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Closed-loop output error identification algorithms with

predictors based on generalized orthonormal transfer

functions: Convergence conditions and bias distribution

Bernard Vau a, Henri Bourlès a

aSATIE Ecole normale supérieure de Paris-Saclay, 94230 CACHAN France.

Abstract

This paper proposes an improved version of closed-loop output-error identification algorithms, where the predictor is established
on a generalized basis of orthonormal transfer functions. It is shown that the selection of the basis poles impacts the convergence
conditions and the bias distribution of the schemes.These algorithms present several advantages: They are able to identify in
closed-loop fast sampled systems, stiff systems (with modes spread over three decades or more), and reduced order models.
Moreover, they are suitable for unstable systems or controllers. A simulation example shows the effectiveness of this approach.
These algorithms can be employed in an open-loop context by using a straightforward simplification.

Key words: Closed-loop identification, stiff systems identification, orthonormal transfer functions bases

Notation

N set of natural integers {1, 2, · · · }
q, q−1 forward/backward shift operator
z z transform variable
λ Hambo operator
D exterior of the open unit disc ∪ ∞
T unit circle

H2(D) Hardy space of analytic functions in D which
are square integrable over T

H2− the set of all functions in H2(D) that are null
at infinity

? transpose conjugate symbol
l2 space of square summable sequences on the

time interval N
‖M‖2 Largest singular value of matrix M

L(q) Polynomial in q i.e. with q substituted to the
indeterminate (l0 6= 0 if L 6= 0):
L(q) = l0q

nl + l1q
nl−1 + · · ·+ lnl

L∗(q−1) reciprocal polynomial of L(q)
L∗(q−1) = l0 + l1q

−1 + · · ·+ lnlq
−nl

L∗†(q−1) L∗(q−1) minus its constant term:
L∗†(q−1) = l1q

−1 + · · ·+ lnlq
−nl

do(L) degree of polynomial L: do(L) = nl

Email addresses: bernard.vau@satie.ens-cachan.fr
(Bernard Vau), henri.bourles@satie.ens-cachan.fr
(Henri Bourlès).

1 Introduction

Identification in closed-loop is unavoidable whenever a
system includes marginally stable or unstable poles, or if
for practical reasons an open-loop identification cannot
be carried out (e.g. because of safety constraints), which
is a common situation, in particular in industrial appli-
cations. The main specific issue related to closed-loop
identification lies in the fact that the system input is
necessarily correlated with the noise, entailing a biased
estimation if operated by means of an open-loop algo-
rithm involving an erroneous noise model or a prefilter
([12] pp. 433, 436). Several identification methods in
closed-loop operation have been existing for a long time
[16]. Nevertheless, a significant interest for this topic has
been triggered in the nineties in the perspective of iden-
tification for control [6], [18], entailing several research
teams to work simultaneously on this subject: see for
example [5], [4], [10]. The schemes proposed in the latter
reference by I.D. Landau and A. Karimi, called CLOE
and X-CLOE (CLOE being dedicated to an output error
model, and X-CLOE to an ARMAX model structure),
present a special interest especially in the context of
adaptive control, since their recursive structure makes
them usable in a real-time situation. Their philosophy is
based on the concept of Model Reference Adaptive Sys-
tems (MRAS), in which the true closed-loop works in
parallel with a simulated closed-loop. These algorithms
belong to the pseudo-linear regression (PLR) class, and
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their convergence conditions are well-known (see [10]).
However, it has been shown only recently in [20], that
their bias distributions differs from those of prediction
error methods (PEM), and that the native CLOE and
X-CLOE structures strongly penalizes the model mis-
fit in high frequency. In general, most of discrete-time
identification algorithms are not reliable in a fast sam-
pling situation [11], and the specific bias distribution of
CLOE and X-CLOE algorithms make them even more
unsuited in case of oversampling. As a consequence,
identification of systems having poles separated from
several decades (stiff systems) is totally intractable us-
ing this algorithms family.

This contribution is twofold:

(1) Complete CLOE and X-CLOE algorithms in order
to make them able to cope with unstable controllers
(which is not the case of the initial versions of these
schemes), a situation that can occur when, for ex-
ample, a double integrator is introduced in the con-
trol law. For this, a specific closed-loop formulation
of the predictor is used (see propositions 1 and 2),

(2) Make these algorithms suitable for the identifica-
tion of stiff (or multi-frequency scale) systems.

For purpose (2), a novel parametrization is used, which
is established on generalized bases of orthonormal trans-
fer functions (GBOF) introduced by Heuberger et al. in
[7] and [8], that are associated with the Hambo trans-
form [9]. The models employed in the present article
can be considered as a generalization of infinite impulse
response (IIR) filters. In contrast, the existing identifi-
cation method based on GBOF as described in section
4.3 of [8] (in open-loop operation), rely on a predictor
being, roughly speaking, a generalization of finite im-
pulse response (FIR) filters: the past outputs (whether
true or predicted) are not used in the predictor. For this
latter method, the selection of the basis poles is cru-
cial: if this selection is not relevant, a large amount of
estimated parameters is required, leading to increased
uncertainties. This is the reason why several authors
have proposed methodologies about data-driven pole
selection: see for example [1], [15], [8] (chap. 11), or [17].
On the contrary, in the schemes proposed here, an
asymptotically unbiased model of minimal order can
be obtained without any stringent condition on the
basis poles, provided only that these latter ensure the
algorithm convergence. Nevertheless, these poles have
a strong impact on the bias distribution. Limit models
in the frequency domain are obtained by expressing the
equivalent prediction error (a non measurable signal) as
defined in [20]. The variance of this equivalent predic-
tion error is the convex function minimized by the PLR
algorithms for a full order model. These limit models
are good indicators of the bias distribution and show
that the bias depends on the predictor parametrization,
which is a situation that differs from PEM for which

this parametrization has no impact on the model fit (see
[12] p. 437). The interest of the proposed developments
is to allow for a tuning of the identification schemes in
function of the requirements that the user may have.
We show through the simulations that one can either
identify a wide band model over, say, 3 decades (cor-
responding to a stiff system), or a local model in the
frequency domain that can be useful for control, or
even an almost ”punctual” model (only valid in a small
neighbourhood of one frequency) with highly reduced
order. The basis poles play the role of tuning parame-
ters, and an indicator of their effect on the fit is used.

The article is organized as follows: Section 2 contains
a short review of generalized orthonormal basis trans-
fer functions. In section 3, these functions are employed
in a specific parametrization of output error and AR-
MAX predictors in closed-loop. In section 4, these pre-
dictors are introduced in recursive closed-loop identifi-
cation schemes belonging to the pseudo-linear regres-
sion class. These algorithms are detailed and their con-
vergence conditions are provided. Section 5 presents the
limit models of the algorithms in the frequency domain.
In section 6, an indicator of the basis poles effect on these
limit models is introduced (function χ), and the proper-
ties of this indicator are given. Last, section 7 presents
some relevant simulations showing the interest of these
algorithms, and of the function χ as an heuristic indi-
cator of the basis poles effect on the bias distribution.
Finally, section 8 contains four appendices.

2 Orthogonal transfer functions bases and
Hambo transforms

At first, some definitions useful for the understanding of
this paper are recalled. They are related to orthonormal
transfer functions issued from a balanced realization of
an all-pass transfer function, as proposed in [7], and to
the associated Hambo signal and operator transforms.
These notions are presented in [8] (chap. 3 and 12), and
[9]: the reader can refer to these references for more in-
formation. In the rest of this section, we recall some ba-
sic facts for the reader’s convenience. Let us consider the
Blashke product Gb(z), with Gb(z

−1)Gb(z) = 1, given
by

Gb(z) =

np−1∏
k=0

−pkz + 1

z − pk
(1)

where pk (|pk| < 1) are the basis poles (being either real
or complex conjugate), and np the number of poles.
This transfer function can be represented by means
of a balanced state-space realization Gb(z) = Db +

Cb (zI −Ab)−1
Bb, which satisfies[
Ab Bb
Cb Db

]? [
Ab Bb
Cb Db

]
= I (2)

2



The orthonormal transfer functions basis proposed by
Heuberger and al. [7] consist of the vectors of functions
Vk with size (np, 1) and where k ∈ N, defined as

Vk(z) = (zI −Ab)−1
BbG

k−1
b (z) (3)

One can observe that the basis poles are repeated k
times for each entry of Vk(z) and these transfer functions
form a Hilbert basis of strictly proper transfer functions
in H2(D). Particular configurations of np and pk corre-
spond to well known cases: np = 1, p0 = 0 is nothing but
the classical z−1, z−2, · · · basis, and np = 1, |p0| < 1 (p0

being real) corresponds to the Laguerre basis.
Define

v1(t) = At−1
b Bb vk+1(t) = Gb(q)vk(t) k ∈ N

The Hambo signal transform of the sequence {x(t)} be-
longing to l2 is {x̆(k)} with x̆(k) =

∑
t∈N vk(t)x(t). The

Hambo operator λ is defined according to λ−1 = Gb(z).
If np > 1, the mapping λ 7→ z is one to np (i.e. np-valued)
except at branch points which cannot lie on the unit cir-
cle. DefineN(λ) = Ab+Bb(λ−Db)

−1Cb. It is shown that
the eigenvalues {zj , j = 1, · · · , np} of N(1/λ) satisfy the
equation λ−1 = Gb(zj). The λ transform of {x(t)}, de-

noted as X̆ : λ 7→ X̆(λ), is given by

X̆(λ) =
∑
k∈N

x̆(k)λ−k (4)

Consider a rational transfer function H : z 7→ H(z) be-
longing to H2−. Its corresponding Hambo signal trans-

form, denoted as H̆ : λ 7→ H̆(λ), is given by

H̆(λ) =
∑
k∈N

h̆(k)λ−k (5)

where

h̆(k) =
1

2πi

∮
T
Vk(z)H(z−1)

dz

z
(6)

The Hambo operator transform of H, which is denoted
as H̃ : λ 7→ H̃(λ) is

H̃(λ) =

∞∑
τ=0

h(τ)Nτ (λ) (7)

where {h(τ)} is the impulse response ofH. The following
notation is commonly used:

H̃(λ) = H(z)|z−1=N(λ) (8)

and as shown in ([8], Sect. 3.3.10),

H̃(λ) =

np∑
j=1

H(zj)
V1(1/zj)V

T
1 (zj)

V T1 (zj)V1(1/zj)
(9)

The relation from H̆(λ) to H̃(λ) is given by ([8], prop.
12.5)

H̆(λ) = H̃(λ)
λ−1CTb
λ−1 −Db

(10)

Consider now {u(t)}, {y(t)}, two sequences in l2, and
H ∈ H2−, such that y(t) = H(q)u(t). Then one has

y̆(λ) = H̃(λ)ŭ(λ). Moreover, the transformation (̃·) :

H 7→ H̃ is an isomorphism of associative and commuta-
tive R-algebras ([8], sect. 12.4). Explicitly, for any trans-
fers functions H1, H2 ∈ H2−, the followings relations
hold:(

H̃1H2

)
(λ) = H̃1(λ)H̃2(λ) = H̃2(λ)H̃1(λ) (11)

and for any a, b ∈ R(
˜aH1 + bH2

)
(λ) = aH̃1(λ) + bH̃1(λ) (12)

3 A parameterization for closed-loop identifica-
tion predictors of output error and ARMAX
models

The purpose of this section is to derive expressions of
closed-loop predictors for output error and ARMAX
models by using the generalized orthonormal basis of
transfer functions presented in section 2. Let us consider
{u(t)}, {y(t)}, the input and output sequences of the
system to be identified (true system), defined as

y(t) = G0(q)u(t) +W0(q)e(t) (13)

or
y(t) = G0(q)u(t) + v(t) (14)

The white noise sequence {e(t)} is centered and gaussian
and {v(t)} is a centred gaussian colored noise indepen-

dent of {u(t)} . One assumes that G0(q) = B0(q)
A0(q) , and

W0(q) = C0(q)
A0(q) , where A0, B0, C0 are polynomials. The

polynomials A0 and C0 are monic with the same degree.
The deterministic and stochastic parts of the model are

denoted respectively as G(q) = B(q)
A(q) , and W (q) = C(q)

A(q) ,

where A, B, C are polynomials, A and C being monic,
with do(A) = do(C) = na and do(B) ≤ na − 1. The sys-
tem is driven by an R-S (causal) controller, such that

u(t) = −R(q)

S(q)
y(t) (15)
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where S, R are coprime polynomials, S being monic,
and it is assumed that do(R) ≤ do(S). Let us define
the relative degrees δ and κ respectively of G(q) and of
the controller, such that δ = do(A) − do(B) ≥ 1 and
κ = do(S)− do(R) ≥ 0.

According to ([10] p. 296), the predicted output at time
t + 1, denoted as ŷ(t + 1), of the output error model in
closed-loop operation, is given by

ŷ(t+1) = −A∗†(q−1)ŷ(t+1)+q−δB∗(q−1)û(t+1) (16)

with
S∗(q−1)û(t) = −q−κR∗(q−1)ŷ(t) (17)

The ARMAX predictor in closed-loop operation is given
in ([10], p. 300):

ŷ(t+ 1) = −A∗†(q−1)ŷ(t+ 1) + q−δB∗(q−1)û(t+ 1)

· · ·+ H∗†(q−1)

S∗(q−1)
ε(t+ 1) (18)

where H∗ = 1 + C∗S∗ − A∗S∗ − q−δ−κB∗R∗. More-
over, the closed-loop prediction error is ε(t + 1) =
y(t+ 1)− ŷ(t+ 1).

Let S̄ be a monic schur polynomial with the same degree
as S, and

Ap(q) =

np−1∏
k=0

(q − pk)
n

(19)

where n = na/np is chosen to be an integer by a suitable
choice of np (the number of basis poles), and na = do(A).

Proposition 1 The closed-loop output predictor can be
written

ŷ(t+ 1) = −
A∗†I (q−1)

A∗p(q
−1)

ŷf (t+ 1) +
q−δB∗I (q−1)

A∗p(q
−1)

ûf (t+ 1)

(20)
with

S̄∗(q−1)ŷf (t+ 1) = S∗(q−1)ŷ(t+ 1) (21a)

S̄∗(q−1)ûf (t+ 1) = −q−κR∗(q−1)ŷ(t+ 1) (21b)

and

A∗†(q−1) = A∗†f (q−1) +A∗†I (q−1) (22a)

B∗(q−1) = B∗f (q−1) +B∗I (q−1) (22b)

where Af , Bf have the same degree as A and B respec-
tively, and satisfy the Bézout equation

AfS +BfR = ApS̄ (23)

Proof: By (21), and (23), (20), can be written −A∗†I ŷ(t+

1) + q−δB∗I û(t+ 1) =
A∗fS

∗+q−δ−κB∗fR
∗

S∗ ŷ(t+ 1), which is
equivalent to (16) owing to (17). 2

Set

A
′

p(q) =

np−1∏
k=0

(q − pk)
n
′

(24)

where n
′

= nh−na
np

, n
′

is an integer by a suitable choice

of np and nh = do(H).

Proposition 2 The closed-loop ARMAX predictor can
be written

ŷ(t+ 1) = −
A∗†I (q−1)

A∗p(q
−1)

ŷf (t+ 1) + · · ·

· · ·+ q−δB∗I (q−1)

A∗p(q
−1)

ûf (t+ 1) +
H∗†(q−1)

A∗p(q
−1)A′∗p (q−1)

εf (t+ 1)

(25)

where

S̄∗(q−1)εf (t+ 1) = A
′∗
p (q−1)ε(t+ 1) (26)

Proof: Similar to the proof of proposition 1. 2

Thus, according to (21), if {ŷ(t)} is bounded, {ŷf (t)}
and {ûf (t)} are bounded too. Consequently, an unsta-
ble controller can be employed, contrary to the classical
versions of CLOE and X-CLOE (see [10], pp. 299-301).
In order to solve the equation (23) (in which Af and Bf
are the unknown terms), it is necessary to specify S̄ (the
specification ofAp results from the basis poles selection).
The zeros of S̄ are chosen according to the principle of
ρ−stability developed in [3]. Let ρ ≥ 1, S̄(z/ρ) is the
stable spectral factor of S(z/ρ), i.e

S(z/ρ)S(ρ/z) = S̄(z/ρ)S̄(ρ/z) (27)

where z 7→ S̄(z/ρ) has all its zeros inside the unit circle,
assuming that ρ has been chosen so that z 7→ S̄(z/ρ)
has no zero ζ such that |ζ| = 1. In term of zeros place-
ment, the choice of S̄ is equivalent to leaving unchanged
the zeros of S that are inside the circle with radius 1/ρ,
and to reflect the other zeros with respect to this circle.
In any case, ρ should be chosen close to 1, and can be
exactly equal to 1 if the controller has no pole on the
unit circle.

Proposition 3 Let µk, νk, k ∈ [1, n] be some vectors
of size (np, 1) with real entries. The closed-loop output
error predictor (20) that we call the H-CLOE predictor
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(H stands for Hambo) can be expressed as

ŷ(t+ 1) = −
n∑
k=1

µTk Vk(q)ŷf (t+ 1)

+

n∑
k=1

νTk Vk(q)ûf (t+ 1) (28)

Proof: Let Pna be the space of all polynomials of de-
gree inferior or equal to na − 1. By (3), the entries of
the column ApVk belong to Pna and form a basis of this
space by the orthogonality condition of the transfer func-
tions Vk, with k = 1, · · · , n. Since Ap is the denomi-
nator of Vn, there exist vectors µk, νk with real entries

and size (np, 1) such that
A∗†
I

(q−1)

A∗p(q−1) =
∑n
k=1 µ

T
k Vk(q) and

q−δ
B∗I (q−1)
A∗p(q−1) =

∑n
k=1 ν

T
k Vk(q), hence the result. 2

Proposition 4 Let γk, k ∈ [1, n + n
′
] be some vectors

with real entries and size (np, 1). The closed-loop AR-
MAX predictor called in the sequel H-XCLOE can be put
under the form

ŷ(t+ 1) = −
n∑
k=1

µTk Vk(q)ŷf (t+ 1)

+

n∑
k=1

νTk Vk(q)ûf (t+ 1) +

nh∑
k=1

γTk Vk(q)εf (t+ 1) (29)

Proof: Similar to the proof of proposition 3 since one can

write H∗†(q−1)

A∗p(q−1)A′∗p (q−1)
=
∑n+n

′

k=1 γTk Vk(q). 2

Remark 1: Note that causality is respected in (28), (29),
since Vk is a strictly proper transfer operator.
Remark 2: The Bézout equation (23) has solutions pro-
vided that R and S are coprime, which means that the
controller is expressed in a minimal form. It is preferable
to solve this equation with the Hambo operator (in order
to have a well conditioned problem). The corresponding
algebra is explained in Appendix A.
Remark 3: Open-loop predictors of output error and AR-
MAX models can trivially be obtained by taking R = 0,
S = S̄ = 1. The convergence conditions and the limit
models of the corresponding open-loop algorithms can
be deduced from the general case treated in sections 4
and 5 below.

4 Algorithms and their convergence conditions

4.1 Recursive structure of the algorithms

The predictors presented in section 2 can now be used
in identification schemes belonging to the pseudo-linear
class. In the following, θ0 is the parameters vector of the

true system, θ is the parameters vector of the predictor,

θ̂(t) is the estimated parameters vector at time t, θ∗ is
the limit estimated parameters vector (if it exists), and
φ(t, θ) is the regressor of the predictor. According to (28)
and (29), the predicted output of H-CLOE and of H-
XCLOE can be put in the form (which corresponds to a
pseudo-linear regression structure)

ŷ(t+ 1) = θTφ(t, θ) (30)

The expressions of φ(t, θ) and θ are given in sections 4.2
and 4.3. In the context of pseudo-linear regression, θ is
generally computed in a recursive manner by means of
the parameters adaptation algorithm ([10], p. 101-102):

θ̂(t+ 1) = θ̂(t) + F (t)φ(t, θ)ε(t+ 1) (31a)

F−1(t+ 1) = λ1F
−1(t) + λ2φ(t, θ)φT (t, θ) (31b)

where ε(t+ 1) = y(t+ 1)− ŷ(t+ 1) is the (a-posteriori)
prediction error, F (t) the adaptation gain (positive def-
inite matrix), 0 < λ1 ≤ 1, 0 ≤ λ2 < 2 are the forgetting
factors.
It will be shown that the expressions of the prediction
error of H-CLOE and H-XCLOE schemes can be put in
the form

ε(t+ 1) = H(q−1) (θ0 − θ)T φ(t, θ) + w(t+ 1) (32)

where H : z−1 7→ 1 +
∑∞
k=1 hkz

−k is a rational func-
tion, and {w(t+ 1)} is a centred stochastic disturbance
such that E[w(t + 1)φ(t, θ)] = 0. According to ([12]
p. 396), and Theorem 4.1 of [10], if one assumes that

λ1 = 1, and that θ̂(t) generated by the algorithm al-
ways belongs to the domain DS in which the stationary
processes {φ(t, θ)} and {ε(t+ 1, θ)} can be defined, and
if the transfer function H(z−1) − λ2

2 is strictly positive
real, one has

Prob { lim
t→∞

θ̂(t) ∈ DC} = 1

where DC = {θ : φT (t, θ)[θ0−θ] = 0} is the convergence
domain.
Therefore it is crucial to make explicit the expression of
H in H-CLOE and H-XCLOE algorithms : This is the
purpose of the next subsections. Note that the strictly
real positivity of H(z−1)− λ2

2 is a sufficient convergence
condition.

4.2 Output error predictor and the H-CLOE algorithm

In the H-CLOE algorithm, the regressor φ(t, θ), the pa-
rameters vector of the model θ and the true system θ0

are respectively

φT (t, θ) =
[
−V T1 (q)ŷf (t+ 1) − V T2 (q)ŷf (t+ 1) · · ·

· · · V T1 (q)ûf (t+ 1) V T2 (q)ûf (t+ 1) · · ·
]
, (33)

5



θT = [µT1 µT2 · · · νT1 νT2 · · · ] (34a)

θT0 = [µT01 µ
T
02 · · · νT01 ν

T
02 · · · ] (34b)

Moreover, let us define Syp0 as the sensitivity function
of the closed-loop, where

Syp0(z−1) =
A∗0(z−1)S∗(z−1)

A∗0(z−1)S∗(z−1) + z−δ−κB∗0(z−1)R∗(z−1)
(35)

Lemma 1 A sufficient convergence condition of the H-
CLOE algorithm is that

A∗p(z
−1)S̄∗(z−1)

A∗0(z−1)S∗(z−1) + z−δ−κB∗0(z−1)R∗(z−1)
− λ2

2
(36)

be a strictly positive real transfer function.

Proof: Let yf (t), uf (t) be such that S̄∗(q−1)yf (t) =
S∗(q−1)y(t) and S̄∗(q−1)uf (t) = −q−κR∗(q−1)y(t). Let
A0I be a monic polynomial with do(A0I) = na, and
B0I a polynomial with do(B0I) = do(B0), these poly-

nomials satisfying A∗†0 (q−1) = A∗†0I(q
−1) +A∗†f (q−1)

and B∗0(q−1) = B∗0I(q
−1) +B∗f (q−1). The parame-

ters vectors of the true system µ0k, ν0k are such

that
A∗†

0I
(q−1)

A∗p(q−1) =
∑n
k=1 µ

T
0kVk(q) and q−δ

B∗0I(q−1)
Ap(q−1) =∑n

k=1 ν
T
0kVk(q). On the other hand, by using the

same procedure as that leading to (20), one can

write from (14), y(t + 1) = −A
∗†
0I

(q−1)

A∗p(q−1) yf (t + 1) +

B∗0I(q)
A∗p(q) uf (t + 1 − δ) +

A∗0(q−1)S∗(q−1)

A∗p(q−1)S̄∗(q−1)
v(t + 1). By com-

bining this latter equation with (20) one obtains

ε(t+ 1) = H(q−1) (θ0 − θ)T φ(t, θ) + Syp0(q−1)v(t+ 1),

withH(z−1) =
A∗p(z−1)S̄∗(z−1)

A∗0(z−1)S∗(z−1)+z−δ−κB∗0 (z−1)R∗(z−1)
. Ow-

ing to this expression of H, the sufficient convergence
condition is obtained from subsection 4.1. 2

Note that (36) is a generalization of the original CLOE
algorithm which correspond to the situation: A∗p = 1

and S̄∗ = S∗

4.3 ARMAX predictor and the H-XCLOE algorithm

The regressor of the H-XCLOE algorithm, the model
parameters vector and the true parameters vector are
given by:

φT (t, θ) =
[
−V T1 (q)ŷf (t+ 1) − V T2 (q)ŷf (t+ 1) · · ·

· · · V T1 (q)ûf (t+ 1) V T2 (q)ûf (t+ 1) · · ·
· · · V T1 (q)εf (t+ 1) V T2 (q)εf (t+ 1) · · ·

]

θT = [µT1 µT2 · · · νT1 νT2 · · · γT1 γT2 · · · ] (37a)

θT0 = [µT01 µ
T
02 · · · νT01 ν

T
02 · · · γT01 γ

T
02 · · · ] (37b)

Lemma 2 A sufficient convergence condition of H-
XCLOE is that

A∗p(z
−1)S̄∗(z−1)

C∗(z−1)S∗(z−1)
− λ2

2
(38)

be a strictly positive real transfer function.

Proof: Set H∗0 = 1 + C∗0S
∗ −A∗0S∗ − q−δ−κB∗0R∗0, and

define γ0k such that
H∗†0 (q−1)

A∗p(q−1)A′∗p (q−1)
=
∑n+n

′

k=1 γT0kVk(q).

Since S̄∗(q−1)yf (t) = S∗(q−1)y(t) and S̄∗(q−1)uf (t) =
−q−κR∗(q−1)y(t), by using (13) one has y(t + 1) =

−A
∗†
0I

(q−1)

A∗p(q−1) yf (t+ 1) +
q−δB∗0I(q−1)
A∗p(q−1) uf (t+ 1) + · · ·

+
C∗0 (q−1)S∗(q−1)

A∗p(q−1)S̄∗(q−1)
e(t+ 1). Combining this expression with

(25) one obtains ε(t+ 1) = H(q−1) (θ0 − θ)T φ(t, θ) + e(t+ 1)

with H(q−1) =
A∗p(q−1)S̄∗(q−1)

C∗(q−1)S∗(q−1) , and one can directly use

the result of subsection 4.1. 2

The expression (38) shows that H-XCLOE is again a
generalization of the classical X-CLOE where A∗p = 1

and S̄∗ = S∗.

4.4 Inclusion of excitation signals

The excitation is an additional signal either to the sys-
tem input or to the reference. In case of an input system
excitation ru(t), or a reference excitation rr(t), one has
respectively

S∗(q−1)û(t) = −q−κR∗(q−1)ŷ(t) + S∗(q−1)ru(t)
(39a)

S∗(q−1)û(t) = −q−κR∗(q−1)ŷ(t) + q−κR∗(q−1)rr(t)
(39b)

And the predicted output expression of the H-CLOE
algorithm with excitation signals is:

ŷ(t+ 1) = −
n∑
k=1

µTk Vk(q)ŷf (t+ 1)+

· · ·+
n∑
k=1

νTk Vk(q)ûf (t+ 1) + ruf (t) + rrf (t) (40)
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where ruf (t), rrf (t) satisfy the relations

A∗p(q
−1)S̄∗(q−1)ruf (t) = q−δB∗f (q−1)S∗(q−1)ru(t)

(41a)

A∗p(q
−1)S̄∗(q−1)rrf (t) = q−δ−κB∗f (q−1)R∗(q−1)rr(t)

(41b)

The expression of the (a-posteriori) predicted output:

ŷ(t + 1) = θ̂(t + 1)φ(t, θ) + ruf (t) + rrf (t) is not of the
form required by the pseudo-linear regression if ruf (t)+
rrf (t) 6= 0. Defining the modified measured output
ȳ(t+ 1) = y(t+ 1)− ruf (t)− rrf (t), we get

ε0(t+ 1) = ȳ(t+ 1)− θ̂T (t)φ(t, θ) (42)

which has the usual expression and is called the a-priori
prediction error. The a-posteriori prediction error ε(t+1)

is given by ε(t + 1) = ε0(t+1)
1+φT (t)F (t)φ(t)

(see [10], p. 101).

This substitution applies mutatis mutandis for the H-
XCLOE algorithm.

5 Limit models in the frequency domain

The stationary condition of the parameter adaptation
algorithm is (see [12], p. 222):

E [ε(t+ 1)φ(t, θ)] = 0 (43)

The regressor φ(t, θ) depends on the estimated parame-
ters. As shown in [20], Condition (43) does not imply in
general the minimization of E

[
ε2(t, θ)

]
. This is the ma-

jor difference with prediction error methods (PEM) that
aim directly at minimizing this latter expression. For a
full order model, the signal (generally non measurable)
whose variance is effectively minimized if Condition (43)
is satisfied is what we call the equivalent prediction error
(see [20]) denoted by εE(t+ 1) such that

θ∗ = ArgminE
[
ε2
E(t, θ)

]
(44)

The signal t 7→ E
[
ε2
E(t, θ)

]
is ergodic, thus the map-

ping θ 7→ E
[
ε2
E(t, θ)

]
is a strictly convex and coercive

function independent of t, and therefore the minimum
of this function exists and is achieved for a unique value
θ∗ of θ. As shown in [20] this equivalent prediction error
is related to the prediction error ε(t). Let Q(q−1, θ) be
a transfer function operator, ratio of two polynomials in
q−1 with constant term equal to 1, that satisfies

Q(q−1, θ)
∂ε(t+ 1, θ)

∂θ
= −φ(t, θ) (45)

For the output error model (in closed-loop) one has (see
[20])

εE(t+ 1, θ) = Q(q−1, θ)ε(t+ 1)

+(1−Q(q−1, θ))Syp(q
−1)v(t+ 1) (46)

and for the ARMAX model

εE(t+ 1, θ) = Q(q−1, θ)ε(t+ 1)

+(1−Q(q−1, θ))e(t+ 1) (47)

Define the sensitivity function operator Sup0(q−1) such
that
Sup0(q−1) =

−A∗0(q−1)R∗(q−1)
A∗0(q−1)S∗(q−1)+q−δ−κB∗0 (q−1)R∗(q−1)

, and

let Tur0(q−1) be the transfer function operator from
the excitation signal to the system input. One has
Tur0 = Syp0 in case of an additive excitation to the sys-
tem input, and Tur0 = −Sup0 in case of an excitation
on the reference. In the following, Φr is the excitation
power spectrum density (PSD) (of ru or rr depending
on the location of this excitation), and Φe the PSD of
{e(t)}. The two following results hold:

Proposition 5 The limit model of the H-CLOE algo-
rithm is given by

θ∗ = Argmin

∫ +π

−π

∣∣∣∣ A(eiω)S(eiω)

Ap(eiω)S̄(eiω)

∣∣∣∣2
×|G0(eiω)−G(eiω)|2|Tur0(eiω)|2Φr(ω)dω (48)

Proof: One has to calculate Q(q−1, θ). For the H-CLOE
algorithm, one verifies easily that:

Q(q−1, θ) = A∗(q−1)S∗(q−1)+q−δ−κB∗(q−1)R∗(q−1)
A∗p(q−1)S̄∗(q−1)

. On the

other hand, the H-CLOE predictor expression is exactly
the same as that of the classical CLOE algorithm (see
[10], p. 308):
ε(t) = Syp (G0 −G) [Syp0ru(t)− Sup0rr(t)] + Syp0v(t),

where Syp(q
−1) = A∗(q−1)S∗(q−1)

A∗(q−1)S∗(q−1)+q−δ−κB∗(q−1)R∗(q−1)
.

By combining with (46), one obtains the expression of
the equivalent prediction error
εE(t) = A∗S∗

A∗pS̄
∗ (G0 −G) [Syp0ru(t)− Sup0rr(t)] +

Syp0v(t), hence the equation (48), since do(A) = do(Ap),
and do(S) = do(S̄). 2

Proposition 6 The limit model of the H-XCLOE algo-
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rithms is given by

θ∗ = Argmin

∫ +π

−π

∣∣∣∣ A(eiω)S(eiω)

Ap(eiω)S̄(eiω)

∣∣∣∣2[
|G0(eiω)−G(eiω)|2|Tur0(eiω)|2Φr(ω)+

|W0(eiω)
Syp0(eiω)

Syp(eiω)
−W (eiω)|2Φe(ω)

]
dω (49)

Proof: One verifies that: C∗(q−1)S∗(q−1)∂ε(t+1)
∂θ =

−A∗p(q−1)S̄∗(q−1)φ(t), thus:Q(q−1, θ) = C∗(q−1)S∗(q−1)
A∗p(q−1)S̄∗(q−1)

.

On the other hand, the prediction error of the classical
X-CLOE algorithm is
ε(t) = A∗

C∗ [(G0 −G) (Syp0ru(t)− Sup0rr(t)) +(
W0

Syp0
Syp
−W

)
e(t)

]
+ e(t). By combining with (47),

εE(t) = A∗S∗

A∗pS̄
∗ [(G0 −G) (Syp0ru(t)− Sup0rr(t))]+

A∗S∗+q−δ−κB∗R∗

A∗pS̄
∗ (W0Syp0 −WSyp) e(t) + e(t), and the

result in the frequency domain follows. 2

6 Effect of the basis poles on the limit models:
The function χ

There exists a bijective and strictly increasing function
β :] − π, π] →]− npπ, npπ] such that Gb(e

iω) = e−iβ(ω)

for all ω ∈]−π, π], [13], ([8] chap. 9). Putting ωλ := β(ω),
ωλ is called the Hambo frequency and the mapping T→
] − npπ, npπ] : λ 7→ ωλ is np-valued. The derivative of
this function plays a major role, owing to the property
(see [8], chap. 9)

β
′
(ω) = V T1 (eiω)V1(e−iω) (50)

The function β
′

is a particular expression of the repro-
ducing kernel of the Hilbert space associated with the
orthogonal transfer functions basis (see [8], chap.2).
The Hambo operator transform of G0(z) is de-

noted G̃0(λ). The Hambo operator transform of

G(z) =
B(z)/Ap(z)
A(z)/Ap(z) , denoted as G̃(λ), is given by the ex-

pression G̃(λ) = Ã−1(λ)B̃(λ), where Ã(λ), and B̃(λ) are
polynomial matrices in λ, and are the Hambo operator
transforms of A(z)/Ap(z) and B(z)/Ap(z)) respectively,
, see proposition 8 below.
In the following, it is assumed that {r(t)} and {v(t)}
have rational spectra, and that the power spectrum
density (PSD) of {εE(t)}, denoted as ΦεE (ω), is rational
too. Additionally, the PSD of {e(t)} is denoted as Φe(ω).

Proposition 7 Under the assumption that {r(t)} is in-
dependent of {v(t)}, one has

θ∗ = Argmin

∫ npπ

−npπ
ΨεE (ωλ)dωλ (51)

where

• For H-CLOE

ΨεE (ωλ) = ‖Ã(eiωλ)‖22‖S̃(eiωλ) ˜̄S−1(eiωλ)‖22×
· · · ‖G̃0(eiωλ)− G̃(eiωλ)‖22‖T̃ur0(eiωλ)‖22Ψr(ωλ)

(52)

• For H-XCLOE

ΨεE (ωλ) = ‖Ã(eiωλ)‖22‖S̃(eiωλ) ˜̄S−1(eiωλ)‖22×

· · ·
(
‖G̃0(eiωλ)− G̃(eiωλ)‖22‖T̃ur0(eiωλ)‖22Ψr(ωλ) + · · ·

· · · ‖S̃yp0(eiωλ)S̃−1
yp (eiωλ)W̃0(eiωλ)− W̃ (eiωλ)‖22Ψe(ωλ)

)
(53)

with Ψr(ωλ) = Φr(ω) 1
β′ (ω)

∣∣∣
ω=β−1(ωλ)

,

and Ψe(ωλ) = Φe(ω) 1
β′ (ω)

∣∣∣
ω=β−1(ωλ)

and where (̃·) is the Hambo operator transform of

the transfer matrix in parentheses, with ‖(̃.)‖22 =
|(.)|2ω=β−1(ωλ).

Proof: The proof is given in appendix B. 2

Equations (51), (52), (53) provides some intrinsic ex-
pressions, independent of the pole basis, showing how
the discrepancy between the true system and the model
is weighted in the Hambo frequency domain. These
equations are similar to those of native PLR closed-loop
algorithms (corresponding to equations (48) and (49)
in which all basis poles are set to 0 or Ap(e

iω) = 1),

since ‖S̃(eiωλ)S̃−1(eiωλ)‖22 ≈ 1 at almost every fre-
quency (see Section 3 above). Instead of considering
the effect of the basis poles induced by the weighting
function |1/Ap(eiω)|2 that appears in the limit models
(48) and (49) of section 5, it is more convenient to anal-
yse the generic expressions (52), (53) with respect to

the frequency distortion from ω to ωλ. The function β
′

characterizes this distortion, which is well known for the
Laguerre basis (see [14]). From (50), one shows easily
that [8] (p. 222), [13]

β
′
(ω) =

np−1∑
k=0

β
′

k(ω) β
′

k(ω) =
1− |pk|2

|1− p̄keiω|2
(54)

Since most identified systems are represented in Bode
diagrams with a logarithmic scale ω̄ = log(ω), one
should study the distortion from this logarithmic fre-
quency scale ω̄ to the Hambo frequency scale ωλ. Let us
denote as χ the function which expresses the dilatation
rate from the ω̄ scale to ωλ scale. Note that

dωλ = eω̄β
′
(eω̄)dω̄ (55)
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This function χ is given by

χ(ω) =
1

π
ωβ
′
(ω) =

1

π
eω̄β

′
(eω̄) (56)

where the term 1
π is introduced for normalization.

Lemma 3 The following conservation principle holds:∫ log(π)

−∞
χ(eω̄)dω̄ = 1 (57)

Proof: From (50) β
′
(ω) = V T1 (eiω)V1(e−iω), and because

of the orthonormality of V1(eiω) the result is obtained
immediately, see [8], p. 89. 2

Theorem 1 Consider χk(ω) = 1
πωβ

′

k(ω) and define the
k-th basis pole from its natural frequency ωok and its
damping ξk as follows: pk = ρke

iσk with ρk = e−ξkωok

and σk =
√

1− ξ2
kωok. Assume that ξ2

k ≥ 1− π2

4ω2
ok

. One

has the following results:

(1) If cosh(ξkωok)−
√

1− ξ2
kωok <

π
2 , χk has a unique

maximum on [0, π[. Additionally if:

cosh(ξωok)+cos(
√

1− ξ2
kωok)−πsin(

√
1− ξ2

kωok) >
0, χk has a local minimum on ]0, π[.

(2) If pk is real (ξk = 1), and if π−
√
π2−4
2 < pk < 1, χk

has a unique maximum on [0, π[, and a local mini-

mum on ]0, π[. If pk ≤ π−
√
π2−4
2 , χk is an increasing

function on [0, π], and has its maximum at ω = π.

Proof: Given in appendix C. 2

This result is illustrated in Fig. 1 below, in case (2) with
np = 1.

Corollary 1 Let ωmax the frequency for which χk(ω) is
maximum. If ωok → 0, one has:

ωmax = ωok + o (|ωok|) (58)

Proof: Provided in appendix D. 2

The frequencies in the ω̄ scale for which the dilatation
rate (function χ) is maximum are over-weighted in the
minimization problem, and a better model fit around
these frequencies can be expected, for given excitation
and noise spectra. On the contrary an area in the ω̄
domain with small values of χ will be under-weighted.
Thus it can be inferred that the function χ plays the
role of a heuristic indicator of the pole basis effect on the
model adjustment in the frequency domain, and this is
confirmed in section 7. Figure 1 displays the frequency
distortion rate χ = χ(ω, p0) corresponding to Laguerre
bases for many values of the Laguerre poles. One can
observe the conservation principle of Lemma 3, and the

frequency of the maximum equal roughly to the fre-
quency of the pole (for low frequency poles). Figure 2
shows three examples of χ, for various basis poles cor-
responding to 1) one pole basis p0 = 0.99, 2) two poles
basis with p0 = 0.9, p1 = 0.999, 3) three poles basis with
p0 = 0.9, p1 = 0.99, p2 = 0.999.

Fig. 1. Frequency distortion rate χ for Laguerre bases

Fig. 2. Frequency distortion rate χ for multi-poles bases

7 Simulation results

7.1 Comparison of CLOE and H-CLOE for a simple
system

The aim of this first simulation is to compare H-CLOE
to CLOE and AF-CLOE ( an adaptive filtered version
of CLOE, see [10], p. 299-300) for the identification of a
simple multi-scale system having two resonating modes
at frequencies 10−2 rad/s and 0.26 rad/s (sample fre-
quency 1s). The poles of this system are 0.9575±0.0097i
and 0.8318± 0.2211i, its static gain is 1,and it has three
zeros [0.9712; 0.9696; 1.3578]. The controller is a gain
equal to 1. The system is excited by a wide spectrum
PRBS (added on the input), and is disturbed by a white
noise. In closed-loop, the signal/noise (variance) ratio
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is equal to 12 dB. The sample number is N = 104.
When identified with CLOE (Fig. 3 (top)), the result-
ing models are correct only in high frequency, whereas
the low frequency mode is never captured (over 20 real-
izations): This is the typical drawback of native CLOE
family schemes (see [20]). This could be imputed to the
fact that the (only sufficient) convergence condition is
not satisfied here. However, the same simulation carried
out without any stochastic disturbance with X-CLOE
(which has no convergence condition in a deterministic
context) leads to similar identified models. If the AF-
CLOE is employed (which aims at relaxing the conver-
gence condition of CLOE), the performances are not
better (Fig. 3 (middle)). On the contrary, if one uses H-
CLOE, with a two poles basis in order to encompass the
frequencies of interest of this system (the poles frequen-
cies are set respectively to 0.03 rad/s and 0.3 rad/s,
corresponding to p = [0.97; 0.74]), one can observe in
(Fig. 3 (bottom)) that the identified models are hardly
distinguishable from the true system. The pole selection
results from an initial guess, and the algorithm conver-
gence depends on it.

Fig. 3. Identification with CLOE (top) and AF-CLOE (mid-
dle), and with H-CLOE (bottom), 20 realizations

7.2 Use of a double integrator in the controller, and bias
management

The purpose of this second set of simulations is to show
that the algorithms proposed in this paper are able to
include a double integrator, and to provide reduced or-
der models in a prescribed frequency range, according
to the poles of the orthonormal basis. Moreover, these
simulations show the interest of the function χ as an in-
dicator of the basis poles effect on the bias distribution.
The academic system to be identified has an order equal
to 12, with modes frequencies lying from 1.25.10−3 rad/s
to 1.26 rad/s (three decades), the sampling period being
equal to 1s. The poles, zeros of this system are displayed
in Table 1 (the static gain being equal to 1):

Poles Zeros
Frequency
(rad/s)

Damping Frequency
(rad/s)

Damping

1.25.10−3 0.25 10−3 1

1.25.10−3 0.25 2.02.10−2 0.03

2.24.10−2 0.03 2.02.10−2 0.03

2.24.10−2 0.03 1.68.10−1 0.098

1.88.10−1 0.01 1.68.10−1 0.098

1.88.10−1 0.01 5.42.10−1 -0.431

8.32.10−1 0.04 5.42.10−1 -0.431

8.32.10−1 0.04 6.51.10−1 0.23

8.66.10−1 0.86 6.51.10−1 0.23

8.66.10−1 0.86 6.54.10−1 0.61

1.26 0.5 6.54.10−1 0.61

1.26 0.5

Table 1
Poles and zeros of the true system

This system is controlled with a three order R-S

controller such that R(z)
S(z) = kc

∏3

l=1
(z−zc(l))∏3

l=1
(z−pc(l))

where

zc(l), pc(l), l = {1, 2, 3} are the controller zeros and
poles given in table 2, and one has kc = 10−3. The
controller includes a double integrator, and for this rea-
son the classical CLOE or X-CLOE schemes cannot be
employed, since their regressors diverge. A white noise
is added to the system output (signal/noise -variance-
ratio of 10 dB). The system input is excited with a
17 registers PRBS (217 − 1 samples). Four simulations
are carried out with different system orders and vari-
ous basis poles configurations. In all these simulations,
as recommended for the identification of stationary
systems in [10], p. 69, the forgetting factor λ1 has an
initial value strictly inferior to 1 and tends exponen-
tially towards 1 during the simulation: That leads to an
increased convergence rate of the algorithm.

Poles Zeros
Frequency
(rad/s)

Damping Frequency
(rad/s)

Damping

0 1 1.0.10−1 1

0 1 1.0.10−1 1

1.0.10−2 1 3.14 0

Table 2
Poles and zeros of the controller
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Simulation 1: The overall system is identified by choos-
ing a 12th order model (na = 12), and the basis poles are
set in order that the function χ is roughly constant over
almost three decades. Their values are 0.5, 0.95, 0.995.
Figure 4 provides a comparison of the true system ver-
sus the estimated one on a Bode diagram (magnitude
and phase) and the bottom graph displays the function
χ. We notice immediately that the estimated model co-
incides with the true system.

Fig. 4. Identification with a 12th order model and three basis
poles equal to 0.5,0.95,0.995, respectively.

Simulation 2: A 3rd order model is chosen, with a single
basis poles equal to p = 0.997, such that the frequency
for which χ is maximum is roughly equal to 0.003 rad/s.
Figure 5 shows that the first modes of the system are
perfectly captured, while the high frequency modes are
sheerly ignored.

Simulation 3: A single basis pole is employed, equal
to 0.5. The function χ has its largest value within one
decade below the Nyquist frequency. The model order
is equal to 6, and Figure 6 shows clearly that the sys-
tem modes situated in the decade below this Nyquist
frequency are the only ones that are properly identified.

Simulation 4: The purpose of this identification is
now to obtain a reduced order model valid locally
around 0.02 rad/s. For this purpose we choose a func-
tion χ having a narrow peak around this frequency.
This is obtained by selecting a basis including 3 poles
0.98, 0.9968 + 0.01971i, 0.9968 − 0.01971i respectively.
The use of complex poles at a frequency equal to 0.02
rad/s and a relatively small damping (0.15) allows for
this narrow peak. The model order is equal to 3. Ow-
ing to the function χ aspect, we can expect a good fit
around 0.02 rad/s: This is exactly what can be observed
in Figure 7.

Fig. 5. Identification with a 3th order model and a single
basis poles equal to 0.997.

Fig. 6. Identification with a 6th order model and one basis
pole equal to 0.5.

These simulations show the tuning effect of the basis
poles on the bias distribution: by the use of a predictor
established on a generalized basis of orthogonal transfer
functions, the bias distribution can be managed, which is
not the case when using a direct identification procedure
in a closed-loop context, as mentioned in [12], p. 436.
Moreover, these results confirm that H-XCLOE can cope
with an unstable controller, contrary to the classical X-
CLOE scheme.
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Fig. 7. Identification with a 3th order model and three basis
poles equal to 0.9968+0.01971i, 0.9968-0.01971i and 0.98.
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9 Appendix

9.1 Appendix A: Some algebra to solve the Bézout equa-
tion using the Hambo transform

Owing to the expressions of Ap in (19), and S̄ as defined
in Section 3, there exists a unique solution to the Bézout
equation (23), where do(Af ) = na, and do(Bf ) ≤ na−1.
This is the solution considered in the sequel. In case
of fast sampling or a high model/controller order, the
resolution of equation (23) may become difficult due to
an ill-conditioning of the associated Sylvester system.
This is the reason why it is strongly recommended to
solve it with the Hambo operator. At first, consider the
commutative ring R of polynomials in z with real co-
efficients. The set of polynomials Sa = {Akp : k ∈ N},
is a multiplicative subset of R, and the set of fractions
RS−1

a = { L
Akp

: L ∈ R, Akp ∈ Sa} is, like R, a principal

ideal domain. Therefore (23) can be written

Af
Ap

S

A′′p
+
Bf
Ap

R

A′′p
=

S̄

A′′p
(59)

where A
′′

p = (Ap)
k is such that do(A

′′

p ) ≥ do(S), and

(59) is again a Bézout equation over RS−1
a . Consider

Ãf (λ, ξ), S̃(λ), B̃f (λ, κ), R̃(λ), ˜̄S(λ), the Hambo opera-

tor transforms of respectively
Af
Ap

, S
A′′p

,
Bf
Ap

, R
A′′p

, S̄
A′′p

, and

let ξ and κ the coefficients vectors of Ãf and B̃f respec-

tively. Define R̃S−1
a to be the set of those H̃ which are

the image of a proper and stable transfer function H of
RS−1

a , by the Hambo transform H .

Proposition 8 The mapping H : H 7→ H̃

RS−1
a

H−−−−−→ R̃S−1
a

is a ring isomorphism,and its codomain is a ring of poly-
nomial matrices.
Proof:
At first the mapping H is a homomorphism: For any

transfer function H1, H2 one has ˜H1 +H2 = H̃1 + H̃2

(from (12)), and H̃1H2 = H̃1H̃2 (from (11)). More-
over, by its very definition H is surjective. Additionally
we show in the sequel that its kernel is 0: The relation
H̃(λ) = 0 implies necessarily

np∑
k=1

H(zk)V1(zk)V T1 (1/zk)

V T1 (zk)V1(1/zk)
= 0

for an infinite number of values of zk. SinceH has a finite
number of zeros if it is nonzero, H̃ = 0 implies H = 0.
Thus H is injective, and therefore this homomorphism is
bijective , its codomain is a ring of polynomial matrices,
owing to remarks of section 12.5.1 in [8].

Therefore (59) is equivalent to

Ãf (λ, ξ)S̃(λ) + B̃f (λ, η)R̃(λ) = ˜̄S(λ) (60)

If S
A′′p

and R
A′′p

, are coprime in RS−1
a , i.e. if the only

common divisors of R and S, if any, belong to Sa, (59)
has a solution, and (60) has a solution too, ξ and η being
the unknown terms.

9.2 Appendix B: Proof of Proposition 7

Let HεE (eiω) be the stable spectral factor of ΦεE (ω).

Its Hambo signal transform, denoted as H̆εE (eiωλ), is

H̆εE (eiωλ) = HεE (eiω)
V1(e−iω)V T1 (eiω)

V T1 (eiω)V1(e−iω)
|ω=β−1(ωλ)

e−iωλCTb
e−iωλ−Db

(owing to (10)). From equation (3.10) of [8] (chap.3), one

gets
CTb Cb

1+D2
b
−2cos(ωλ)

V1(e−iω)V T1 (eiω)|ω=β−1(ωλ) = Inp .

Thus H̆T
εE (eiωλ)H̆εE (e−iωλ) = ΦεE (ω) 1

β′ (ω)
|ω=β−1(ωλ) =

ΨεE (ωλ). Similarly, Ψr(ωλ) = H̆T
r (eiωλ)H̆r(e

−iωλ), and

ΨεE (ωλ) = H̆T
e (eiωλ)H̆e(e

−iωλ), where H̆r(e
iωλ) and

H̆e(e
iωλ) are the Hambo signal transforms of the stable

spectral factors of Φr(ω) and Φe(ω) respectively. Now

one has Ã(eiωλ) = A(eiω)
Ap(eiω)

V1(e−iω)V T1 (eiω)

V T1 (eiω)V1(e−iω)

∣∣∣
ω=β−1(ωλ)

.

12



Therefore
∣∣∣ A(eiω)
Ap(eiω)

∣∣∣2
ω=β−1(ωλ)

= ‖Ã(eiωλ)‖22, and simi-

lar relations hold for |G0(eiω) − G(eiω)|2, |Tur0(eiω)|2,

| S̄(eiω)
S(eiω) |

2, |W0(eiω)|2, |W (eiω)|2, |Syp0(eiω)
Syp(eiω) |

2. Thus, by

using equations of the limit model in the ω frequency
domain (48) and (49), and by considering that from [19]

(section 5) E[ε2
E(t)] = 1

2npπ

∫ +npπ

−npπ ΨεE (ωλ)dωλ, one

obtains the claimed results.

9.3 Appendix C: Proof of Theorem 1

One has

χk(ω) =
1

π

1− |pk|2

|1− pkeiω|
2ω =

1

π

(1− ρ2
k)

1 + ρ2
k − 2ρkcos(ω − σk)

ω

∂χk(ω)

∂ω
=

1

π

(
1− ρ2

k

)
2ρk

1+ρ2k
2ρk
− cos(ω − σk)− ω sin(ω − σk)(

1+ρ2
k

2ρk
− cos(ω − σk)

)2

.
The sign of ∂χk(ω)

∂ω depends upon the sign of

g(ω) =
1+ρ2k
2ρk
− cos(ω − σk)− ω sin(ω − σk). One has

∂g(ω)
∂ω = −ωcos(ω − σk) = −ωcos(ω −

√
1− ξ2

kωok),
∂g(ω)
∂ω ≤ 0 if and only if ω ≤ π

2 +
√

1− ξ2
kωok, and ∂g(ω)

∂ω >
0 otherwise. Let ω̆ be the frequency for which g(ω) is

minimum. One has g(ω̆) = cos(ξkωok)−
√

1− ξ2
kωok−

π
2 .

This quantity is strictly negative if and only if

cosh(ξkωok)−
√

1− ξ2
kωok <

π

2
(61)

Additionally g(0) = cosh(ξkωok)−cos(
√

1− ξ2
kωok) > 0

for any ωok > 0, g(ω) is a positive decreasing function for

ω close to 0, and has a minimum at ω = π
2 +
√

1− ξ2
kωok

only if ωok <
π

2
√

1−ξ2
k

, i.e

ξ2
k ≥ 1− π2

4ω2
ok

(62)

Now g(π) = cosh(ξkωok)+cos(σk)−πsin(σk), therefore
g(π) > 0 is equivalent to

cosh(ξkωok)+cos(
√

1− ξ2
kωok)−πsin(

√
1− ξ2

kωok) > 0

(63)
Therefore, if we assume that (62) and (61) are satisfied,
χk has a unique maximum on [0, π[. Furthermore if (63)
is satisfied χk has a local minimum on ]0, π[. If condi-
tion (62) is satisfied and (61) is not, χk is an increasing
function on this interval and admits a unique maximum
at ω = π. If the pole pk is real, condition (63) is neces-
sarily fulfilled, and (61) reduces to: 1 + p2

k − πpk < 0.
Since we consider only stable poles, this is equivalent to

pk >
π−
√
π2−4
2 .

9.4 Appendix D: Proof of Corollary 1

According to Theorem 1, ωmax is the smallest frequency
such that g(ω) = 0. This frequency is such that

h(ωok, ω) = cosh(ξkωok)− cos
(
ω −

√
1− ξ2

kωok

)
· · ·

· · · − ωcos
(
ω −

√
1− ξ2

kωok

)
= 0. Let us consider ωok

as the function variable and ω as a parameter. One has

h(ωok, ω) = −
(
cos(ω)cos

(√
1 − ξ2kωok

)
+ sin(ω)sin

(√
1 − ξ2kωok

))
· · ·

−ω
(
sin(ω)cos

(√
1 − ξ2kωok

)
− cos(ω)sin

(√
1 − ξ2kωok

))
· · · .

+cosh(ξωok). A first order Taylor-Young approximation
yields
h(ωok, ω) = 1−cos(ω)+sin(ω)

√
1− ξ2

kωok−ωsin(ω)+

ωcos(ω)
√

1− ξ2
kωok + o(ωok).

This quantity can be null only if 1−cos(ω)−ωsin(ω) = 0,
implying ω = 0. If we perform a second order Taylor-
Young expansion near 0, we get

h(ωok, ω) = 1 +
ξ2kω

2
ok

2 −
(

1− ω2

2

)(
1− (1−ξ2k)ω2

ok

2

)
−

ω
√

1− ξ2
kωok − ω

(
ω −

√
1− ξ2

kωok

)
+ o

(
‖(ωok, ω) ‖2

)
= 1 +

ξ2kω
2
ok

2 − 1 +
(1−ξ2k)ω2

o

2 + ω2

2 − ω
√

1− ξ2
kωok − ω2 +

ω
√

1− ξ2
kωok + o

(
‖(ωok,Ω(ωok))‖2

)
= 1

2

(
ω2 − ω2

ok

)
+ o

(
‖(ωok,Ω(ωok)) ‖2

)
. Consequently,

h(ωok, ω) = o(‖(ωok, ω) ‖2) if and only if ω2 = ω2
ok.The

relation h(ωok, ω) = 0 entails an implicit function
ωmax = Ω(ωok), and one has: h (ωok,Ω(ωok)) =

o
(
‖(ωok,Ω(ωok))‖2

)
. Hence the result.
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Birhaüser, Boston, pp. 111-151, 1993.

[7] P.S.C. Heuberger, P.M.J. Van den Hof, O.H. Bosgra, ”A
generalized orthonormal basis for linear dynamical systems”,
IEEE, Trans. on Automatic Control, vol. 40, pp. 451-465,
1995.

[8] P.S.C. Heuberger, P.M.J. Van den Hof, B. Wahlberg,
Modelling and Identification with Rational Orthogonal Basis
Functions, Springer Verlag, 2005.

[9] P.S.C. Heuberger, T.J. de Hoog, P.M.J Van den Hof,
B. Wahlberg, ”Orthonormal basis functions in time and

13



frequency domain: Hambo transform theory”, SIAM, J.
Control and Opt., vol. 42(4), pp. 1347-1373, 2003.

[10] I.D. Landau, R. Lozano, M. M’Saad, A. Karimi, Adaptive
Control, second edition, Springer Verlag, 2011.

[11] Ph. de Larminat, Automatique Appliquée, Hermès Sciences,
2009.

[12] L. Ljung, System Identification, Theory for the User, second
edition, Upper Saddle River, Prentice Hall, 1999.

[13] F. Shipp, L. Gianone, J. Bokor, Z. Szabo, ”Identification in
generalized orthogonal basis - a frequency domain approach”,
preprints of the 13th IFAC World congress, vol. 1, pp. 387-
392, Elsevier, 1996.

[14] T. Oliveira e Silva, ”Laguerre filters - An introduction”,
Revista do Detua, vol.1(3), pp. 237-248, 1995.

[15] T. Oliveira e Silva ”On the determination of the optimal
pole position of Laguerre filters”, IEEE Trans. on Signal
Processing, vol. 43(9), pp. 2079-2087, 1995.
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