌊n/2⌋

n
; ⌊2ρ⌋

)
≥ e−1P

(
r(1)

3
; ⌊2ρ⌋

)
=: q. (32)

Since the events (Gi)i∈I are moreover independent, we conclude that the sum
∑n

i=1 1(Xi(1)=0)

stochastically dominates a Binomial random variable with parameters ⌈n/2⌉ and q. In particular,

Hoeffding’s inequality implies

P

(
n∑

i=1

1(Xi(1)=0) ≤
nq

4

)
≤ exp

(
−
nq2

4

)
,

so that ε = q2/4 satisfies the claim for t = 1. Since the result is uniform in the choice of the initial

state x ∈ Ω, the claim automatically propagates to any time t ≥ 1 by the Markov property.
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Proof of Proposition 1. For any observable ϕ : Ω → R, the formula (26) implies that

d

dt
Ex [ϕ (X(t))] = Ex [(Lϕ) (X(t))] . (33)

We take ϕ(y) = eθyi , and we bound Lϕ in terms of ϕ to obtain a differential inequality. We have

(Lϕ) (y)

ϕ(y)
=

(
eθ − 1

)




1

n

∑

j∈[n]\{i}

(
r (yj)− e−θr (yi)

)


 .

The term {·} is always less than 1, and is even less than λ := 1− ε− e−θr(k) if y ∈ A ∩B, where

A :=





1

n

n∑

j=1

r(yj) < 1− ε



 and B := {yi ≥ k} . (34)

The parameters ε ∈ (0, 1) and k ∈ N are arbitrary for now and will be adjusted later. Thus,

Lϕ ≤
(
eθ − 1

) (
λϕ+ (1− λ)ϕ1(A∩B)c

)

≤
(
eθ − 1

)
(λϕ+ 2ϕ (1Ac + 1Bc))

≤
(
eθ − 1

)(
λϕ+ 2eθm1Ac + 2eθk

)
,

where we have used the simple facts λ ∈ (−1, 1), ‖ϕ‖∞ = eθm and ϕ1Bc ≤ eθk. By (33), we obtain

d

dt
Ex

[
eθXi(t)

]
≤

(
eθ − 1

){
λEx

[
eθXi(t)

]
+ 2eθmPx (ζ(t) ≥ 1− ε) + 2eθk

}
. (35)

We now choose the dimension-free constants θ, ε, k as follows. We take ε as in Lemma 1. Since

λ → −ε as (k, θ) → (∞, 0), we may then choose k ∈ N and θ > 0 so that λ < 0. Upon further

reducing θ if necessary, we may assume that θ ≤ ε/ρ, so that θm ≤ εn. For t ≥ 1, we then have

d

dt
Ex

[
eθXi(t)

]
≤ α− δEx

[
eθXi(t)

]
, (36)

where α, δ > 0 are dimension-free constants. It is classical that this differential inequality implies

Ex

[
eθXi(t)

]
≤

α

δ
+
(
Ex

[
eθXi(1)

]
−

α

δ

)
e−δ(t−1), (37)

for t ≥ 1. On the other hand, for t ∈ [0, 1], the domination (25) implies Ex

[
eθXi(t)

]
≤ eθx+eθ−1.

Combining these two facts, we conclude that there is a dimension-free κ ∈ (0,∞) such that

Ex

[
eθXi(t)

]
≤ κ

(
1 + eθxi−δt

)
, (38)

for all t ≥ 0. By Jensen’s inequality and (1 + u)p ≤ 1 + up, the conclusion still holds if we replace

(κ, θ, δ) with (κp, θp, δp) for any p ∈ (0, 1). Choosing p sufficiently small so that κp ≤ 2 and θp ≤ 1

completes the proof of (29). The claim (30) is then a consequence of Chernov’s bound.
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2.3 Path coupling via tagged particles

Our proof of Theorem 2 will rely on the introduction of tagged particles. For k ∈ Z+, define

∆(k) := r(k + 1)− r(k) ≥ 0. (39)

Let Θ be a Poisson process of intensity 1
n
Leb⊗Leb⊗Card on R+ × [0, 1]× [n], independent of the

Poisson process Ξ used in the graphical construction of X, and construct an [n]−valued process

I = (I(t) : t ≥ 0) by setting I(0) = i and imposing the following jumps: for each (t, u, k) in Θ,

I(t) :=

{
k if ∆

(
XI(t−)(t−)

)
≥ u

I(t−) else.
(40)

In other words, conditionally on the background process X, the tagged particle I performs a time-

inhomogeneous random walk starting from i and jumping from a site ℓ to a uniformly chosen site

at the time-varying rate ∆ (Xℓ(t)). The elementary but crucial observation is that the process

(
X(t) + δI(t) : t ≥ 0

)
(41)

is then distributed as a zero-range process starting from x+ δi. Now, if j is another site, we may

introduce a second tagged particle J = (J(t) : t ≥ 0) by setting J(0) = j and for each (t, u, k) in Θ,

J(t) :=

{
k if ∆

(
XJ(t−)(t−)

)
≥ u

J(t−) else.
(42)

We emphasize that we use the same processes X,Θ to generate I and J. This produces two coupled

zero-range processes
(
X(t) + δI(t) : t ≥ 0

)
and

(
X(t) + δJ(t) : t ≥ 0

)
starting from x+ δi and x+ δj .

We clearly have {I(s) = J(s)} ⊆ {I(t) = J(t)} for s ≤ t, and we will estimate the coalescence time:

τ := inf {t ≥ 0: I(t) = J(t)} = sup {t ≥ 0: I(t) 6= J(t)} . (43)

Proposition 2 (Coalescence time). There is a dimension-free constant κ < ∞ such that

P (τ > κ (‖x‖∞ ∨ (lnn)κ)) ≤
κ

n2
.

Let us first quickly see how this leads to Theorem 2.

Proof of Theorem 2. Set P t
x = Px(X(t) ∈ ·). By stationarity of π and convexity of dtv(·, ·), we have

dtv
(
P t
x, π
)

≤
∑

y∈Ω

π(y) dtv
(
P t
x, P

t
y

)
. (44)
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Call x, y ∈ Ω adjacent if they differ by a single jump, i.e. y = x+ δj − δi for some 1 ≤ i 6= j ≤ n.

When this is the case, Proposition 2 (with m− 1 background particles) ensures that

t ≥ κ (‖x‖∞ ∨ ‖y‖∞ ∨ (lnn)κ) =⇒ dtv
(
P t
x, P

t
y

)
≤

κ

n2
. (45)

Now if x, y ∈ Ω are arbitrary, one can always connect them by a path, i.e. a sequence (w0, w1, . . . , wk)

where w0 = x, wk = y and wℓ−1 is adjacent to wℓ for 1 ≤ ℓ ≤ k. By the triangle inequality, we have

dtv
(
P t
x, P

t
y

)
≤

k∑

ℓ=1

dtv

(
P t
wℓ−1

, P t
wℓ

)
. (46)

Choosing a shortest path further ensures that k ≤ m and max1≤ℓ<k ‖wℓ‖∞ ≤ ‖x‖∞∨‖y‖∞, so that

t ≥ κ (‖x‖∞ ∨ ‖y‖∞ ∨ (lnn)κ) =⇒ dtv
(
P t
x, P

t
y

)
≤

κm

n2
. (47)

In particular, if t ≥ κ (‖x‖∞ ∨ (ln n)κ), then the restriction of the sum in (44) to the index set

A := {y ∈ Ω: ‖y‖∞ ≤ (lnn)κ} is at most κm
n2 . On the other hand, the remaining part is at most

π(Ac) ≤ e−θ(lnn)κ , as can be seen by taking the t → ∞ limit in (30). In conclusion, for any x ∈ Ω,

t ≥ κ (‖x‖∞ ∨ (lnn)κ) =⇒ dtv
(
P t
x, π
)
≤

mκ

n2
+ 4e−θ(lnn)κ . (48)

Upon replacing κ by a larger constant if necessary, we obtain the claim.

The remainder of the section is devoted to the proof of Proposition 2. It is clear from (40),(42)

that if the two tagged particles manage to jump at the same time, then they immediately coalesce.

Note, however, that their jumps may be severely hindered by the background process: in the rate-

one case for example, we have ∆(k) = 1(k=0), so that the tagged particles can not jump unless they

are alone! Our first step will thus consist in controlling the number of co-occupants of the tagged

particles. We will then complement this estimate by showing that, when the tagged particles do not

have too many co-occupants, they have a decent chance to coalesce within a short time-interval.

Lemma 2 (Co-occupants of the tagged particles). There exist dimension-free constants κ1, κ2 < ∞

such that for t = κ1‖x‖∞ and a = κ2 ln(1 + ‖x‖∞), we have

P
(
XI(t)(t) ∨ YJ(t)(t) ≤ a

)
≥

1

2
. (49)

Proof. Since I(t), J(t) can only move by jumps of the form (40),(42), we necessarily have

I(t), J(t) ∈ {i, j} ∪ {k ∈ [n] : Θ ([0, t]× [0, 1] × {k}) ≥ 1} . (50)

Note that the random set on the right-hand side contains at most 2+ t elements on average. Taking

a union bound over all these possibilities, and using the independence of Θ,X, we obtain

P
(
XI(t)(t) ∨XJ(t)(t) > a

)
≤ (2 + t)max

k∈[n]
P (Xk(t) > a) .

To make this less than a half, we may choose t = 1
δ
‖x‖∞ with δ as in (30), and a = 1

θ
ln(16+8t).
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Lemma 3 (Quick coalescence). Setting h :=
3(xi∨xj)+1

r(1) , we have P (τ ≤ h) ≥ e−3h

8 , provided n ≥ 3.

Proof. Write h = t+ s with t = 3
xi∨xj

r(1) and s = 1
r(1) , and note that {τ ≤ h} ⊇ Gi ∩Gj ∩ F , where

Gi := {Ξ ([0, t+ s]× [0, 1] × [n]× {i}) = 0}
⋂

{Ξ ([0, t]× [0, r(1)] × {i} × [n] \ {i, j}) ≥ xi}

Gj := {Ξ ([0, t+ s]× [0, 1] × [n]× {j}) = 0}
⋂

{Ξ ([0, t] × [0, r(1)] × {j} × [n] \ {i, j}) ≥ xj}

F := {Θ([0, t] × [0, 1] × [n]) = 0}
⋂

{Θ([t, t+ s]× [0, r(1)] × [n]) ≥ 1} .

Indeed, the events Gi, Gj guarantee that Xi,Xj are zero over the time-interval [t, t + s], while F

ensures that the tagged particles will remain in positions i, j until time t, and then make an attempt

to jump over [t, t + s]. The first such attempt will be successful for both particles, because the

conditions in (40),(42) are met (note that ∆(0) = r(1)). Now, F,Gi, Gj are independent, with

P (Gk) = e−t−sP

(
(n − 2)r(1)t

n
;xk

)
and P (F ) = e−tP (r(1)s; 1) ,

where we recall that P (λ; k) is the probability that a Poisson variable with mean λ is at least k.

The claim now easily follows from the classical estimate P (λ; k) > 1
2 , valid for any λ ≥ k ≥ 0.

Corollary 2. There is a dimension-free constant β < ∞ such that P (τ ≤ β‖x‖∞) ≥ (1+‖x‖∞)−β.

Proof. Set t = κ1‖x‖∞, a = κ2 ln(1 + ‖x‖∞), h = (3a+ 1)/r(1) with κ1, κ2 as in Lemma 2. Then,

P (τ ≤ t+ h) ≥ P
(
XI(t)(t) ∨XJ(t)(t) ≤ a

)
P
(
τ ≤ t+ h|XI(t)(t) ∨XJ(t)(t) ≤ a

)
.

The first term is at least 1
2 and the second at least 1

8e
−3h, by Lemma 3 and the Markov property.

Proof of Proposition 2. Let β be as in the above corollary, and let t, a ≥ 0 be parameters to be

adjusted later. Consider the increasing sequence of events (Ak)k≥0 defined by

Ak := {τ > t+ kaβ} ∩

k−1⋂

ℓ=0

{‖X(t+ ℓaβ)‖∞ ≤ a} . (51)

By the above corollary and the Markov property, we have P (Ak+1|Ak) ≤ 1− (1 + a)−β . Thus,

P (Ak) ≤
(
1− (1 + a)−β

)k
≤ e−k(1+a)−β

. (52)

On the other hand, it is clear from the definition of Ak that

P (τ > t+ kaβ) ≤ P(Ak) + k sup
s≥t

P (‖X(s)‖∞ > a) . (53)

Recalling (30), we conclude that for t = 1
δ
‖x‖∞,

P (τ > t+ kaβ) ≤ e−k(1+a)−β

+ 4kne−θa. (54)

Choosing a = 4
θ
lnn and k = ⌊(lnn)2+β⌋ ensures that the right-hand side is O( 1

n2 ), as desired.
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3 Dissolution of the solid phase

3.1 Identification of the hydrodynamic limit

With the setting of Theorem 3 in mind, we fix a sequence of numbers u1 ≥ u2 . . . ≥ 0 such that

∞∑

k=1

uk ≤ ρ. (55)

Proposition 3 (Resolution). There is a unique measurable functions f : R+ → R+ satisfying

f(t) =

∫ t

0

{
1−Ψ−1

(
ρ−

∞∑

k=1

[uk − f(s)]+

)}
ds, (56)

for all t ≥ 0. Moreover, f is an increasing bijection from R+ to R+ and for each i ≥ 1,

f−1(ui) =
∞∑

k=i

1

k

∫ ρk−1

ρk

ds

1−Ψ−1(s)
, (57)

where the numbers ρ0 ≥ ρ1 ≥ . . . ≥ 0 are given by ρk := ρ+ kuk+1 −
∑k

i=1 ui.

Proof of uniqueness. Fix t > 0. Since Ψ−1 : R+ → [0, 1) is increasing, any solution to (56) satisfies

t
(
1−Ψ−1(ρ)

)
≤ f(t) ≤ t.

Setting κ(t) := max
{
k ≥ 1: uk > t

(
1−Ψ−1(ρ)

)}
(which is finite), we deduce that

∞∑

k=1

[uk − f(t)]+ =

κ(t)∑

k=1

[uk − f(t)]+ . (58)

In particular, if g is another solution to (56), we have
∣∣∣∣∣

∞∑

k=1

[uk − f(t)]+ −
∞∑

k=1

[uk − g(t)]+

∣∣∣∣∣ ≤ κ(t) |f(t)− g(t)| . (59)

Now, Ψ−1 is continuously differentiable and hence α−Lipschitz on [0, ρ] for some α < ∞. Therefore,
∣∣∣∣∣Ψ

−1

(
ρ−

∞∑

k=1

[uk − f(t)]+

)
−Ψ−1

(
ρ−

∞∑

k=1

[uk − g(t)]+

)∣∣∣∣∣ ≤ ακ(t) |f(t)− g(t)| . (60)

Integrating this inequality and recalling (56), we obtain the differential inequality

|f(t)− g(t)| ≤ α

∫ t

0
κ(s) |f(s)− g(s)| ds. (61)

This will force f = g by Grönwall’s Lemma, provided we can show that κ ∈ L1(R+). But

∫ ∞

0
κ(t) dt =

1

1−Ψ−1(ρ)

∞∑

k=1

uk, (62)

by Fubini’s Theorem, and the right-hand side is clearly finite, concluding the proof.
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Explicit resolution. Let Φ: R+ → R+ be the function defined by

Φ(t) :=

∫ t

0

1

1−Ψ−1(s)
ds. (63)

Note that Φ increases continuously from 0 to +∞, so that Φ−1 : R+ → R+ is well-defined. Now,

let ρ = ρ0 ≥ ρ1 ≥ . . . ≥ 0 and t1 ≥ t2 ≥ . . . ≥ 0 be defined by

ρk := ρ+ kuk+1 −

k∑

i=1

ui (64)

tk :=

∞∑

i=k

Φ(ρi−1)− Φ(ρi)

i
. (65)

Finally, define a function f separately on each [tk+1, tk), k ≥ 0 (with the convention t0 = +∞) by

∀t ∈ [tk+1, tk), f(t) := uk+1 +
Φ−1 (Φ(ρk) + k(t− tk+1))− ρk

k
. (66)

Note that for any k ≥ 1, we have f(tk) = uk. Moreover, the left-limit of f at tk is

f(tk−) = uk+1 +
Φ−1 (Φ(ρk) + k(tk − tk+1))− ρk

k

= uk+1 +
ρk−1 − ρk

k
= uk.

This shows that f is continuous at each tk, k ≥ 1. Since f is clearly continuously increasing on each

[tk, tk−1), we deduce that f is continuously increasing on the whole of (0,∞). Moreover,

f(0+) = lim
k→∞

↓ f(tk) = lim
k→∞

↓ uk = 0,

so setting f(0) := 0 extends f into a continuously increasing function on R+. The strict monotony

together with the fact that f(tk) = uk shows that for all t ∈ R+ and k ≥ 1,

f(t) < uk ⇐⇒ t < tk. (67)

Finally, f is continuously differentiable on each (tk+1, tk) and for t ∈ (tk+1, tk), we easily compute

f ′(t) = 1−Ψ−1

(
ρ+ kf(t)−

k∑

i=1

ui

)

= 1−Ψ−1

(
ρ−

∞∑

i=1

[ui − f(t)]+

)
,

where the second equality follows from (67). Thus, f is a solution to (56), and (57) is clear.
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3.2 Proxy for the empirical distribution

The purpose of this section is to obtain a good approximation for the empirical measure 1
n

∑n
i=1 δXi(t),

out of which we will then extract a good approximation for the mean-field jump rate ζ(t). For each

z ∈ (0, 1), we define a probability distribution q(z) = (q(z; k))k≥0 on Z+ by the formula

q(z; k) :=
1

R(z)

zk

r(1) · · · r(k)
. (68)

We extend this definition to z = 0 by setting q(0) = δ0. Note that the mean of q(z) is precisely

Ψ(z). It will be convenient to re-parameterize q in terms of its mean by setting q(s) := q
(
Ψ−1(s)

)

for s ∈ (0,∞). We start by showing that q(ρ) is the limiting empirical distribution at equilibrium.

Lemma 4 (Empirical distribution at equilibrium). In the regime (8), we have for any fixed ε > 0,

lim sup
n→∞

1

n
log π

({
x ∈ Ω: dtv

(
1

n

n∑

i=1

δxi
, q (ρ)

)
≥ ε

})
< 0. (69)

Proof. In the degenerate case ρ = 0, the claim is trivial since any law on Z+ is at total-variation

distance at most its mean from the Dirac mass δ0. We henceforth assume that ρ > 0, and we set

z = Ψ−1(ρ) ∈ (0, 1). Consider a random vector X := (X1, . . . ,Xn) whose coordinates are i.i.d.

with law q(z). Then for any x = (x1, . . . , xn) ∈ Ω, we have

P (X = x) =
zm

(R(z))n

n∏

i=1

xi∏

k=1

1

r(k)
. (70)

Thus, x 7→ P (X = x) is proportional to π on Ω, and hence for any A ⊆ Ω, we have the representation

π(A) =
P (X ∈ A)

P (X ∈ Ω)
. (71)

We now fix ε > 0 and take

A :=

{
x ∈ Ω: dtv

(
1

n

n∑

i=1

δxi
, q (z)

)
≥ ε

}
. (72)

Since the coordinates of X are i.i.d. with law q(z), standard large deviation estimates imply

lim sup
n→∞

1

n
log P (X ∈ A) < 0; (73)

lim
n→∞

1

n
log P (Sn ∈ [0,m]) = 0; (74)

lim
n→∞

1

n
log P (Sn ∈ [m, 2m]) = 0, (75)

where Sn = X1 + · · ·+Xn. On the other hand, since q(z) is log-concave, and since this property is

preserved under convolutions, the law of Sn is log-concave and hence unimodal, so for any a ∈ N,

(a+ 1)P (Sn = m) ≥ P (Sn ∈ [m− a,m]) ∧ P (Sn ∈ [m,m+ a]) . (76)

Taking a = m and using (74)-(75), we get 1
n
log P (X ∈ Ω) → 0; (71)-(73) completes the proof.
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Remark 1 (Monotony and regularity of ρ 7→ q(ρ)). The monotonicity (24) shows that the station-

ary law π is stochastically increasing in the number m of particles. In view of Lemma 4, we deduce

that q(ρ) is stochastically increasing in ρ: if ρ ≤ ρ′, then there is a coupling (Z,Z ′) of q(ρ), q(ρ′)

such that Z ≤ Z ′ almost-surely. Since Z,Z ′ are integer-valued, we may then write

dtv
(
q(ρ), q(ρ′)

)
≤ E

[
|Z ′ − Z|

]
= E[Z ′]− E[Z] = ρ′ − ρ. (77)

In conclusion, ρ 7→ q(ρ) is increasing and 1−Lipschitz.

We will show that the approximation 1
n

∑n
i=1 δXi

≈ q(ρ) remains valid out of equilibrium, pro-

vided ρ is replaced by an effective density, obtained by ignoring the particles in the solid phase. To

formalize this, we assume that the solid phase is initially restricted to some fixed region {1, . . . , L}:

max
L<i≤n

xi = o(n). (78)

Note that by (30), this property is preserved by the dynamics in the sense that for any fixed t ≥ 0,

max
L<i≤n

Xi(nt) = o(n), (79)

almost-surely (as long as all processes live on the same probability space).

Proposition 4 (Proxy for the empirical measure). If x = x(n) satisfies (78), then for fixed t > 0,

Ex

[
dtv

(
1

n

n∑

i=1

δXi(nt), q

(
1

n

n∑

i=L+1

Xi(nt)

))]
−−−→
n→∞

0. (80)

Since the rate function r has mean z under the law q(z), we have in particular

Ex

[∣∣∣∣∣ζ(nt)−Ψ−1

(
m

n
−

1

n

L∑

i=1

Xi(nt)

)∣∣∣∣∣

]
−−−→
n→∞

0. (81)

Our proof will consist in comparing the system with one where the solid phase is removed, so

that Theorem 2 becomes applicable. We will rely on the following lemma.

Lemma 5 (Truncation). Fix x ∈ Z
n
+, and let x̂ be obtained by zeroing the first L coordinates.

Then, the processes X, X̂ obtained by applying the graphical construction to x, x̂ satisfy

E

[
dtv

(
1

n

n∑

i=1

δXi(t),
1

n

n∑

i=1

δ
X̂i(t)

)]
≤

L(1 + t)

n
.

Proof. By (24), we have X̂(t) ≤ X(t) for all t ≥ 0. In particular,

n∑

i=L+1

∣∣∣Xi(t)− X̂i(t)
∣∣∣ =

n∑

i=L+1

Xi(t)−

n∑

i=L+1

X̂i(t).
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Now, observe that the right-hand side equals zero when t = 0, and that the only jumps of the form

(23) that may increment it (by 1 unit each time) are those whose source i is in [L]. Consequently,

E

[
n∑

i=L+1

∣∣∣X̂i(t)−Xi(t)
∣∣∣
]

≤ E [Ξ ([0, t]× [0, 1] × [L]× [n])] = Lt. (82)

On the other hand, by definition of the total-variation distance, we have

dtv

(
1

n

n∑

i=1

δXi(t),
1

n

n∑

i=1

δ
X̂i(t)

)
≤

1

n

n∑

i=1

1(Xi(t)6=X̂i(t)).

To conclude, we simply bound 1(Xi(t)6=X̂i(t)) by 1 for i ≤ L, and by |Xi(t)− X̂i(t)| for i > L.

Proof of proposition 4. If L = 0, then ‖x‖ = o(n), so Theorem 2 ensures that for fixed t > 0,

max
A⊆Ω

|Px (X(nt) ∈ A)− π(A)| −−−→
n→∞

0 (83)

Since the event A in Lemma 4 satisfies π(A) → 0, we must have Px (X(nt) ∈ A) → 0. Thus,

Ex

[
dtv

(
1

n

n∑

i=1

δXi(nt), q (ρ)

)]
−−−→
n→∞

0.

On the other hand, we have dtv
(
q
(
m
n

)
, q(ρ)

)
→ 0, so the case L = 0 is proved. Now, assume that

x satisfies (78) for some L ≥ 1, and let x̂ be as in Lemma 5. Then ‖x̂‖∞ = o(n) by construction,

so the case L = 0 with m̂ := m− (x1 + · · ·+ xL) particles instead of m implies

E

[
dtv

(
1

n

n∑

i=1

δ
X̂i(nt)

, q

(
m̂

n

))]
−−−→
n→∞

0.

On the other hand, under the coupling of Lemma 5, we have

E

[
dtv

(
1

n

n∑

i=1

δ
X̂i(nt)

,
1

n

n∑

i=1

δXi(nt)

)]
≤ L

(
t+

1

n

)
.

Finally, Remark 1 implies that

dtv

(
q

(
m̂

n

)
, q

(
n∑

i=L+1

Xi(nt)

n

))
≤

1

n

∣∣∣∣∣

L∑

i=1

Xi(nt)−

L∑

i=1

xi

∣∣∣∣∣ ,

and the right-hand side has mean at most 2Lt by (25). By the triangle inequality, we conclude that

lim sup
n→∞

Ex

[
dtv

(
1

n

n∑

i=1

δXi(nt), q

(
1

n

n∑

i=L+1

Xi(nt)

))]
≤ 3Lt.
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This may seem rather weak compared to what we want to establish. However, by (79), we may

apply this result with x replaced by X(ns) and then invoke the Markov property to obtain

lim sup
n→∞

Ex

[
dtv

(
1

n

n∑

i=1

δXi(ns+nt), q

(
1

n

n∑

i=L+1

Xi(ns+ nt)

))]
≤ 3Lt,

for any s ≥ 0 and t > 0. Replacing t with ε and s with t− ε, we see that for any 0 < ε ≤ t,

lim sup
n→∞

Ex

[
dtv

(
1

n

n∑

i=1

δXi(nt) − q

(
1

n

n∑

i=L+1

Xi(nt)

))]
≤ 3Lε.

Since ε can be made arbitrarily small, the result follows.

3.3 Tightness and convergence

We are now ready to prove Theorem 3, using the classical tightness-uniqueness strategy. Define

Un
i (t) :=

Xi(nt)

n
and V n(t) :=

∫ t

0
(1− ζ(ns)) ds. (84)

The fact that Un
i (t) ∈ [0, ρ] and the domination (25) suffice to guarantee the tightness of (Un

i )n≥1 in

the Skorokhod space D(R+,R), and the continuity of any weak sub-sequential limit U⋆
i . The same

conclusion applies to (V n)n≥1, because ζ is [0, 1]−valued. Our objective is to show that necessarily,

U⋆
i = [ui − f ]+ . (85)

By diagonal extraction, we may find a sub-sequence along which we have the joint convergence

(V n, Un
1 , U

n
2 , . . .) −→ (V ⋆, U⋆

1 , U
⋆
2 , . . .) , (86)

with respect to the product topology. By Skorokhod’s Theorem, we may even assume for conve-

nience that the convergence (86) is almost-sure. Our plan is to pass to the limit in the martingale

Mn
i (t) := Un

i (t)− Un
i (0) + V n(t)−

∫ t

0
(1− r (nUn

i (s))) ds, (87)

which is just a rescaled version of (27). Since Un
i has jumps of size at most 1

n
occuring at rate at

most 2n, a classical exponential concentration estimate for martingales (see, e.g., [23]) ensures that

Mn
i (t) −−−→

n→∞
0, (88)

almost-surely. On the other hand, (30) easily imply that for fixed t, h ≥ 0,

lim sup
n→∞

max
i∈[n]

{
Un
i (t+ h)− [Un

i (t)− δh]+
}

≤ 0, (89)
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which shows in particular that U⋆
i (t+h) ≤ [U⋆

i (t)− δh]+. Thus, U
⋆
i is non-increasing. Consequently,

on the event {U⋆
i (t) > 0}, we have U⋆

i (s) > 0 for all s ≤ t, and hence r(nUn
i (s)) → 1, by our

assumption (6). Passing to the limit in (87), we conclude that the equality

U⋆
i (t) = ui − V ⋆(t), (90)

holds as long as U⋆
i (t) > 0. But both sides of (90) are continuous and non-increasing, so they must

reach zero at the same time. Since the left-hand side is non-negative, we conclude that for all t ≥ 0.

U⋆
i (t) = [ui − V ⋆(t)]+ . (91)

Comparing this with (85), we now only have to show that V ⋆ solves (56), i.e.

V ⋆(t) =

∫ t

0

{
1−Ψ−1

(
ρ−

∞∑

i=1

U⋆
i (s)

)}
ds. (92)

Fix a non-negative integer L. Taking t = 0 in (89), we deduce that

lim sup
n→∞

max
L<i≤n

Un
i (h) ≤ [uL+1 − δh]+ . (93)

Choosing h =
uL+1

δ
ensures that the right-hand side is zero. Consequently, we may apply (81) with

the initial state being X(nh) and use Markov’s property to obtain that for any fixed t > h.

Ex

[∣∣∣∣∣ζ(nt)−Ψ−1

(
m

n
−

L∑

i=1

Un
i (t)

)∣∣∣∣∣

]
−−−→
n→∞

0. (94)

On the other hand, by continuity of Ψ−1, we have almost-surely,

Ψ−1

(
m

n
−

L∑

i=1

Un
i (t)

)
−−−→
n→∞

Ψ−1

(
ρ−

L∑

i=1

U⋆
i (t)

)
. (95)

Moreover, we can safely replace L by ∞ on the right-hand side, because (93) ensures that U⋆
i (t) = 0

for all i > L. Combining this with (94), we arrive at

Ex

[∣∣∣∣∣ζ(nt)−Ψ−1

(
ρ−

∞∑

i=1

U⋆
i (t)

)∣∣∣∣∣

]
−−−→
n→∞

0. (96)

This is true for any t > h, but h =
uL+1

δ
can be made arbitrarily small by choosing L large, so (96)

holds for any t > 0. Integrating over t, we easily deduce (92). Finally, note that the convergence

Un
i −−−→

n→∞
[ui − f ]+ (97)

is automatically uniform on compact subsets of R+, because the limit is continuous. It is also

uniform in i, because (93) ensures that maxL<i≤n U
n
i (h) can be made arbitrarily small by choosing

L large enough, uniformly in n. This concludes the proof of Theorem 3.
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