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Figure 1: Ground truth grasps and generated grasps. Each row corresponds to one object. Left three columns show the
ground truth grasps, each from three different viewpoints. The middle three columns show one generated example, and the
right three columns show another generated example. Note that these objects are never seen during training. See Appendix E
(Fig. E.4) for more examples.

Abstract

Robotic grasping of house-hold objects has made re-
markable progress in recent years. Yet, human grasps are
still difficult to synthesize realistically. There are several
key reasons: (1) the human hand has many degrees of free-
dom (more than robotic manipulators); (2) the synthesized
hand should conform to the surface of the object; and (3)
it should interact with the object in a semantically and
physically plausible manner. To make progress in this di-
rection, we draw inspiration from the recent progress on
learning-based implicit representations for 3D object re-
construction. Specifically, we propose an expressive rep-
resentation for human grasp modelling that is efficient and
easy to integrate with deep neural networks. Our insight
is that every point in a three-dimensional space can be
characterized by the signed distances to the surface of the
hand and the object, respectively. Consequently, the hand,
the object, and the contact area can be represented by im-
plicit surfaces in a common space, in which the proximity

between the hand and the object can be modelled explic-
itly. We name this 3D to 2D mapping as Grasping Field,
parameterize it with a deep neural network, and learn it
from data. We demonstrate that the proposed grasping
field is an effective and expressive representation for hu-
man grasp generation. Specifically, our generative model is
able to synthesize high-quality human grasps, given only
on a 3D object point cloud. The extensive experiments
demonstrate that our generative model compares favorably
with a strong baseline and approaches the level of natural
human grasps. Furthermore, based on the grasping field
representation, we propose a deep network for the chal-
lenging task of 3D hand-object interaction reconstruction
from a single RGB image. Our method improves the phys-
ical plausibility of the hand-object contact reconstruction
and achieves comparable performance for 3D hand recon-
struction compared to state-of-the-art methods. Our model
and code are available for research purpose at https:
//github.com/korrawe/grasping_field.

https://github.com/korrawe/grasping_field
https://github.com/korrawe/grasping_field


1. Introduction
Capturing and synthesizing hand-object interaction is es-

sential for understanding human behaviours, and is key to
a number of applications including augmented and virtual
reality, robotics and human-computer interaction. Despite
substantial progress, fully automatic synthesis of highly re-
alistic human grasps remains an unsolved problem. The
anatomical complexity of the human hand and the vari-
ety of manufactured and natural objects make it extremely
challenging to pose the hand such that it interacts with the
object in a natural and physically plausible way. Recent
data-driven approaches explore deep learning technology to
learn and leverage powerful object representations, yet they
are mainly limited to simple robotic end effectors, such as
parallel jaw grippers [69]. In this work, we seek to under-
stand: 1) what is an efficient and expressive representation
for modeling hand-object interaction, that can facilitate re-
alistic human grasp synthesis given an unseen 3D object;
and 2) how can we learn such a representation from data.

Our key observation is that human grasping is rooted in
physical hand-object contact. Through this contact, humans
are able to grasp and manipulate objects naturally. To better
model hand-object interaction, we must find a way to effec-
tively represent the contact between hands and objects. To
this end, we propose a novel interaction representation that
is based on regressing a continuous function that we call the
Grasping Field. The grasping field maps any 3D point to a
2D space, where each dimension of the 2D space indicates
the signed distance to the surface of the hand and the object
respectively (see Sec. 3.1 for a formal definition). Inspired
by [51, 58, 61], we further utilize a deep neural network to
parameterize the grasping field and learn it from data. As a
result, the learned grasping field serves as a powerful repre-
sentation to facilitate hand-object interaction modelling.

Based on the grasping field representation, we propose
a generative model, in which we generate plausible hand
grasps given an object point cloud. We show that our model
can produce physically and semantically plausible synthetic
grasps, which are similar to the ground truth. Generated
grasps on unseen objects are shown in Fig. 1 and Fig. E.4.

We further demonstrate the effectiveness of the grasping
field representation by considering the task of 3D hand and
object reconstruction from a single RGB image. In recent
work, Hasson et al. [29] introduce an end-to-end learnable
model to reconstruct 3D meshes of the hand and object si-
multaneously, producing the state-of-the-art results on sev-
eral datasets. Physical constraints, such as no interpenetra-
tion and proper contact, are enforced during the training.
However, there are several drawbacks of their mesh-based
representation for hand-object interaction modeling. First,
they heuristically pre-define regions of the hand that can be
in contact with objects. Second, their object representation
is limited to objects of genus zero. Third, the resolution of

their contact inference is limited by the resolutions of the
hand and object meshes. In contrast, with the grasping field
representation, it is not necessary to first compute the hand
and object meshes, and then compute the contact region.
Instead, one can easily infer the contact region by query-
ing the signed distances of input 3D points. Furthermore,
the physical constraints, such as no inter-penetration and
proper contact, can be efficiently computed and enforced.
As demonstrated in our experiments, our model consider-
ably reduces the interpenetration between the reconstructed
hand and the object, and improves the quality of 3D hand
reconstruction, compared with [29].

In summary, our contributions are: (1) We propose the
grasping field, a simple and effective representation for
hand-object interaction; (2) Based on the grasping field, we
present a generative model to yield semantically and physi-
cally plausible human grasps given a 3D object point cloud;
(3) We further propose deep neutral networks to reconstruct
the 3D hand and object given an RGB input in a single
pass; (4) We perform extensive experiments to show that
our method outperforms the baseline [29] on 3D hand re-
construction and on synthesizing grasps that appear natural.

2. Related work
Human grasp and contact. There is a large body of

work on capturing and recognizing human grasps [13, 22,
31, 56, 64, 92]. Recently, [22] introduced a stretch-sensing
soft glove to capture accurate hand pose without extra op-
tical sensors. Puhlmann et al. [67] utilized a touch screen
to facilitate the capturing process of human grasping. As
physical contact is fundamental to hand-object interaction,
researchers have proposed methods to capture and model-
ing contact from diverse modalities [5, 42], but these often
interfere with natural movement. Concurrent to this work,
[7] proposed a new dataset of hand-object contact paired
with RGB-D images. Our work differs in that our focus is
on learning an interaction representation, which is efficient
and easy to interface with deep neural networks.

Grasp synthesis. Grasp synthesis is a longstanding
problem in robotics and graphics, resulting in an exten-
sive literature [1, 4, 6, 16, 36, 40, 43, 47, 59, 65, 70, 76,
77, 81, 95]. As early as 1991, Rijpkema and Girard [70]
proposed a knowledge-based approach to incorporate the
role of the human hand, object, environment and animator
for the task of computer-animated grasping. More recent
works can be categorized into three types of approaches:
analytic, data-driven and hybrid approaches. For the ana-
lytic approaches [39, 77], the grasps are often synthesized
by formulating the problem as a constrained optimization
problem that satisfies a set of criteria measuring the stabil-
ity or other properties of the grasps. The data-driven ap-
proaches [63, 69] often employ machine learning methods
to learn representations for synthesizing grasps. An excel-



lent survey of data-driven grasp generation is presented in
[3]. Recent hybrid approaches [47, 46] combine analytic
models and deep learning tools to synthesize grasps for var-
ious end effectors. Finally, the most related approaches to
our work was presented in [11] and [84], where neural net-
works are used to predict hand parameters of the MANO
hand model [74] given object information. In [11], the
model learns to predict the best grasp type from the grasp
taxonomy [18] according to the RGB images of the objects.
Then, the predicted hands are optimized together with the
object meshes to refine the contact points. While in [84],
the parameters are generated directly from the given Basis
Point Set [66] of the objects. Our work differs from the
previous works in that, by also considering the object dis-
tance field, we propose a learnable representation for mod-
elling hand-object interaction that can be used without con-
tact post-processing. Empowered by deep neural networks,
the learned representation enables us to synthesize realistic
human hand grasping a given object naturally.

Hand pose estimation. Hand pose estimation is a long-
standing problem, and various input modalities have been
considered, e.g., RGB images [2, 15, 32, 54, 60, 79, 80, 96]
or RGB-D and depth sensors [24, 35, 48, 55, 57]. Due to
the lack of large scale 3D ground truth data, synthetic data
has often been used for training [14, 29, 49]. Recently, in-
stead of estimating the hand skeleton, recovering the pose
and the surface of the hand has become popular using sta-
tistical hand models, e.g., the MANO model [74], that can
represent a variety of hand shapes and poses [25, 93, 97].
Using the template derived from MANO, [41] show that it
is also possible to regress hand meshes directly using mesh
convolution. In this work, we represent the 3D hand by a
signed distance field, instead of a parametric hand model,
due to the difficulty of incorporating object interaction into
the model parameter space. For fair comparison with the
parametric hand model representation, we fit the MANO
model [74] into our resultant signed distance fields. The
experimental results indicate the advantage of our new in-
teraction representation.

Object model representation. Learning 3D object
models using various types of representations has also been
explored [9, 23, 33, 44, 50, 52, 82, 90, 91]. Recently,
the community has focused on using the implicit functions
such as the Signed Distance Function (SDF) [61], Occu-
pancy Networks [51], Implicit Field [10], and their deriva-
tions [20, 21], as these can model arbitrary object topology
with adjustable resolution. Due to these advantages, we also
adopt implicit functions to capture hand-object interaction.

Hand-object interaction. Reconstructing hand and ob-
ject jointly has been studied with both RGB input and RGB-
D input [62, 71, 72, 73, 78, 83, 86, 87, 88, 89]. Recently,
Hasson et al. [27, 29] achieved promising results on explic-
itly modeling the contact by combining a parametric hand

model MANO [74], with the mesh based representation for
the object. As data for hand-object interaction is limited, we
opt to use their synthetic dataset, the ObMan dataset [29],
which is sufficiently large for training a neural network. Our
work differs from previous hand-object reconstruction work
mainly by focusing on the novel representation of contact
and learning both hand and object in the signed-distance
space, which allows arbitrary shape modelling and easier
distance field manipulation. Furthermore, we go beyond
the reconstruction task by proposing generative models to
synthesize realistic human grasps given a 3D object.

3. Method
3.1. Grasping field

The grasping field (GF) is based on the signed distance
fields of the object and the hand, formally defined as a func-
tion fGF : R3 → R2, mapping a 3D point to the signed
distances to the hand surface and the object surface, respec-
tively. In this way, the contact and inter-penetration rela-
tions between the hand and the object can be explicitly and
efficiently represented. Specifically, the hand-object contact
manifold is given by C = {x | fGF (x) = 0 for x ∈ R3}.
The volume of hand-object inter-penetration is given by
I = {x | fGF (x) < 0 for x ∈ R3}.

Inspired by [61] and [51], we propose to model fGF us-
ing a deep neural network, and learn it from data. Therefore,
one can infer hand-object interaction in 3D space without
the explicit hand and object surfaces. The learned GF can
be considered as an interaction prior, which enables us to
infer various grasping poses of the hand, only based on the
3D object. Furthermore, in contrast to previous works, e.g.
[26, 29, 94], which can only evaluate body-object interac-
tions after obtaining the body and the object meshes, when
using GF as the representation in hand-object reconstruc-
tion from images, we model the hand, the object, and the
contact area by the implicit surfaces in a common space,
largely improving the physical plausibility of the recon-
struction.

According to the aforementioned merits of the GF, we
use it to address two tasks in this paper; i.e. hand grasp
generation given 3D objects and hand-object reconstruction
from RGB images. Different GF networks are designed
specifically for different tasks.

3.2. Grasping field for human grasp synthesis

In this section, we show how to use GF to synthesize
human grasps. Given an object point cloud, the goal is to
generate diverse hand grasps that interact with the object in
a natural manner.

Network architecture. The network architecture is
shown in Fig. 2a; we adopt the encoder-decoder framework.



(a) (b)

Figure 2: (a) Illustration of the generative grasping field network conditioned on an object point cloud. The red dashed arrow
denotes sampling from a distribution. Network details are in Appendix A. (b) Illustration of hand part labels. Left is our hand
part annotation on the MANO model. Right is an example of our predicted surface points with hand part labels.

To extract features from point clouds, we use the Point-
Net encoder [68] with residual connection. The encoder is
trained jointly with other network layers from scratch. The
encoder-decoder network takes a query 3D point, and two
point clouds of the hand and the object as input, and pro-
duces the signed distances of the query point to the hand and
the object surfaces. In addition, the encoded object point
cloud feature is fed into the hand point cloud encoder, lead-
ing to a hand distribution conditioned on the object. Note
that this variational encoder-decoder network only requires
both hand and object point clouds during the training. Dur-
ing inference, only the conditioning object point cloud and
the query point are required. The hand features are sampled
from the learned latent space, as in a standard VAE [38].
The training loss consists of the following terms:
The reconstruction loss Lrec: For each query point x, the
input object point cloud po and the input hand point cloud
ph, the reconstruction loss is designed for the hand and ob-
ject individually:

Lrec = |c(fCGF (x, po), δ)− c(SDFpo(x), δ)|
+ |c(fCGF (x, ph), δ)− c(SDFph(x), δ)|, (1)

where fCGF is the grasping field network (Fig. 2a).
SDFph(·) and SDFpo(·) are the ground truth SDF for the
hand and object, respectively. In addition, c(s, δ) :=
min(δ,max(−δ, s)) is a function to constrain the distance
s within [−δ, δ]. δ is set to 1cm in all experiments.
KL-Divergence Lkl: In order to generate new hand grasps,
we use a KL-divergence loss to regularize the distribution
of hand latent vector h, obtained from the hand point cloud
encoder h = Eh(p

h|po), to be a normal distribution. The
loss is given by

Lkl = KL-div (N(µ(h), σ(h))||N(0, I)) , (2)

whereN(0, I) denotes a standard high-dimensional normal
distribution, µ and σ denotes mean and standard deviation.

For generation, the hand latent vector h is sampled from a
standard normal distribution.
Classification loss Lcls: Besides predicting the signed dis-
tances of a query point, we also train the network to pro-
duce the hand part label of a query point to parse the hand
semantically. To achieve this, we introduce a classification
loss, which is given by a standard cross-entropy loss. The
hand part annotation is based on the MANO model [74] as
illustrated in Fig. 2b.

3.3. Grasping field for 3D hand-object reconstruc-
tion from a single RGB image

Our proposed grasping field is an expressive representa-
tion for modelling hand-object interactions in 3D. Here we
address the challenging task of 3D hand-object reconstruc-
tion from a single RGB image, i.e. fCGF : R3 × I → R2,
in which I ∈ I is a 2D image. We model such a conditional
GF by two types of deep neural networks and learn their
parameters from data.
Network architecture. The network architectures are il-
lustrated in Fig. 3, which are designed to recover both hand
and object in a single pass. To enable a direct comparison
with [29], the two-branch network is employed (Fig. 3a),
which addresses hand and object individually. Similar to
[29], we introduce contact and inter-penetration losses dur-
ing the training to facilitate a better 3D reconstruction on
the contact regions of the hand and the object. To intro-
duce hand-object interactions in early stages, we propose a
one-branch network (Fig. 3b), which uses the same image
encoder and has the same number of layers with the two-
branch model. See Appendix A for architecture details.
The training loss consists of the following terms:
The reconstruction loss Lrec: For each query point x and
the input image I , the reconstruction loss is designed for the
hand and object individually, and is given by

Lrec =
∑

p∈{ph,po}

|c(fCGF (x, I), δ)−c(SDFp(x), δ)|, (3)
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Figure 3: Two different network architectures of the GF
conditioned on the image. The blue blocks denote network
modules and layers. A ReLU layer and a dropout layer
(dropout ratio 0.2) are between every two consecutive fully-
connected (FC) layers. The orange blocks denote feature
vectors, and the feature dimensions are presented inside of
these feature blocks. The orange dashed boxes denote fea-
ture vector concatenation.

in which fCGF is our conditinal grasping field network, and
SDFp(·) is the ground truth SDF for the component p (hand
or object). c(s, δ) := min(δ,max(−δ, s)) is the thresh-
olding function to constrain the distance s within [−δ, δ] as
with the generative model proposed in Sec. 3.2.
The inter-penetration loss Lip: To avoid surface inter-
penetration between the reconstructed hand and object, we
define the inter-penetration loss as

Lip =
∑
x

max(−〈1, fCGF (x, I)〉, 0), (4)

where 1 is a 2D one-vector, and 〈·, ·〉 denotes a dot product.
This loss function actually penalizes the negative sum of
predicted signed distances to the object and to the hand. If
the hand and the object are separate and have no contact, the
signed distance sum of every point in 3D space is always
positive, and hence is ignored by our inter-penetration loss.
On the other hand, if the hand and the object have inter-
penetration, then this inter-penetration loss does not only
penalize the points in the intersection volume, but also all
3D points in the space, indicating that the predicted hand
and object are incorrect. Compared to the inter-penetration
methods in [26, 94], which only penalize the intersection
volume, our loss applies stronger constraints.

Contact loss Lcont: Our proposed contact loss encourages
hand-object contact, and is given by

LC =
∑
x

min(α|fCGF (x, I)|2, 1), (5)

where α is a hyper-parameter. We can see that
fCGF (x, I) = 0 corresponds to the hand-object contact
surface. Therefore, it ignores points with predicted grasping
field |fCGF (x, I)|2 ≥ 1

α , and only encourages points with
|fCGF (x, I)|2 < 1

α to be the contact points. In our study,
we empirically set α = 0.005 based on the hand-object in-
teractions in the training data. Finally, we employ the same
Classification loss Lcls as the one proposed in Sec. 3.2.

3.4. From grasping field to mesh

With the trained grasping field conditioned on images or
point clouds, one can compute the signed distances to the
hand and object of a query 3D point. To recover the hand,
object and their interactions, we first randomly sample a
large number of points, and evaluate their signed distances.
The point clouds belonging to the hand and the object can
be selected, according to point-object signed distances close
to zero. Then, the hand mesh and the object mesh are obtain
by marching cubes [45].

In addition, the hand mesh can be recovered by fitting the
MANO [74] model to the hand point cloud. In this case, we
can obtain hand segmentation, hand joint positions, and a
compact representation of the hand simultaneously, accord-
ing to the pre-defined topology in MANO.

Denoting the MANO model byM(β, θ) with the param-
eter β and θ representing hand shape and pose respectively,
we minimize

∑6
l=1 d(p̃

h,M(β, θ)l) to recover the hand
configuration, in which l denotes the 6 parts of hand, i.e.
the palm and the 5 fingers, p̃h denotes the hand point cloud
produced by our model,M(β, θ)l denotes the MANO hand
mesh belonging to the hand part l, and d(·, ·) denotes the
Chamfer distance [17, 61]. The hand segmentation is shown
in Fig. 2b.

The implementation details are thoroughly presented in
Appendix A.

4. Experiments
We demonstrate the effectiveness of the grasping field

representation on two challenging tasks: human grasp gen-
eration given a 3D object and 3D hand-object reconstruction
from a single image.

Dataset. To train the generative model for human grasp
synthesis, we need ground truth 3D meshes of interacting
hands and objects. Unfortunately, existing datasets often
lack the desired properties.The limitations include small
dataset size and lack of 3D ground truth hand pose or shape.



Figure 4: Generated grasps conditioned on objects from the HO3D dataset. Each pair shows the sampled grasp from two
viewpoints. The model is trained only on the ObMan [29] dataset.

Consequently we use the synthetic ObMan dataset [29] to
train our model. The data is generated from a statistical
hand model, MANO [74], and 2772 object meshes covering
8 classes of everyday objects from the ShapeNet dataset [8].
Hand-object interaction is generated using a physics simu-
lator, GraspIt [53], resulting in high-quality hand-object in-
teraction. Due to the limited number of grasp types in the
FHB dataset [19] and the HO-3D dataset [25], they are not
suitable for training the generative model (see Appendix B).
Instead, we use them to test the generalization ability of the
generative model trained on the ObMan grasps.

For the 3D reconstruction task, we also mainly use the
ObMan dataset for training and testing. To test the effec-
tiveness of our network on real-world images, however, we
follow the same approach as [28] to train and test on the
FHB dataset.

Evaluation metrics. Our goal is to generate physically
plausible and semantically meaningful 3D human hand
given an object. Therefore, we quantitatively evaluate the
generated samples according to physics-based metrics and
use large-scale perceptual studies to measure the visual re-
alism of the grasps. For the 3D reconstruction task, we use
Chamfer distance and hand joint error. Details of the evalu-
ation metrics are in Appendix C.

(1) Physical metrics: A valid human grasp implies sta-
ble hand-object contact without interpenetration. Conse-
quently, we use the following evaluation metrics: a) Inter-
section volume and depth. The hand and object mesh are
voxelized and the interpenetration depth is the maximum
distance from all the intersected voxels to the surface of an-
other mesh. b) Ratio of samples with contact. We define

a contact between the object and the hand when any point
on the surface of the hand is on or inside the surface of the
object. We calculate the ratio of samples over the entire
dataset that have interpenetration depth more than zero. c)
Grasp stability. Using physics simulation [12], we hold the
hand constant, apply gravity, and measure the average dis-
placement of the object’s center of mass during a fixed time
period.

(2) Semantic metric: We perform perceptual studies us-
ing Amazon Mechanical Turk to evaluate the naturalness of
our generated grasps. Details of the study are presented in
Appendix C and D.

(3) 3D reconstruction quality: We use the Chamfer dis-
tance between reconstructed and ground truth hand surfaces
to evaluate the hand reconstruction quality as in [61]. Hand
joint distance is computed following [29, 96].

4.1. Evaluation: Human grasps generation

Baseline. To our knowledge, there is no previous model
that learns to synthesize natural human grasps given a 3D
object. Rather than randomly placing the hand around the
object, we trained a strong baseline model for grasp gener-
ation. Specifically, we replace the decoder (i.e. the grasp-
ing field) of our conditional VAE model (Fig. 2a) with fully
connected layers to regress MANO hand parameters. Then
given a 3D object point cloud and a random sample, our
baseline model generates MANO parameters directly. Gen-
erated grasps from the baseline are shown in Appendix E.
Results. We show the systematic quantitative evaluation of
the generative method in Tab. 1 and qualitative results in
Fig. 1, 4 and Appendix E (Fig. E.3, E.4). The baseline and
the GF model are only trained on the ObMan training set,



Table 1: Evaluation of the grasp synthesis on the objects from the ObMan test set, FHB and HO3D. GT* indicates that the
ground truth grasps are obtained by fitting the MANO model to the data. Best results except the ground truth are shown in
boldface.

ObMan FHB HO3D
GT Baseline GF GT* Baseline GF GT Baseline GF

Contact ratio (%) ↑ - 66.89 89.4 92.2 48.8 97.0 93 44.3 90.1
Intersection vol. (cm3) ↓ - 14.46 6.05 16.6 9.65 21.9 10.5 5.86 14.9
Intersection depth (cm) ↓ - 0.94 0.56 1.99 1.77 2.37 1.47 1.01 1.46
Physics simulation (cm) ↓ 1.66 4.56 2.07 6.69 8.59 4.62 4.31 8.25 3.45

± 2.42 ± 4.57 ± 2.81 ± 5.48 ± 3.67 ± 4.48 ± 4.42 ± 4.18 ± 3.92
Perceptual score {1...5} ↑ 3.24 2.40 3.02 3.49 2.43 3.33 3.18 2.03 3.29

and tested extensively on the objects from the ObMan test
set, FHB and HO3D. Our proposed GF performs substan-
tially better than the baseline on ObMan and achieves com-
parable quality as the ground truth grasps. When the model
is tested on the FHB objects, which are never seen during
training, it achieves a comparable perceptual score com-
pared to the ground truth grasps. Surprisingly, on HO3D,
our synthesized grasps are judged more realistic than the
ground truth grasps of real humans (3.29 vs 3.18). These
perceptual studies suggest that our method makes an impor-
tant step towards the fully automatic synthesis of realistic
human grasps.

Regarding the physical plausibility, we observe that our
model achieves a better contact ratio and grasp stability
(physics simulation) than the ground truth grasps on FHB
and HO3D. This is likely due to the GF results having a
larger intersection volume. One reason is that there are a
very limited number of objects in these two datasets. Some
of the test objects are very different from the training ob-
jects, resulting in more inter-penetration for the generated
grasps. Overall, the combination of visual realism and grasp
stability suggests that our results are approaching the level
of natural human grasps.

4.2. Evaluation: 3D hand-object reconstruction

Apart from serving as a powerful representation for the
synthesis task, the proposed GF also facilitates the 3D re-
construction task. In the following, we analyze the differ-
ent network architectures and training losses proposed in
Sec. 3.3. We compare with the baseline method [29] on the
ObMan dataset and [28] on the FHB dataset. The results
are summarized in Tab. 2. Due to many limiting factors of
the real-world datasets such as FHB and HO3D (see Ap-
pendix B for detailed data analysis), learning a reasonable
model for joint object and hand reconstruction is extremely
challenging. Instead, to evaluate the effectiveness of the GF
representation for 3D reconstruction on real-world images,
we follow the setting of the latest work [28], where the ob-
ject 3D model is given as input. Note that this is a com-

monly used setting in previous works (e.g. [28, 34, 85]).

Network design. We first analyze the two different network
architectures presented in Fig. 3 denoted with and without
‘2De’ respectively. Both architectures achieve comparable
performance for hand reconstruction, however differ signif-
icantly for intersection error, where the one decoder model
achieves considerably better performance, due to the effi-
cient joint modeling of hand-object interaction. Compared
with the baseline [29], the intersection volume and depth
are reduced from 6.25 and 1.20 to 0.65 and 0.32, respec-
tively. The contact ratio are comparable among two archi-
tectures and baseline model. All our models considerably
improve the quality of hand reconstruction, compared with
[29]. The object reconstruction quality is behind hand qual-
ity for all model variations including the baseline model.
Note that the ObMan dataset contains more than 1600 ob-
jects from 8 different classes. The object reconstruction per-
formance is decreased as it remains unclear how to learn the
implicit representations to reconstruct a large variety of ob-
ject classes with a single model [51, 61] and such a task
is beyond the focus of this work. Please see Appendix E
(Fig. E.1) for visualization.

Training losses. The effect of the contact and interpenetra-
tion loss (+L) is shown in Tab. 2 (a), when the loss is im-
posed during the training of the two-decoder network, the
intersection volume and depth are reduced and the overall
quality of the interaction is considerably improved. In con-
trast, for the one-decoder model, our observation is that, for
a large portion of 3D points, the signed distances to the ob-
ject and to the hand are highly correlated, the model that
jointly predicts both signed distance values does not need
to enforce this auxiliary training loss.

MANO fitting. As shown in Tab. 2 (a), MANO fitting (indi-
cated by GF-MANO) does not have a substantial influence
on the reconstruction quality. This implies that on the one
hand, the reconstructed hand of our GF model is realistic
enough without a statistical model to regularize it, and that
on the other hand, the output hand part labels are accurate



Table 2: 3D reconstruction results on ObMan (a) and FHB (b). 2De refers to the 2 decoder model; L indicates the cor-
responding model is trained with the contact and interpenetration loss; GF-MANO refers to the MANO hand obtained by
fitting the MANO model to the SDF.

Models Hand error Joints Intersection Contact Object Error
Mean Med (cm) Vol Depth (%) Mean Med

GF 0.419 0.283 - 0.65 0.32 90.8 12.8 6.4
GF+L 0.400 0.261 - 0.00 0.00 5.63 14.2 6.8
GF-2De 0.408 0.262 - 8.56 1.01 99.6 11.1 5.7
GF-2De+L 0.384 0.237 - 0.23 0.20 69.6 11.7 5.9

GF-MANO 0.405 0.272 1.13 0.59 0.27 83.3 - -
GF-2De-MANO 0.419 0.276 1.14 5.75 0.87 98.9 - -

Hasson et al. [29] 0.533 0.415 1.13 6.25 1.20 94.8 6.7 3.6

(a)

Models Hand Joints
(cm)

GF-MANO
(MANO joints) 2.60

GF-MANO
(FHB marker) 2.94

Hasson et al.* [28] 2.74

(b)

enough for us to fit the MANO model and retrieve hand
joints or shape parameters for applications that need these
without undermining the shape and contact estimation. A
qualitative illustration is presented in Fig. E.2.

Hand reconstruction on real-world images. To analyse
the effectiveness of the proposed grasping field representa-
tion for the 3D reconstruction task on real-world images, we
compare our method with the latest work [28] on the FHB
dataset. Compared to [29], the key difference in [28] is that
the object is given as part of the input. We explore the same
network architecture as [28] and only replace the decoder
part with the grasping field. The implementation details are
presented in Appendix A (Fig. A.3).

As stated in [28], definition of hand joint locations vary
between datasets. Without hand surface annotation in the
FHB dataset, it is difficult to train an accurate regressor
that maps between the FHB markers and the MANO joints.
Assuming that the joints are identically defined, we fit the
MANO model to the FHB markers by minimizing the dis-
tance between the MANO joints and the FHB markers.
Then the MANO joints obtained in such way are considered
as our pseudo ground truth joints, and the obtained MANO
surface is used to supervise the training.

We compare the predicted MANO joints with the pseudo
ground truth joints as well as the original FHB markers as-
suming identical joints. As our model is not trained to opti-
mise for the FHB marker locations, the reconstruction error
is larger than [28] as shown in Tab. 2 (b). When we evaluate
our prediction on the pseudo ground truth MANO joints, the
reconstruction error decreases from 2.94cm to 2.6cm. This
suggests that the proposed grasping field representation is
effective for the task of 3D hand reconstruction from a sin-
gle image, achieving comparable performance with respect
to the start-of-the-art.

5. Conclusion and Discussion

In this work, we propose a novel representation for hand-
object interaction, namely the grasping field. Learning from
data, the GF captures the critical interactions between hand
and object by modeling the joint distribution of hand and
object shape in a common framework. To verify the effec-
tiveness, we address two challenging tasks: human grasp
generation given a 3D object and shape reconstruction given
a single RGB image. The experiments show that the gener-
ated hand grasps appear natural and are physically plausible
while the hand reconstruction achieves comparable perfor-
mance as the state-of-the-art.

A limitation of our work is that there is no explicit mod-
eling of the object functionality and human action in the cur-
rent grasping field representation. In reality, a person holds
an object differently based on different intentions. For in-
stance, using a knife or passing it to someone else result in
completely different human grasps. One promising future
research direction is to incorporate human intention and ob-
ject affordances into the grasping field for action specific
grasps generation. Furthermore, we believe the proposed
grasping field representation opens up avenues for several
other future research directions. For instance, 3D human
hand generation given only an object image and synthesiz-
ing the motion of hand-object interactions.
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**Appendix**

A. Implementation Details
In Sec. 3.2 and Sec. 3.3, we present the neural networks that are used for human grasps generation and reconstruction,

respectively. Here we discuss the implementation details.

A.1. Architecture

In this section, we explain the network architectures used in our experiments. The same decoder architecture is used in
our image reconstruction and the hand generation tasks. We change the encoder architectures according to the input type. In
our experiments, both the encoder and decoder are jointly trained end-to-end. Figure A.1 illustrates the one-branch decoder
with 8 fully-connected layers used in all tasks.

For image reconstruction, we use the ResNet18 [30] model pretrained on the ImageNet dataset [75] as an encoder. We
change the last layer of the encoder to produce a latent vector of size 256 for the decoder.

For the point cloud input, we use two separated PointNet encoders [17] with additional pooling and expansion layers
presented in [51]. In each encoder, 3D points are first mapped to 512-dimension feature vectors followed by 5 ResNet-blocks,
producing a latent vector of size 256. The latent codes for hand and object are then concatenated to make a 512-dimension
latent code.

For the hand generation task, we change the first layer in the hand encoder to produce a 256-dimension vector for each
point then concatenate it with the 256-dimension object latent vector. Figure A.2 shows the details of the point cloud model.

For image reconstruction with known objects, we assume that the object mesh in the normalized pose is given. We sample
surface points from the given object and use a PointNet encoder to compute object latent vector of size 128. The object latent
vector is then concatenated with a hand latent vector of size 128 from ResNet18 encoder, producing a latent code of size 256
for the decoder. The overview of the network is shown in Figure A.3.

A.2. Data preparation

To prepare the sampled 3D points and their distances to the hand and object surfaces for training, we follow the point
sampling method provided by [61]: For each pair of the hand and object meshes, we translate both meshes such that the hand
root joint is at the origin then scale them to fit in a unit cube. The scaling factor is the same for the entire dataset to ensure the
hands are normalized across dataset. After that, 40,000 points are sampled in a unit cube. Following [61], 95% of the total
points were sampled near the surface to capture the details of both meshes. For the Chamfer distance calculation, we sample
30,000 points from the surface of the ground truth mesh and reconstructed mesh following [61]. In case the reconstructed
mesh contains more that one connected component, only the largest watertight connected component is retained.

A.3. Training

The contact loss is disabled in the beginning. When computing the reconstruction loss Lrec, hand points to the object
surface, and object points to the hand surface, are not considered until the contact loss is enabled. In our trials, we observe
dramatic degradation when such a mask is not used or when the contact loss is enabled in the beginning.

For the generative GF network conditioned on an object point cloud, the KL loss, Lkl, is employed in an annealing scheme;
the loss weight is kept at 0 in the first 200 epochs and then linearly increased to 0.1 over the next 200 epochs. We find that
such a annealing scheme is essential in our trials. Applying the KL loss in the beginning causes our generative network
posterior to collapse.

In all experiments, we use Adam optimizer [37] with learning rate of 10−4 and decay it to 5 × 10−5 at after 600 epochs.
We train the models for 1,200 epochs without hand-part classification loss and another 100 epochs with the classification
loss. Weight decay is used in all layers in the decoder.

A.4. Inference

During inference, we use Marching Cube with resolution 128 to obtain hand and object meshes. As the object can vary
in size, we use a two-stage approach to dynamically scale the cube size in the Marching Cube algorithm. First, to find the
boundary of the reconstructed meshes, we query equally space points in a unit cube centered at the origin point to locate the



Figure A.1: Decoder architecture. The fully-connected layers are denoted as “FC” in the diagram. The latent vector C has
256 and 512 dimensions in the image reconstruction and conditional hand mesh generation task, respectively. The latent
code from the encoder is concatenated with 3D point query then given to the decoder. The same latent vector is concatenated
again at the middle of the decoder following [61], with the concatenated vector R having size 253 and 509, respectively.
Every “FC” layer except the last layer is followed by a ReLu activation and a dropout layer with drop rate 0.2. The last layer
produces the distance to object surface and the distance to hand surface along with hand part classification scores

negative signed-distance values which indicate the inside of the mesh. Then, we query again with a cube that covers every
negative-value point. Using this approach, no mesh is produced if no negative point is found in the first stage.

B. Dataset Analysis
In this section, we provide detailed analyses on the FHB [19] and the HO-3D [25] datasets. Although these datasets

considerably contribute to the studies of hand-object interactions with detailed 3D annotation, our analyse shows that they
might not be suitable for learning human grasps and modelling the accurate contact relation between hand and object. First,
the number of objects and the types of grasps are limited. As shown in Tab. 5, the number of object is 3 in the FHB dataset
and 10 in the HO3D dataset. Second, the (pseudo) ground truth meshes of the interacting hand and object exhibit frequent
interpenetration. Sampled ground truth meshes from the HO-3D dataset are illustrated in Fig. B.1.

We evaluate the interpenetration between hand and object meshes quantitatively. We use the same evaluation metric as
the one presented in the main paper, namely, the intersection volume (cm3) and depth (cm) (Sec. 4). The results are shown
in Table 5.

For the HO-3D dataset, 91.94% of the training examples exhibit hand-object contact. However, among these training
examples, the average intersection volume and depth are 10.91 cm3 and 1,56 cm respectively.

For the FHB dataset, we use the similar subset as the previous work [29], namely, we exclude the milk bottle related
examples and the examples where the distance from hand joints to the object mesh is more than 1cm. We refer to this dataset
as FHBc. We further fit the MANO hand model with the provided joint location. For FHBc, 97.1% of the training examples
have hand-object contact. However, similar level of intersection between hand and object meshes can be observed in Table. 5.

Overall, the evaluation shows considerable intersection volume and depth of the training data. Therefore we use the
ObMan dataset as our main training dataset, where the ground truth quality of the contact regions is more suitable for



Figure A.2: The encoder architecture for the conditional VAE. Each box represents a vector obtained from applying the layer
written above. For the object encoder, we use the same architecture as the model for point cloud completion used in [51].
The hand encoder is conditioned on the latent code from the object decoder. The combined latent codes of hand and object
are then concatenated with a 3D point and passed to the decoder

learning physically plausible human grasps.
Furthermore, as shown in the experiment section (Tab. 1), our generated grasps that are learned from the ObMan dataset

obtain a higher perceptual score than the ground truth grasps from the HO3D data in the perceptual study, suggesting that the
physical plausibility, i.e. no interpenetration and proper contact, plays an important role on the naturalness of human grasps.

C. Details of the evaluation metrics

Evaluation Metrics. For human grasps synthesis, our goal is to generate physically plausible and semantically meaningful
3D human hand given an object. Therefore, we propose to quantitatively evaluate the generated samples using physics
metrics and a large-scale perceptual study to measure the perceptual fidelity. In addition, for the quantitative evaluation of
our reconstruction networks, we use Chamfer distance and hand joint error.

(1) Physical metric: A valid human grasp implies hand-object contact without interpenetration. Naturally we propose

Table 5: Characteristics of the FHBc and HO-3D dataset. The intersection volume and depth are calculated from the training
sets and are considered when there is contact between hand mesh and object mesh. For the FHBc dataset, the evaluation is
done on the pseudo-ground truth meshes.

Dataset # of frames # of objects Intersection
(train/test) Vol(cm3) Depth(cm)

FHBc 5082 / 5658 3 10.59 2.34
HO-3D 66034 / 11524 10 10.91 1.56



Figure A.3: The architecture of the GF conditioned on the image, given a known object.

Figure B.1: Ground truth meshes from the HO-3D dataset

with the following evluation metrics:
Intersection volume and depth. We follow [29] to report intersection volume and depth. The hand and object mesh are

voxelized using a voxel with edge length of 0.5cm. The interpenetration depth is the maximum distance from all points on



the interpenetrated surface to another surface. If the meshes do not overlap, the interpenetration depth is defined as 0.
Ratio of samples with contact. We define a contact between object and hand when any point on the surface of hand is on or

inside the surface of the object. To measure the performance of models on hand-object contact quality, we calculate the ratio
of samples over the entire dataset that have interpenetration depth more than zero. As all of the samples in the dataset should
have contact between hand and object, the best ratio of frames with contact is 100%. A good hand and object reconstruction
model should have high ratio of contact and small interpenetration volume and depth.

Simulation displacement. Following [29], we use physics simulation to evaluate the stability of the grasps. In the simulated
environment [12], we fix the hand and measure the average displacement of the mass center of the object in a give time period.
Small displacement suggests a stable grasp.

(2) Semantic metric: We perform perceptual studies on Amazon Mechanical Turk to evaluate the authenticity of our
generated grasps. For each randomly generated sample, we render images from 6 different views, and request participants to
score from 1 (low fidelity) to 5 (high fidelity).

(3) 3D reconstruction quality: We use the Chamfer distance between reconstructed and ground truth hand surfaces to
evaluate the hand reconstruction quality. Surface distance is approximated by mean square point cloud Chamfer distance
(cm2) as implemented in [61]. The MANO wrist is sealed to form a watertight mesh for fair comparison. Joins distance
is computed following [29, 96]. After MANO parameters are recovered from the predicted hand mesh as described in
Sec. 3.4, we compute mean Euclidean distance over 21 joints following [29, 96]. Note, since scale and global translation
can not be determined by a single image, for each predicted hand, we optimize the scale and global translation to match
the ground truth by minimizing the Chamfer distance between them. Similarly to hand, we also use Chamfer distance as
measurement of object surface quality. The predicted object mesh is transformed according to the corresponding predicted
hand transformation estimated from the above to align with the ground truth object mesh.

D. Details of the perceptual study
Figure D.1 shows the user interface for evaluating the generated grasps on the Amazon Mechanical Turk (AMT). Users

are asked to rate the plausibility of the hand-object interactions individually. Each entry consists of images from six different
views and is rated by three different users.

E. Qualitative results
Figure E.5 shows the generated grasps from our baseline VAE model conditioned on the object surface point cloud. The

MANO parameters are directly predicted by the decoder.
Figure E.1 shows the reconstruction results on the test images of the ObMan dataset [29]. We observe that our model can

recover hand meshes with proper interaction with the object.
Figure E.2 shows the comparison between reconstructed mesh before and after MANO fitting. The hand meshes also

come from the single image reconstruction task. We observe that the MANO fitted meshes match the inferred meshes, even
in the case where the rasterized hand mesh has merged fingers.

Figure E.3 shows randomly sampled grasps from our VAE model conditioned on the object surface point cloud. We
observe that our model can generate a variety of grasps given an object. Figure E.4 shows the generated results of the same
model conditioned on the objects from HO3D datset. It should be note that this model is only trained on the ObMan dataset
and have never seen these objects before.



Figure D.1: Amazon Mechanical Turk user interface for grasping evaluation



Figure E.1: Reconstruction results from RGB images. From left to right: input images, recovered mesh from two different
view points, MANO fitted hand prediction, ground truth hand and object.



Figure E.2: MANO fitting results on the reconstructions from RGB images. Each row shows a set of ground truth hand mesh,
reconstructed hand, and MANO fitted prediction, from two different views. The last two rows demonstrate the robustness of
our fitting method where the reconstructed meshes from the estimated SDF values are less satisfactory. However, even with
merged fingers, we can still recover reasonable hand mesh.



Figure E.3: Randomly selected hands generated from the conditional VAE. Each row shows hand and object ground truth
followed by three sets of sampled hand meshes, before and after MANO fitting, all from the same view. The samples pre-
sented on the two bottom rows are less satisfactory as the generated SDFs have artifacts and we can observe interpenetration
between the fitted MANO hand meshes and the object meshes.



Figure E.4: Hands generated from the VAE conditioned on objects from HO3D dataset. The model is trained only on the
ObMan dataset.



Figure E.5: Each row shows five randomly sampled hands given an object from the baseline conditional VAE. We can observe
interpenetration between the hand meshes and the object meshes. In some cases, the hands are not in contact with the objects.


