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Tunnel junction model

Tunnel junction I(V) characteristics: review and a new model for p-n
homojunctions

N. Moulin,1 M. Amara,1, a) F. Mandorlo,1, b) and M. Lemiti1, c)

University of Lyon, Lyon Institute of Nanotechnology (INL) UMR CNRS 5270, INSA de Lyon, Villeurbanne,
F-69621, FRANCE

(Dated: 1 December 2020)

Despite the widespread use of tunnel junctions in high-efficiency devices (e.g., multijunction solar cells, tunnel
field effect transistors, and resonant tunneling diodes), simulating their behavior still remains a challenge.
This paper presents a new model to complete that of Karlovsky and simulate an I(V ) characteristic of an
Esaki tunnel junction. A review of different analytical models of band-to-band tunneling models is first
presented. As a complement to previous work on tunnel junction simulation, the transmission coefficient is
precisely determined and incorporated, the valley current between the tunneling and drift regimes is included,
and calculations of physical parameters are updated. It is found that the model works for a broad range of
values of the forward bias.
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NOMENCLATURE

Acronyms

BTBT Band-to-band tunneling

TAT Trap-assisted tunneling

TC Transmission Coefficient

TM Transfer Matrix method

WKB Wentzel Kramers Brillouin method

Physical Constants

~ Planck constant/2π

c Speed of light in vacuum

h Planck constant

kB Boltzmann constant

q Charge of the electron

Variables

θ Parameter in Chynoweth’s model

Dv Volume density of occupied levels above EV

E Energy of an electron

EC Energy of conduction band
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Eg Band gap

Et Carrier transverse energy

EV Energy of valence band

EFn, EFp Fermi levels on n and p sides

F Electric field

IP Peak tunnel current

IV Valley current

IBTBT Tunneling current

ICh Excess tunnel current

k1 Wave vector of an electron of energy E

mC , mV Effective mass of the electron on the conduc-
tion, valence band

me Effective mass of the electron

ND, NA Density of donor, acceptor impurity atoms

ni Intrinsic carriers density

S Junction surface

T Temperature

V Applied bias

V0 Barrier height

VP Voltage at I = IP

VV Voltage at I = IV

Vbi Built-in voltage

W Free charge space

WN , WP Depletion zone on n,p side
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I. INTRODUCTION

The tunneling effect is a quantum phenomenon that
allows carriers to cross a potential barrier without jump-
ing over it. If the barrier is thin enough and empty sites
are available in the right range of energies, carriers from
one side can tunnel to these empty sites. It should be
noted that although the word “tunnel” carries the im-
age of going through, it is rather the case that carriers
disappear and then reappear on the other side of the
barrier. The probability for this phenomenon to occur is
highly correlated with the width of the barrier and the
energy of the carrier. There are many devices (TFETs1,
RTDs2...) that rely on this effect for their properties,
with specific materials and doping levels being chosen to
create a tunnel effect. For example, in the field of pho-
tovoltaics, tandem solar cells score the highest efficiency
on both laboratory and industrial scales by using tunnel
junctions as key parts of their structures linking different
subcells.3

However, there have been few studies focusing on the
behavior of this particular component of these cells, and
indeed detailed simulations conducted by Hermle et al.4

and Liu et al.5 have highlighted the difficulty of such a
task. A reliable tunneling model should be able to sim-
ulate three different regimes: the peak current, where
tunneling is dominant; the valley current, where the tun-
neling probability is low and drifting starts to occur;6,7

and the diode regime, where drifting is dominant. Yajima
and Esaki discovered the tunneling effect experimentally
in a highly doped germanium diode8 in 1958, and Esaki9

proposed a model to describe it. In 1960, an extensive
theory was developed by Kane,6 following a suggestion
from Zener about a tunneling phenomenon. Soon af-
ter, Karlovsky10 proposed a simpler version of the Esaki
model that was valid as long as the difference between the
gap and the Fermi levels was small enough. In 1969, the
first review of tunneling models was presented by Duke.11

In his book, he compared several models and approaches
to establish which of these was the most accurate at that
time. He considered, among others, the previous work
by Kane and Esaki, as well as that by Keldysh,12 who
had found the same expression as Kane, although they
had worked independently because of the lack of scien-
tific communication between East and West during the
Cold War.
As research on semiconductors progressed, several mod-
els were proposed (p–n diode, CMOS, SOI, III–V, etc.).
In 1989, at a conference in Berlin, Hurkx13 presented
a new model of the recombination rate based on the
1952 work of Shockley and Read14 on Shockley–Read–
Hall (SRH) recombination. This model was based on
trap-assisted tunneling (TAT) associated with SRH re-
combination and band-to-band tunneling (BTBT) at re-
verse bias. In his paper, Hurkx calculated the contribu-
tion of the tunneling effect as a recombination rate in-
stead of a current density. Along the same lines, in 1991,
Klaassen15 presented a model that was also mainly de-

veloped for TAT, since he considered this to be dominant
over direct tunneling at forward-bias polarization.

Hurkx’s work was tested in 2008 by Baudrit and
Algora,16 who underlined the fact that Hurkx’s model
does not work at forward bias. Currently, the reference
model remains that of Tsu and Esaki.17. Hermle et al.4

presented a method to simulate an isolated GaAs tunnel
junction at forward bias.
The first part of the present paper compares these analyt-
ical models in the context of simulation of direct BTBT.
As far as the simulation method is concerned, a review
of different analytical models and simulations leads to
the conclusion that the nonlocal approach (see Fig. 1 of
Ref. 5) is the most precise,4,5,18 since it considers effective
carrier transport. Also, only BTBT need be considered
as the tunneling regime, since it is sufficient for correct
simulation of an I(V ) curve.4,5 The tunneling probabil-
ity can be calculated using the transfer matrix method,
since this method has proven to be accurate5 and is com-
putationally less expensive than the Wentzel–Kramers–
Brillouin (WKB) method.19 Simulations are run under
Matlab software.

The main goal of this work is to construct an analyt-
ical model that is able to calculate I(V ) curves to aid
in the design of the doping levels and dimensions of a
tunnel diode. As the experimental work of the present
authors is mainly concerned with silicon-based diodes,
the review will focus on models that can be applied to
this material.

II. REVIEW OF TUNNEL JUNCTION MODELS

A. Tsu–Esaki based models

1. Tsu–Esaki model

This model17 is based on a previous one-dimensional
(1D) superlattice model published in 197120. The 1973
model incorporates a finite number of periods and a short
electron mean free path. It also applies to multibarrier
tunneling. The effective mass is calculated for unper-
turbed structures, and the 3D Schrödinger equation is
solved for a 1D periodic potential V . Making the sim-
plifying assumption that the transmission coefficient TC
is a function of kl only (the wave vector lies along the
barrier dimension), we obtain

J =

qmekBT

2π2~3

∫ ∞
0

TC(El)·ln

 1 + exp
(
EFn−El

kBT

)
1 + exp

(
EFp−El−qV

kBT

)
 dEl,

(1)

where me is the electron effective mass and El is the
electron energy along kl. This expression is general and
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holds regardless of the type of semiconductor (direct or
indirect bandgap).

2. Kane model

In 1961, Kane developed a model21 similar to Esaki
and the later Karlovsky models, but using a different ap-
proach. This theory was adapted from Keldysh’s12 the-
ory of indirect tunneling supplied by phonons. No trans-
mission coefficient is calculated, but instead the model
is based on a function of the effective density of states,
DKane, given by

DKane =

∫
[f1(E1)− f2(E2)]

[
1− exp

(
−E1

Et

)]
(2)

×
[
1− exp

(
−E2

Et

)]
dE

This function is zero when the electron has an energy
outside the Fermi levels. Several subsequent models15,22

have adopted similar functions. In Eq. (2), Et is the
transverse component of the electron energy, and sub-
scripts 1 and 2 refer to the bands before and after tun-
neling. When a bias is applied, three regimes can be
distinguished by comparing qV with the carrier energy.
The tunneling current characteristic is thus mainly mon-
itored by the function DKane, which takes into account
the effect of phonons on the indirect tunneling process.

This model deals with the cases of direct and indirect
semiconductors differently. As Si is of the latter type, we
will focus on the corresponding model for our review.

3. Karlovsky model

Karlovsky10 proposed a simple expression for the tun-
nel current in an Esaki diode based on the Esaki model:

E1 = EFn − EC , E2 = EV − EFp,

J =
A

S

∫ EV

EC

EFn − EFp
4kBT

√
(E − EC)(EV − E)dE,

(3)

where S is the surface area of the junction. This expres-
sion is valid if the distances between the Fermi levels and
the edge bands (E1 and E2) are small (≤ 2kBT ). With
EFn − EFp = qV , this expression becomes

J =
A

S
· qV (E1 + E2 − qV )2, (4)

which is a polynomial function depending on the bias and
the Fermi levels only. However, an uncertainty remains
about the expression for A, which is not given explicitly
in the original paper. By comparison with other models,
it can be considered as a scaling factor.

4. Duke model

In 1969, Duke11 presented what was then the state of
art in tunneling theory, describing all the main tunneling
models, their weak points, and their advantages.

The model simulated in this review is the one described
as the most accurate at that period. In this model, the
barrier profile is corrected by a coefficient introduced into
the expression for the maximum electric field. However,
it does not provide an accurate expression for the current
when there is a high impurity concentration and it tends
to overestimate the valley current under a forward bias.

B. Recombination based models

1. Hurkx model

Hurkx22 chose to calculate a recombination contribu-
tion rather than a tunnel current, using the following
expression for BTBT:

RBTBT = −B|F |σDKane exp

(
−F
F0

)
, (5)

where F is the local electric field. σ is a coefficient that
is equal to 2 for direct tunneling and 2.5 for indirect
tunneling (as in the case of silicon ). DKane is calculated
according to the theory of Keldysh12 and Kane,21 except
that in the case of null and reverse bias, Hurkx proposes
the following simpler expression:

DHurkx =
1

exp
(
−EFp−qV )

kBT

)
+ 1
− 1

exp
(
−EFn−qV

kBT

)
+ 1

.

(6)

This function is equal to 1 when the electron energy is
between EFn and EFp and 0 elsewhere.

This approach corresponds to what is known as the
local tunneling model. Its drawbacks compared with the
nonlocal approach in the case of tunneling theory were
also pointed out by Hermle et al.4

2. Klaassen model

The Klaassen model is focused mainly on TAT. In the
same way as in the Hurkx model, the tunneling contribu-
tion is calculated as a recombination factor R instead of
a current density. The total tunneling effect is composed
of two contributions: direct tunneling with RBTBT given
by Eq. (5)) and a TAT mechanism at forward and reverse
bias with

R =
ntpt − rnrpn2l

τp(nt + rnnl) + τn(pt + rpnl)
−RBTBT , (7)

where rn and rp are emission probabilities, nt and pt are
the concentrations of tunneling carriers in the depletion
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region, and τn and τp are capture rates. The direct tun-
neling current density is then obtained by integrating the
recombination factor:

RBTBT = − dJ
dE
· F. (8)

III. COMPARISON OF TUNNEL JUNCTION MODELS

A. Method and common parameters

The methods of calculation for material parameters
(e.g., effective mass and intrinsic carrier concentration)
and the ways in which physical phenomena (e.g., bandgap
narrowing and the transmission coefficient) are taken into
account differ among the models. Therefore, to allow a
proper comparison, it is necessary step to fix the calcu-
lation methods for both known and new physical param-
eters.

This work compares the models for a silicon p–n junc-
tion (without any oxide layer) at a high doping level.

One of the key parameters in a tunneling model is the
transmission coefficient, which gives the probability for
an electron at energy E to tunnel through a potential
barrier of height V0 and thickness a. The higher and
thicker the barrier, the less probable it is that tunneling
occurs. Accordingly, the higher the energy E, the more
probable will tunneling be. Therefore, for a given height,
there is a limiting thickness from which the probability
starts to become negligible. Similarly, it is possible to de-
termine a limiting energy from which electron tunneling
is possible.

To calculate the tunneling probability, several meth-
ods have been developed, of which the two main ones
are the Wentzel–Kramers–Brillouin (WKB) method and
the transfer matrix method (TM). We have chosen to
use the latter here, since it is more stable with respect
to the geometry of the barrier and is computationally
less expensive.19 We use values of common physical pa-
rameters at 300 K as calculated by the most up-to-date
methods (Table I).

B. Model comparison: analysis

With the parameters listed in Table I, the current den-
sity curves are calculated for each model in forward bias
(Fig. 1). What we expect, is the typical ”S” shape of a
tunneling I(V) curve.

• The Hurkx model works only for reverse bias16 and
therefore does not appear in the simulation for for-
ward bias.

• The Tsu-Esaki and Duke models give a very low
current density, and the results do not exhibit a
tunneling peak at forward bias with these parame-
ters, contrary to 1970 curves.17

Name Value Unit Reference

T 300 K

NC(300) 2.89 × 1019 cm−3 Couderc et al.23

NV (300) 1.04 × 1019 cm−3 Couderc et al.23

ni0(300) 9.65 × 1019 cm−3 Couderc et al.23

EA 45 × 10−3 eV Sze et Ng24

ED 44 × 10−3 eV Sze et Ng24

BGN effect ∆EG eV Schenk et al.25

Effective masses mc, mv kg Couderc et al.23

NA 8 × 1019 cm−3

ND 2 × 1020 cm−3

S 64 µm2

V [−0.9, 0.5] V

TABLE I: Default parameters and references for
their calculation.

• The Klaassen and Karlovsky models give an aver-
age current density, and the results exhibit a tun-
neling peak at forward bias. However, the Klaassen
model does not apply after the peak, since the co-
efficient DKane is zero outside the tunneling regime
[Eq. (2)].

In conclusion, this comparison reveals that the Karlovsky
model gives the best shape for the tunneling I(V ) curve.
However, it is incomplete and does not take into account
important physical phenomena such as that represented
by the transmission coefficient. Also, it does not cover
the valley regime.

IV. NEW TUNNELING MODEL

A. General description

A new model to complete that of Karlovsky will be
developed here by considering additional contributions
from the tunneling current and the excess current. Each
of these currents is linked to a specific type of carrier
transfer. For the first , we consider a pure BTBT regime
expressed by a third-degree polynomial P3 weighted with
a detailed TC. For the second, we consider a transition
from a tunneling regime to a drift regime, using a TAT
model developed by Chynoweth et al.:7 ICh. This ap-
proach is similar to a semiempirical one developed by
Demassa and Knott26 and completed by Roy27 in the
early 1970s. Two scaling factors A and A′ are introduced
to balance the two contributions:

I = A.TC.P3 +A′ · ICh (9)
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FIG. 1: Comparison of direct tunneling models at
forward bias.

B. Transmission Coefficient

The simulation of a tunnel current is strongly linked
with the transmission coefficient TC. This parameter
gives the probability for an electron at a given energy
to cross the junction. Among the various methods com-
monly used to calculate TC, we have chosen the TM
method, since, as already mentioned, it is easy to imple-
ment and computationally less expensive.19

The standard TM method relies on two expressions:28

E < qV0 : TC =
1

1 + (qV0)2 sinh2(k1W )
4E(qV0−E)

(10)

FIG. 2: Calculation of TC for tunneling (blue) and drift
(red) regimes. The two curves have been normalized

separately.

E > qV0 : TC =
1

1 + (qV0)2 sin2(k1W )
4E(E−qV0)

(11)

k1 =

√
2me|qV0 − E|

~2

Equation (10)) calculates TC for electrons that can
tunnel through a barrier of height V0, whereas Eq. (11))
calculates TC for electrons that can drift over the barrier
(Fig. 2). The key task is to sort out those electrons that
tunnel from those that drift over the barrier.

To understand how we incorporate TC into our model,
it is necessary to understand what happens to the cur-
rent between zero and the peak tunneling current IP (VP ),
between IP and the valley current IV (VV ), and after IV
(Fig. 3a). When 0 < V < VP , the Fermi levels sepa-
rate, and the occupied states come before the free states.
With high doping levels, the barrier between the two
sides of the junction is thin enough for tunneling to occur
(Fig. 3b). It should be noted that the BTBT regime is
theoretically limited by EFp at the bottom and EFn at
the top (in practice, a few carriers can be found above
EFn, and BTBT is limited by EV on the p side). In
Fig. 2, the blue curve that shows the tunneling TC in-
creases with the bias until it reaches a maximum (which
corresponds to V = VP ). The red curve shows that al-
most no drift occurs at these values of bias.

When VP < V < VV , fewer and fewer states are lo-
cated before the free states and can tunnel. Meanwhile,
higher-energy states can no longer tunnel, and drifting
starts to occur (Fig. 3c). In Fig. 2, the tunneling TC
decreases after VP , and the drift TC starts to increase,
revealing the transition from one regime to the other. At
VV < V , some occupied states are located above EV and
can no longer tunnel except by using traps located in the
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(a) (b)

(c) (d)

FIG. 3: Schematic representation of the evolution of a tunnel junction when a forward bias is applied. (a) Ideal
tunnel diode I(V ) curve.29 (b) Band diagram at low forward bias below VP . (c) Band diagram at higher forward

bias between VP and VV . (d) Band diagram at high forward bias above VV .

forbidden gap. However, more carriers with enough en-
ergy can drift over the barrier (Fig. 3d). In Fig. 2, the
blue curve is almost at zero, while the red curve begins
to grow significantly.

Therefore, during the simulation, for each bias, we sort
out two categories of electrons and apply the appropriate
relation from Eq. (10) or Eq. (11). Following this, only
the BTBT contribution to TC is retained and incorpo-
rated into the calculation of the current. As the drift
probability is much higher than the tunneling probabil-
ity, separating the two contributions allows better preci-
sion for the tunneling part of the I(V ) curve (Fig. 2, red
and blue curves).

C. Tunneling regime

At low forward bias, two key values are considered:
the peak current IP , where the tunneling regime is at its
highest, and the valley current IV , where tunneling is at
its lowest. In this model, the tunneling current is com-
posed of two terms: TC and a third-degree polynomial
P3 inspired by the Karlovsky model:

IBTBT = TC · P3, (12)

∂IBTBT
∂V

= TC ′(V ) · P3(V ) + TC(V ) · P ′3(V ). (13)

For there to be maxima at VP and VV , IBTBT must sat-
isfy the following conditions:

At V = 0 : P3(0) = 0, (14)

At V = VP : TC ′ = 0⇒ P ′3(VP ) = 0, (15)

At V = VV : TC ≈ 0⇒ P3(VV ) = 0. (16)

In fact, the last condition is an approximation, since tun-
neling does not stop exactly at VV but at a slightly higher
bias. However, for this first approximation, it allows a
local minimum at the correct position. These three con-
ditions give us the expressions for the polynomial coeffi-
cients:

P3 = V · (V 2 − νpvV + νpvVV − V 2
V ), (17)

with

νpv = 3/2(VV + VP ). (18)

Modulo a scaling factor and TC, Eq. (17) gives the tun-
neling contribution to the I(V ) curve. We can see from
the orange curve with the filled dot in Fig. 4 that the
peak and valley tensions are aligned with the experimen-
tal data, but the slopes around IP do not match exactly.

D. Valley current

Because TC is calculated only for the BTBT regime,
the last part of the polynomial curve is zero (Fig. 4, blue
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curve with a square). To simulate the drift regime, we
choose to add another contribution based on an expres-
sion from Chynoweth et al.7 that focuses mainly on the
valley tunnel current:

ICh = DvP, (19)

with

P = exp

(
−αE

3/2
t

F

)
, (20)

Et = EG − qV + EFn + EFp, (21)

F = 2

√
Vbi − V
W

, (22)

α = θ · 4
√

2me

3q~
, with θ ≈ 1. (23)

Here, Et is the energy barrier faced by the carrier (which
is equal to the difference between the two sides of the
junction), F is the maximum field for a step junction,
and P is the probability for a carrier to cross the gap
(which is similar to what has previously been called TC).
Dv is the volume density of occupied levels above the va-
lence band for a given energy (i.e., the filled states in the
defects for energies in the band gaps). For a pure mate-
rial, this density will be very low, thus resulting in a low
excess current.
The expression for the tunnel current including this val-
ley current is

I = A · TC · V (V 2 − νpvV + νpvVV − V 2
V ) +A′ · ICh(θ)

(24)

The shape of the valley current depends mainly on θ
(Fig. 5). Thus, the model has three input parameters
(NA, ND, and the surface area S of the junction) and
three fitting parameters (the scaling factors A, A′, and
θ). With this expression, the valley current is nonzero
(Fig. 4, black full curve) and the drift part of the curve
is consistent with experimental values. The remaining
discontinuity at the valley current is a consequence of
the initial hypothesis which approximates TC(VV ) to 0
(Eq.16).

The table below (Tab. II) lists the contributions of the
new model compared to Karlovsky model.

E. Effect of temperature

As mentioned for the Karlovsky model, the hypotheses
leading to the third-degree polynomial are valid as long
as the widths of the Fermi levels are smaller than 2kBT .
An abscissa (Fig. 6) can be drawn to find the limiting
doping level for each temperature. Below these limits,
the hypotheses of the model are valid. Above them, the
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A = 24.3 C s−1 J−3,
A′ = 0.35 C m3 s−1,
θ = 0.68

FIG. 4: Progressive improvements in simulation using
Yan’s30 characteristic data for a silicon diode.

Na = 1× 1020 cm−3, Nd = 1× 1020 cm−3, T = 300 K

model can still be used, but with caution. For example,
for junctions with high doping levels, the model is more
accurate at high temperatures. The limits at 3kBT and
4kBT are quite far from 2kBT (Fig. 6), so exceeding the
limit by 10% does not strongly affect the accuracy of the
model.

In Fig. 7, the experimental data and the doping levels
are the same as those considered in Sec. IV C, and the
parameters are calculated for temperatures ranging from
100 to 500 K. When the temperature increases, we can
see that the positions of VP and VV do not vary. How-
ever, there is a small shift toward higher current at VP
and a greater shift in current at VV . These shifts have
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Karlovsky model New model

Tunneling peak yes yes

Valley fit no partial

Voltage range [0, VV ] [0, � VV ]

TC no yes

Drift fit no yes

Band gap narrowing no yes

TABLE II: Contributions of the new model
compared to previous most accurate model

FIG. 5: Effect of θ on the shape of the valley current

been observed experimentally by Schmid et al.,31 who
found a significant vertical shift at VV for junctions with
a peak-to-valley current ratio (PVCR) of 2.63. For junc-
tions with a PVCR of 1.5, there was a small shift at VP
and a vertical shift at VV . The junction considered in
the present paper has a PVCR of 2.17. Therefore, the
shifts observed in the simulation are consistent with the
experimental curves described by Schmid et al.31

Experimental data is supposed to be measured at room
temperature. This is confirmed by the fact that the best
fit is obtained for the simulation at 300 K (cyan dashed
line).

V. CONCLUSIONS

In this paper, different analytical models for a p–n tun-
nel junction have been investigated and compared. This
review has revealed that recombination models have a
limited range of validity and are not easy to implement.
A new model to complete that of Karlovsky has been
proposed, with the following new aspects:

• accurate calculation of physical parameters taking

FIG. 6: Doping levels at which EC − EFn and
EV − EFp are equal to 2kBT (solid curve), 3kBT
(dashed curve), 4kBT (dotted curve) for silicon.

FIG. 7: Impact of temperature on a tunnel diode.

account of extra phenomena such as bandgap nar-
rowing and degenerate Fermi levels;

• decomposition of the model into two contributions
(tunneling and valley);

• incorporation of the transmission coefficient;

• incorporation of the valley regime using the model
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of Chynoweth et al.;

• prediction of temperature effects that are consistent
with experimental results.

This model, valid at high temperature, shows a good
correlation with experimental data.

In this work, only BTBT has been considered, since it
is assumed to be dominant in materials with low impurity
concentrations. Also, from the work of Hermle et al.,4 it
appears that the inclusion of a TAT mechanism does not
lead to any significant changes in the simulated curves.
Also, a nonlocal approach as recommended by Hermle
et al.4 has been adopted by modeling carrier transport
through a transmission coefficient.

Further investigations could include finding a detailed
expression for the valley current and extending this
model to heterojunctions. The latter should considers
other tunneling effects than pure BTBT and incorpo-
rate them in the calculation of TC. Energy band offset
at the interface between the two materials may induce
additionnal modifications.
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