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ON THE NORTHCOTT PROPERTY FOR SPECIAL VALUES OF
L-FUNCTIONS

FABIEN PAZUKI AND RICCARDO PENGO

Abstract. We propose an investigation on the Northcott, Bogomolov and Lehmer proper-
ties for special values of L-functions. We first introduce an axiomatic approach to these three
properties. We then focus on the Northcott property for special values of L-functions. We
prove that such a property holds for the special value at zero of Dedekind zeta functions of
number fields. In the case of L-functions of pure motives, we prove a Northcott property for
special values located at the left of the critical strip, assuming the validity of the functional
equation.
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1. Introduction

Traditionally, the expression Northcott property is used to talk about the finiteness of the set
of algebraic numbers having simultaneously bounded height and degree, proved by Northcott
(see [63] and [7, Theorem 1.6.8]). More generally, one can say that a field F ⊆ Q has the
Northcott property if the sets of elements of F having bounded height are finite. Hence,
Northcott’s theorem can be reformulated by saying that number fields have the Northcott
property. They are not the only fields sharing this property (see for example [15]).

The Northcott property can be relaxed by asking for which fields F ⊆ Q the image of
the height h(F ) ⊆ R≥0 does not admit zero as an accumulation point. If this happens, one
says that F has the Bogomolov property (see [8]), and in recent years there has been an
increasing interest in finding fields having the Bogomolov property. Finally, the Bogomolov
property can also be relaxed by looking at fields F ⊆ Q such that the product of the height
and the degree of algebraic numbers does not admit zero as an accumulation point. It seems
reasonable to us to define this as the Lehmer property in view of the famous conjecture
of Lehmer which says that Q (and hence each of its subfields) satisfies this property. As of
today, there is no known example of a sub-field F ⊆ Q which satisfies the Lehmer property
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but not the Bogomolov property, even if there are many known examples of fields which do
not have the Bogomolov property (see [2]).

We are interested in the Northcott, Bogomolov and Lehmer properties for more general
notions of heights, related to objects in algebraic geometry. We will define these properties in
Section 2 for any set-theoretic function h : S → Γ, where Γ is a partially ordered set, and we
will see how some results in Diophantine geometry can be interpreted in this language.

One can view heights as a way of measuring the complexity of arithmetic or geometric
objects, such as algebraic numbers, algebraic number fields, abelian varieties, Galois repre-
sentations. More generally speaking, one considers mixed motives, which can be thought of
as pieces cut out from the cohomology of smooth and proper algebraic varieties defined over
a number field F . Abelian categories of mixed motives have been defined by Jannsen (see
[44, § 4]), Huber (see [41, § 22]) and Nori (see [42, Chapter 9]), using linear algebraic data
associated to algebraic varieties. In this paper we will only use these notions of mixed motives,
without any further reference to the triangulated approach of Voevodsky, studied for example
in the book [16]. We will denote byMM(F ;E) the abelian category of mixed motives defined
over F which have coefficients in E, following Jannsen’s, Huber’s or Nori’s definition. These
definitions are not known to be equivalent (see [42, Remark 6.3.12 and § 10.1]), but our results
hold for all three of them.

There are two possible notions of heights which can be defined for mixed motives:

(a) the ones defined by Kato in [47] (see Example 2.20), and in particular the height
h∗,♦ := logH∗,♦ defined in (8);

(b) The functions

hn,σ(X) := |L∗(X,n)σ|

which associate to every mixed motive X ∈ MM(F ;E) defined over a number field
F and with coefficients in another number field E, endowed with a chosen embedding
σ : E ↪→ C, the special value

L∗(X,n)σ := lim
s→n

L(X, s)σ

(s− n)ords=n(L(X,s)σ)

of the L-function L(X, s)σ at the point s = n, assuming the limit exists.

It is known that the Northcott property for h∗,♦ would have many interesting consequences,
and special cases of this Northcott property have been recently proved by Koshikawa and
Nguyen (see Example 2.20 for a more detailed discussion). It seems then natural to ask if
special values of L-functions, i.e. if the heights hn,σ(X), satisfy a Northcott property. We
note that the integer n ∈ Z at which one takes the special value hn,σ(X) plays a crucial role
in being able to prove whether or not the function hn,σ satisfies a Northcott property.

Our motivation for regarding special values of L-functions as possible heights comes from
the many (mostly conjectural) relations between these special values and different forms of
height pairings, like for example:
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(1) the conjectures of Boyd, which relate certain special values of L-functions (typically,
L∗(H1(X), 0) for a smooth projective curve X) to the Mahler measure of integral
polynomials, which has the Northcott property (see Example 2.14);

(2) the formula of Gross and Zagier, relating special values of L-functions of modular
forms to heights of Heegner points, which has been generalised by the far reaching
Kudla program (see Example 2.15);

(3) the conjectures of Colmez and Maillot-Roessler, which relate logarithmic derivatives of
Artin L-functions to Faltings’s heights and Arakelov Chern classes (see Example 2.16);

(4) the relation between special values of Dedekind ζ-functions and the volume of hyper-
bolic manifolds, which can be regarded as a height (see Example 2.19);

(5) the conjectures of Bloch and Kato, which can be stated as a relation between special
values of L-functions and height pairings of algebraic cycles (see [6], as well as the
survey [23]).

Thus it seems natural to us to investigate which properties that are typical of heights hold
also for special values of L-functions.

Going back to Kato’s height h∗,♦, it seems interesting to us to study whether the special
values hn,σ(X) := |L∗(X,n)σ| associated to a mixed motiveX ∈MM(F ;E) can be compared
to the height h∗,♦(X(n)) of some other motive X(n) associated with X, or even to the height
h∗,♦(X) of X itself. If this is the case, then it would be possible to prove a Northcott property
for h∗,♦ by relating it to a Northcott property for the special values hn,σ(X). This will be the
subject of future research.

Let us outline the contents and main results of this paper. First of all, we devote Section 2 to
an axiomatic treatment of properties of heights, such as the Northcott, Bogomolov and Lehmer
properties mentioned in this introduction. This provides a new conceptual framework which
encompasses most of the known examples of Diophantine properties that have been studied
for different height functions. In particular, we consider a height to be any function h : S → Γ

where S is any set and Γ is a partially ordered set. This allows one to talk about Northcott,
Bogomolov, and Lehmer properties also for sets of heights, by using the product height (3).
For example, one can restate Northcott’s theorem either by saying that the logarithmic Weil
height h : Q→ R has the Northcott property when restricted to a number field F ⊆ Q, or by
saying that the pair {h,deg} has the Northcott property.

The rest of the paper focuses on the Northcott property for special values of L-functions.
As a test case we consider a number field F and the special value of its Dedekind zeta function
ζ∗F (0), and we obtain the following theorem.

Theorem 1.1. Let S be the set of isomorphism classes of number fields. Then for every
B ∈ R>0 the set

SB := {[F ] ∈ S | |ζ∗F (0)| ≤ B}

is finite.
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Theorem 1.1 can be reformulated using the language introduced in Section 2.1. Indeed,
let S′ denote the set of isomorphism classes of motives with rational coefficients defined over
Q, i.e. the set of isomorphism classes of objects in the category MM(Q,Q). Observe that
we have an embedding S ↪→ S′, which sends a number field F to the motive H0(Spec(F )),
and that L(H0(Spec(F )), s) = ζF (s) for every number field F . Thus Theorem 1.1 can be
reformulated by saying that the height function

h0 : S′ → R≥0

[X] 7→ |L∗(X, 0)|

has the Northcott property (see Definition 2.1), when restricted to the set S ↪→ S′.
Let us review the strategy behind the proof of Theorem 1.1, after having observed that

we do not impose a priori any control on the degree of the number fields. The analytic class
number formula and the functional equation for ζF (s) (see [61, Corollary VII.5.11]) imply that

(1) ζ∗F (0) = − hF
wF

RF

where hF , RF , wF are respectively the class number, the regulator and the number of roots
of unity of F . Using this, we prove that |ζ∗F (0)| ≤ B implies that the discriminant ∆F is
bounded above (which is not obvious), and conclude by Hermite’s discriminant theorem (see
[61, Theorem III.2.16]). We give the details in Section 3.

Let us note that it seems very difficult to prove a similar Northcott property for the special
value ζ∗F (1), as we explain at the end of Section 3. A similar phenomenon holds for the special
value L∗(A, 1) taken at the centre of the critical strip of the L-function L(A, s) associated to
an abelian variety A, as we explain in Section 4. This shows once again that the position
at which we take the special value influences crucially the possibility of proving a Northcott
property.

We conclude this paper with a general result, whose proof is the main content of Section 5,
valid for motives with an L-function that satisfies a functional equation.

Theorem 1.2 (Northcott property at the left of the critical strip). Let F and E be two number
fields. Fix an integer w ∈ Z and any norm |·| : E⊗C→ R≥0. Let S be the set of isomorphism
classes of elements in MM(F ;E). Then for every B1, B2 ∈ R≥0 and every n ∈ Z such that
n < w/2, the set

(2) SB1,B2 := {[X] ∈ S | X ∼= grWw (X), |L∗(X,n)| ≤ B1, dim(X) ≤ B2}

is finite, under the assumption that the motivic L-functions L(X, s) are well defined, can
be meromorphically continued to the whole complex plane, and satisfy the functional equation
(18). In other words, the height hn : S → R≥0 defined as hn(X) := |L∗(X,n)| has the Northcott
property, when restricted to the subset of isomorphism classes of pure motives of weight w > 2n.
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To obtain this result, the basic idea is to use the functional equation to bound the conductor
of X from above, and deduce finiteness. Once again, this shows the different behaviour of the
various functions hn,σ(X) := |L∗(X,n)σ| with respect to the choice of n.

2. Properties of heights

2.1. General definitions. In complete generality we may say that a height (or height func-
tion) on a set S is a function h : S → Γ with values in a partially ordered set Γ. The aim of
this section is to describe various properties of height functions in this generality. Let us start
with the Northcott property.

Definition 2.1. Let h : S → Γ be a height function, and let S be a collection of subsets of S.
Then the height h has:

(i) the fibre-wise S-Northcott property if and only if the fibres of h lie in S;
(ii) the S-Northcott property if and only if {s ∈ S | h(s) ≤ γ} ∈ S for every γ ∈ Γ.

When S is the collection of finite subsets of S it will usually be omitted from the notation.

The previous definition readily generalises to sets of height functions as follows.

Definition 2.2. If h = {hi : S → Γi}i∈I is a set of height functions we say that h has one of
the properties described in Definition 2.1 if and only if the “product height”

(3)
h̃ : S →

∏
i∈I

Γi

s 7→ (hi(s))i∈I

has these properties, where the set
∏
i∈I Γi is endowed with the product order.

Before moving on, let us observe that

(4) h has S-Northcott + S is lower-closed ⇒ h has fibre-wise S-Northcott

where S is called lower-closed if for all Y ⊆ X ⊆ S then X ∈ S ⇒ Y ∈ S. Moreover, if S is
the collection of finite subsets of S then

h has fibre-wise Northcott + h(S) is upper-finite ⇒ h has Northcott

where we say that X ⊆ Γ is upper-finite if X≤γ := {x ∈ X | x ≤ γ} is finite for all γ ∈ Γ.
Let us now shift to the definition of the Bogomolov property. This uses the concepts of

essential infimum and successive infima, that we now review.

Definition 2.3. Let Γ be a partially ordered set, let X ⊆ Γ and let X be a collection of
subsets of X. Write X≤γ := {x ∈ X | x ≤ γ} for every γ ∈ Γ. Then X has an X-essential
infimum (resp. X-essential minimum) if the set

Ξ(X,X) := {γ ∈ Γ | X≤γ 6∈ X} ⊆ Γ
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has an infimum (resp. a minimum). In this case we denote the set of infima (resp. minima)
of Ξ(X,X) by µess(X,X) ⊆ Γ. Here Γ := Γ t {+∞} is the partially ordered set obtained
by adjoining to Γ a global maximum +∞. In particular, µess(X,X) = {+∞} if and only if
Ξ(X,X) = ∅, i.e. if and only if X≤γ ∈ X for every γ ∈ Γ.

Definition 2.4. Let Γ be a partially ordered set and let k ∈ N. Then a subset X ⊆ Γ has at
least k successive sets of infima (respectively at least k successive sets of minima) if:

(i) X is bounded from below;
(ii) whenever k ≥ 1, X has at least k − 1 successive sets of infima (resp. sets of minima)

and the set X \ Xk−1 has an infimum (resp. minimum). In this case, we denote by
µk(X) ⊆ Γ the set of infima (resp. minima) of X \Xk−1. Moreover, the set Xk−1 is
defined by induction as X0 := ∅ and

Xk−1 := Xk−2 ∪ Uk−1

for any k ≥ 2, where Uk−1 ⊆ Γ denotes the union of connected components of the set
X ∪{µk−1(X)} that contain an element of µk−1(X). These connected components are
taken with respect to the subspace topology induced on X ∪ {µk−1(X)} by the order
topology on Γ.

It is easy to see that for every j ∈ Z≥1 and every xj ∈ µj(X) and xj+1 ∈ µj+1(X) the
inequality xj ≤ xj+1 holds. Moreover, if µj+1(X) = µj(X) for some j ∈ Z≥1 then X has at
least k successive infima for every k ∈ N and µk(X) = µj(X) for every k ≥ j. This leads to
the following definition.

Definition 2.5. Let Γ be a partially ordered set. Then any subset X ⊆ Γ has exacly k

successive sets of infima (respectively exacly k successive sets of minima) for some k ∈ N if it
has at least k successive sets of infima (resp. sets of minima) and at least one of the following
holds:

(i) X does not have at least k + 1 successive sets of infima (resp. sets of minima);
(ii) µk+1(X) = µk(X).

We are now ready to give the definition of Bogomolov property.

Definition 2.6. Let h : S → Γ be a height function. Then h has Bogomolov number B(h) ∈ N
if the set h(S) ⊆ Γ has exactly B(h) successive sets of infima, denoted by µj(h) for every
j ∈ {1, . . . ,B(h)}.

Definition 2.7. Let h : S → Γ be a height function. Then h has:

(i) the very weak Bogomolov property if and only if B(h) ≥ 0, i.e. if and only if the set
h(S) ⊆ Γ is bounded from below;

(ii) the weak Bogomolov property if and only if B(h) ≥ 1 and µ1(h) ∈ h(S), i.e. if and
only if h(S) has at least one minimum;
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(iii) the Bogomolov property if and only if either |h(S)| = 1 or B(h) ≥ 2 and µ1(h) ∈ h(S),
i.e. if and only if the minima of h(S) are isolated.

Moreover, for any collection S of subsets of S the height h has:

(iv) the S-essential Bogomolov property if the set h(S) ⊆ Γ has an h(S)-essential infimum.

The previous definition readily generalises to sets of height functions.

Definition 2.8. If h = {hi : S → Γi}i∈I is a set of height functions, we write B(h) and
µess(h,S) for the Bogomolov number and the essential infimum of the product height (3), and
we say that h has one of the various Bogomolov properties if and only if h̃ does.

Clearly one has the chains of implications

h has Bogomolov ⇒ h has weak Bogomolov ⇒ h has very weak Bogomolov

h has Northcott ⇒ h has Bogomolov .

We can define the Lehmer property by generalising slightly the above definition.

Definition 2.9. Let h = {hi : S → Γi}i∈I be a set of heights, and let α :
∏
i∈I Γi → Γ be

any map of sets, where Γ is a partially ordered set. Then the Lehmer number L(h, α) ∈ N is
defined to be the Bogomolov number of the height

S
h̃−→
∏
i∈I

Γi
α−→ Γ

and the successive infima of α(h̃(S)) are denoted by µj(h, α) for j ∈ {1, . . . ,L(h, α)}. More-
over, the pair (h, α) has:

(i) the very weak Lehmer property if and only if α ◦ h̃ has the very weak Bogomolov
property;

(ii) the weak Lehmer property if and only if α ◦ h̃ has the weak Bogomolov property;
(iii) the Lehmer property if and only if α ◦ h̃ has the Bogomolov property.

It is easy to observe that we have the following implications

h′ has very weak Bogomolov + α ◦ h̃ ≥ h′ ⇒ (h, α) has very weak Lehmer

h′ has weak Bogomolov + α ◦ h̃ ≥ h′ ⇒ (h, α) has weak Lehmer

h′ has Bogomolov + α ◦ h̃ ≥ h′ ⇒ (h, α) has Lehmer

where h′ : S → Γ is any height and α ◦ h̃ ≥ h′ means that α(h̃(s)) ≥ h′(s) for every s ∈ S.
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2.2. Examples of successive infima. We devote this subsection to the study of examples
of successive infima and minima. In particular, we will see that our definitions Definition 2.4
and Definition 2.5 recover the notions of successive infima and minima present in Arakelov
geometry, due to Minkowski (for lattices) and Zhang (for heights associated to hermitian line
bundles).

Example 2.10. Let Γ = R. In this case the order topology coincides with the Euclidean
topology. Then every set which has at least zero successive infima (i.e. is bounded from
below) has also has at least n successive infima for every n ∈ N. Moreover, if X ⊆ R is a finite
union of open intervals X =

⋃k
i=1(ai, bi) with a1 < b1 < a2 < b2 < . . . , then it is easy to see

that X has exactly k successive infima, with µi(X) = ai for every i ∈ {1, . . . , k}. Finally, if
X ⊆ R is countable then X has exactly k ∈ Z≥1 successive minima if and only if there exists
a Cauchy sequence {xn}n∈N ⊆ X such that |{x ∈ X | x ≤ xn, ∀n ∈ N}| = k.

Example 2.11 (Minkowski). Let Λ ⊆ Rn be a lattice, and let g : Rn → R≥0 be any distance
function (see [13, Chapter IV]), i.e. any continuous function such that g(tx) = |t|g(x) for all
t ∈ R. Then the image of the map

Λ→ R≥0 × N

λ 7→ (g(λ), dimR(Vg,λ))
where Vg,λ := 〈{x ∈ Λ | g(x) ≤ g(λ)}〉R

has exactly n successive infima, which are given by the pairs (µj(Λ, g), j) for some sequence

0 < µ1(Λ, g) ≤ µ2(Λ, g) ≤ · · · ≤ µn(Λ, g) < +∞

with µj(Λ, g) ∈ R>0 for every j ∈ {1, . . . , n}. The numbers {µj(Λ, g)} are usually called
successive minima of the function g on the lattice Λ (see [13, Chapter VIII]). However, these
numbers are really infima and not minima in general.

Example 2.12 (Zhang). Let X → Spec(Z) be an arithmetic variety of dimension d, as defined
in [79], and let Cl(X) be the set of closed sub-schemes of the generic fibre X := XQ. Fix L
to be a relatively semi-ample hermitian line bundle on X with ample generic fibre, and let
hL : X(Q)→ R be the associated height. Then the image of the map

Cl(X)→ R× N

Y 7→
(
inf{hL(x) | x ∈ X(Q) \ Y (Q)} , dim(Y )

)
has exactly d+ 1 successive infima, which are given by pairs (µj(X ,L), j) for some sequence

µ0(X ,L) ≤ µ1(X ,L) ≤ · · · ≤ µd(X ,L) ≤ +∞

with µj(X ,L) ∈ R for every j ∈ {0, . . . , d − 1} and µd(X ,L) ∈ R t {+∞}. It is easy to see
that µd(X ,L) = +∞ if and only if X is irreducible, and that for every j ∈ {0, . . . , d− 1} we
have µj(X ,L) = ed−j(L), where e1(L) ≥ · · · ≥ ed(L) is the sequence defined in [79, § 5].
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2.3. Heights and their relations to special values of L-functions. We devote the rest
of this section to list examples of heights and their properties, and to relate these examples
to special values of L-functions. Let us start with the logarithmic Weil height, which was the
main inspiration to give the general definitions in Section 2.1.

Example 2.13 (logarithmic Weil height). Let h : Q→ R be the absolute logarithmic Weil height
(see [7, Definition 1.5.4]), and let deg : Q → Z≥1 denote the degree deg(α) := [Q(α) : Q]. It
is immediate to see that h does not have the fibre-wise Northcott property (with respect to
the collection of finite subsets of Q), for example because h(ζ) = 0 for any root of unity
ζ ∈ Q. Hence h does not have the Northcott property. It is also immediate to see that the
same holds for deg. However, Northcott’s theorem (see [7, Theorem 1.6.8]) shows that the
set h = {h,deg} has the Northcott property. Moreover, it is immediate to see that h has
the weak Bogomolov property, because 0 ∈ R is a minimum for h(Q), attained exactly at the
roots of unity (see [7, Theorem 1.5.9]). However, it is easy to see that this minimum is not
isolated, because for example limn→+∞ h( n

√
2) = 0. Hence B(h) = 1, and h does not have the

Bogomolov property. Finally, asking whether the set h = {h,deg} has the Lehmer property
with respect to the function

π : R× Z≥1 → R

(x, d) 7→ xd

is equivalent to Lehmer’s celebrated problem (see [7, § 1.6.15]).
Let us mention some of the recent work concerning Northcott, Bogomolov and Lehmer prop-

erties relative to the logarithmic Weil height. First of all, it is known that h has the Northcott
property, or the Bogomolov property, when restricted to suitable infinite sub-extensions of Q
(see the introduction of [14] for a survey of known results). Moreover, Smyth’s theorem [7,
Theorem 4.4.15] says that (h, π) has the Lehmer property when restricted to the set S ⊆ Q
of algebraic numbers which are not Galois-conjugate to their inverse. Finally, Dobrowolski’s
theorem [7, Theorem 4.4.1] says that, if we let

α : R× Z≥1 → R

(x, d) 7→ xd

(
log(3d)

log log(3d)

)3

then the pair (h, α) has Lehmer’s property.
Let us conclude by observing that the results of [1], combined with the class number formula

(1), show that for every number field F with unit rank rF := dimQ(O×F ⊗Z Q) there exists a
basis {γ1, . . . , γrF } ⊆ O

×
F ⊗Z Q such that {γ1, . . . , γrF } ⊆ O

×
F and

(5)
hF d

rF
F (2rF )!

2wF (rF !)4

rF∏
i=1

h(γi) ≤ |ζ∗F (0)| ≤
hF d

rF
F

wF

rF∏
i=1

h(γi)
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which shows that the special value ζ∗F (0) of the Dedekind ζ-function associated to a number
field F is commensurable to a product of Weil heights. The terms appearing in (5) are given
by dF := [F : Q], hF := |Pic(OF )| and wF := |(O×F )tors|.

Now, let us study the higher-dimensional generalisation of the function

π ◦ h̃ : Q→ R

α 7→ h(α) deg(α)

appearing in Example 2.13.

Example 2.14 (Mahler’s measure). Let G∞m,C := lim←−n∈NGn
m,C denote the inverse limit of the

complex algebraic tori Gn
m,C with respect to the projections on the last coordinate. Then the

global sections of the structure sheaf OG∞m,C are given by the ring of Laurent polynomials in
any number of variables. Moreover, the logarithmic Mahler measure is defined as

m : Γ(G∞m,C,OG∞m,C)→ R

P 7→
∫
T∞

log|P | dµT∞ .

where T∞ := lim←−n∈N Tn denotes the inverse limit of the real analytic tori Tn := (S1)n with
respect to the projections on the last coordinates, and µT∞ denotes the unique Haar probability
measure on T∞.

The height m has the weak Bogomolov property if one restricts it to the ring

Γ(G∞m,Z,OG∞m,Z) = Z[x±1
1 , x±1

2 , . . . ]

of Laurent polynomials with integral coefficients, because for every P ∈ Z[x±1
1 , x±1

2 , . . . ] one
has that m(P ) ≥ 0 and m(P ) = 0 if and only if P is a product of cyclotomic polynomials
evaluated at monomials (see [9]). In particular, m(P ) = m(P̃ ) for every P ∈ Z[x±1

1 , . . . ],
where P̃ ∈ Z[x1, . . . ] denotes the polynomial obtained by cleaning the denominators of P .
Finally, if we let

δ : Γ(G∞m,C,OG∞m,C)→ Z≥1

P 7→
+∞∑
i=1

i degxi(P̃ )

then the pair (m, δ) has the Northcott property, when restricted to Γ(G∞m,Z,OG∞m,Z). Indeed,
this follows from [57], which gives the inequality

exp(m(P )) = exp(m(P̃ )) ≥ 2−
∑+∞
i=1 degxi (P̃ )

∑
j

|aj|

where {aj}j ⊆ Z are the coefficients of P̃ =
∑

j ajx
aj written in multi-index notation.
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Conjectural relations of Mahler’s measure with special values of L-functions come from the
work of Boyd [10]. A celebrated example of these relations is that, for every k ∈ Z \ {0,±4},
there should exist a rational number αk ∈ Q× such that

(6) L′(Ek, 0) = αkm

(
x+

1

x
+ y +

1

y
+ k

)
where Ek : y2 = x3 + (k2 − 8)x2 + 16x is an elliptic curve. Moreover, the computational
evidence gathered in [10] shows that it is reasonable to expect that αk ∈ Z for all but finitely
many k. If this is true, then the relation (6) and the Northcott property of the Mahler measure
would entail a Northcott property for the special values L′(Ek, 0).

We have seen that the Mahler measure of a polynomial P ∈ Z[x1, . . . , xn] can be seen as a
way of measuring the complexity of the zero locus of P , which is a sub-variety of Gn

m,Z. Let us
briefly outline another height defined for the closed sub-varieties of a given arithmetic variety,
which depends more canonically on the choice of a model.

Example 2.15 (Canonical height). Let X be an algebraic variety defined over a number field
F . The term canonical height (usually denoted by ĥcan

X ) is often used for a height function
which measures the arithmetic complexity of closed sub-varieties of X.

The simplest case is of course the Néron-Tate height ĥcan
X,φ,D : X(F ) → R associated to

an endomorphism φ : X → X and a divisor D ∈ Div(X) such that φ∗(D) ∼ αD for some
α ∈ R>1. We refer the interested reader to [40, § B.4] for an introduction to this notion of
canonical height, with a special focus on the case of abelian varieties.

Canonical heights for higher dimensional subvarieties have been defined by Zhang (see [79,
80]), Philippon (see [66, 67, 68]) and Faltings (see [22] and [71, Chapter III, § 6]). We refer
also the interested reader to [37, § 3] for an introduction to canonical heights in toric varieties,
and to [37, Corollary 6.3] for their relation with the Mahler measure.

The canonical height is related to special values of L-functions by a far reaching program
initiated by the seminal work of Gross and Zagier (see [35, 33], as well as the modern reviews
[18, 78]). This was later continued by the groundbreaking works of Kudla and collaborators
(see [34, 51]). We refer the interested reader to the survey article [52], as well as to the
monograph [53]. Finally, we mention the recent work of Li and Zhang [55], which settles the
local Kudla-Rapoport conjecture in the unitary case.

In the following, example we focus on the case of abelian varieties, for which a more intrinsic
definition of height has been given by Faltings in [21].

Example 2.16 (Faltings height). Let A(Q) be the set of isomorphism classes of abelian varieties
defined over Q, and let h : A(Q) → R be the stable Faltings height (see [21, Section 3] and
[19, Page 27], which use two different normalizations). Then the set {h,dim} has the very
weak Bogomolov property, since one has the lower bound h(A) ≥ − log(

√
2π) dim(A) (see

[27, Corollary 8.4]). Then [19, Page 29] shows that h has the weak Bogomolov property if we
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restrict to the set A1(Q) of Q-isomorphism classes of elliptic curves defined over Q. Moreover,
[56] and [12] show that h : A1(Q) → R has the Bogomolov property tout court. It seems
reasonable to ask whether the set {h,dim} has the Bogomolov property.

Finally, Faltings’s celebrated theorem [21, Theorem 1], combined with Zarhin’s “trick” [59,
Remark 16.12], shows that the set {h,dim, deg} has the Northcott property. The degree
function is defined by

deg : A(Q)→ N

A 7→ min{[F : Q] | A is defined over F}

where we say that an abelian variety A defined over a field L is defined over a sub-field K
if there exists an abelian variety A′ defined over K and such that A ∼= A′ ×Spec(K) Spec(L).
Then deg is well defined, because every abelian variety defined over Q can be defined over a
number field (see [36, Théorème 8.8.2]). It has also been recently proved that (if one assumes
Artin’s and Colmez’s conjectures) the function h satisfies Northcott’s property, if we restrict
to the subset of isomorphism classes of abelian varieties with complex multiplication (see [60,
Theorem 1.4]).

For abelian varieties with complex multiplication, the stable Faltings height h : A(Q)→ R
is expected to be related to L-functions by Colmez’s conjecture [17, Conjecture 0.4] which
predicts the relation

(7) − h(A)
?
=
∑
χ

m(E,Φ)(χ)

(
L′(χ, 0)

L(χ, 0)
+ log(fχ)

)
where (E,Φ) is the CM-type of A and the sum runs over all the Artin characters

χ : GQ → C

whose value on complex conjugation c ∈ GQ := Gal(Q/Q) equals χ(c) = −1. This implies in
particular that L(χ, 0) ∈ C×. Moreover, fχ ∈ N denotes the Artin conductor of χ and the
family of rational numbers {m(E,Φ)(χ)}χ ⊆ Q is defined by the equality

1

[GQ : Stab(Φ)]

∑
σ∈GQ/ Stab(Φ)

|Φ ∩ σ ◦ Φ| =
∑
χ

m(E,Φ)(χ) χ(σ)

which holds for every σ ∈ Gal(Q/Q). In particular, m(E,Φ)(χ) = 0 for all but finitely many
Artin characters.

We have seen in the previous example that Colmez’s conjectural formula (7) involves the
Artin conductor fχ ∈ N associated to an Artin character χ : GQ → C. By definition fχ :=

N(fρ) coincides with the norm of the conductor associated to any complex representation
ρ : GQ → GLn(C) such that χ = tr ◦ρ, where tr : GLn(C) → C denotes the trace map. The
aim of the next example is to show that the association ρ 7→ fρ behaves almost like a height.
In particular it satisfies a Northcott property, at least if we include the Archimedean places
in the definition of the conductor.
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Example 2.17 (Conductors of complex representations). Let F be a number field, fix n ∈ N
and let An(F ) be the set of cuspidal automorphic representations of GLn(AF ) (see [43, § 1]).
Then [11, Corollary 9] shows that the analytic conductor C : An(F ) → R≥1, which is defined
in [43, Equation (31)], satisfies the Northcott property. In particular, the n = 1 case shows
that the set of Hecke characters ψ : A×F → C× with bounded analytic conductor is finite.

Let now WC(F ) be the set of isomorphism classes of pairs (V, ρ) where V is a finite dimen-
sional complex vector space and ρ : WF → GL(V ) is a continuous semi-simple representation
of the Weil group WF (see [73, § 1]). Then there is a function f : WC(F )→ OF sending each
(V, ρ) to its global Artin conductor ideal fρ ⊆ OF (see [61, Chapter VII, § 11]). Moreover, the
Archimedean local Langlands correspondence, explained for example in [48], allows one to as-
sociate to each (V, ρ) ∈ WC(F ) an Archimedean conductor C∞((V, ρ)) ∈ R, defined in exactly
the same way as the Archimedean part of the analytic conductor of a cuspidal automorphic
form. Then [3, Theorem 3.3] can be combined with our previous discussion to show that the
function C : WC(F ) → R defined as C((V, ρ)) := NF/Q(fρ) C∞((V, ρ)) satisfies the Northcott
property. Let us observe that:

(i) one can consider all the number fields at once as follows: if WC denotes the set of
isomorphism classes of triples (F, V, ρ), where F is a number field and (V, ρ) ∈ WC(F ),
then [69, Property (a2)] shows that the composite map C ◦ Ind: WC → WC(Q) → R
satisfies the Northcott property, where Ind: WC → WC(Q) sends (F, V, ρ) to the
induced representation on WQ ⊇WF ;

(ii) the conductor fρ is related to L-functions by means of the functional equation (see [73,
Theorem 3.5.3]), which will also be exploited in Section 5

The following example is the analogue of the previous one for representations valued in
vector spaces defined over Q`.

Example 2.18 (Conductors of `-adic representations). Let ` ∈ N be a prime number and let F
be a number field. We denote by M0

F the set of non-Archimedean places of F , and for every
v ∈M0

F we write Frobv ⊆ Gal(F/F ) for the conjugacy class of geometric Frobenius elements
relative to v. We define G`(F ) to be the set of isomorphism classes of pairs (V, ρ) where
V is a finite dimensional vector space over Q` and ρ : Gal(F/F ) → GL(V ) is a continuous
semi-simple representation satisfying the following properties:

• the set S(ram)
ρ ⊆M0

F of non-Archimedean places at which ρ is ramified is finite;
• the set S(int)

ρ ⊆ M0
F of non-Archimedean places v ∈ M0

F such that tr(ρ(Frobv)) ∈ Z
has finite complement. Here tr : GL(V )→ C denotes the trace.

Let now (V, ρ) ∈ G`(F ). We set Sρ := S
(ram)
ρ ∪ (M0

F \ S
(int)
ρ ) and we denote by Tρ the family

of finite sets T ⊆M0
F such that T ∩ Sρ = ∅ and the restriction map⋃

v∈T
Frobv → Gal(K/F )
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is surjective for every extension F ⊆ K of number fields which is unramified outside Sρ and
such that [K : F ] ≤ `2 dim(V )2 . We define two functions π : G`(F )→ N and τ : G`(F )→ N as

π(V, ρ) := max{char(κv) : v ∈ S(ram)
ρ }

τ(V, ρ) := min
T∈Tρ

(max{|tr(ρ(Frobv))| : v ∈ T})

where κv denotes the residue field of F at v. Note in particular that Tρ 6= ∅, as follows from
a combination of Chebotarev’s density theorem and Hermite’s theorem.

Then [20, Théorème 1] shows that the set h = {dim, π, τ} has the Northcott property.
Moreover, the functions π and τ are related to more classical invariants as follows:

(i) π(V, ρ) ≤ C0(V, ρ), where C0(V, ρ) := NF/Q(fρ) denotes the norm of the conductor ideal
fρ ⊆ OF associated to ρ (see for example [75]). Hence the set h = {dim, C0, τ} has the
Northcott property;

(ii) τ(V, ρ) ≤ dim(V ) τ̃(V, ρ), where τ̃ : G`(F )→ R is the function defined by

τ̃(V, ρ) := min
T∈Tρ

(max{|σ| : σ ∈ Sp(ρ(Frobv))})

where, for any f ∈ End(V ), we denote by Sp(f) the set of its eigenvalues. In particular,
if we restrict to the subsetM`(F ) ⊆ G`(F ) consisting of those Galois representations
that admit a weight filtration with finitely many non-zero graded pieces (see [45, § 2]),
then the sets {dim, π, wmax} and {dim, C0, wmax} have the Northcott property, where
wmax : M`(F )→ N sends a representation to the greatest of its weights.

Let us conclude by making the following observations:

(a) the semi-simplifications of the `-adic étale cohomology groups H i
ét(XF ;Q`(j)) associ-

ated to a smooth and proper variety X defined over F which has good reduction at all
the primes of F lying above ` give rise to elements ofM`(F ) which are pure of weight
i− 2j. For these Galois representations the set Sρ equals the set of primes of F which
either lie above ` or are primes of bad reduction for X. This follows from the smooth
and proper base change theorem for étale cohomology, combined with Deligne’s proof
of the Weil conjectures (see [44, Appendix C]).

(b) we can consider all the number fields at once, as we did in Example 2.17, by defining
G` as the set of isomorphism classes of triples (F, V, ρ) where F is a number field and
(V, ρ) ∈ G`(F ). Then [69, Property (a2)] implies that the sets {dim ◦ Ind, π ◦ Ind, τ}
and {dim, C0 ◦ Ind, τ} have the Northcott property. Here Ind: G` → G`(Q) is again
the map sending (F, V, ρ) to the representation induced on Gal(Q/Q) ⊇ Gal(F/F );

(c) the conductor fρ is supposed to be related to the L-function L(ρ, s) by means of the
conjectural functional equation (compare with [73, § 4.5]).

We conclude this roundup of examples by talking about two more geometric examples of
height: the volume of hyperbolic manifolds and the heights of mixed motives defined by Kato.
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Example 2.19 (Volumes of hyperbolic manifolds). Let H be the set of isomorphism classes of
hyperbolic manifolds of finite volume. Then it is conjectured that the volume vol : H → R≥0

has the Bogomolov property, and that the minimum is attained at an arithmetic hyperbolic
manifoldM ∼= hn/Γ, where Γ is an arithmetic subgroup of the isometry group of the hyperbolic
space hn (see [5]). Then, if we restrict to the set Har of isomorphism classes of arithmetic
hyperbolic manifolds, it is conjectured that the set h = {vol,dim, deg} has the Northcott
property, where the degree is defined by deg(M) := [Q(tr(π1(M)(2))) : Q]. Here we denote
by π1(M)(2) the sub-group generated by the squares, and by tr : π1(M) → C the trace map
induced from the embedding of π1(M) into the isomorphism group of hn. This Northcott
property has been proved for three dimensional arithmetic hyperbolic manifolds (see [46]).

The relations of hyperbolic volumes with special values of L-functions comes from the
formula

ζ∗F (−1) ∼Q× vol

(
h
r2(F )
3

Γ

)
which holds for any number field F . Here Γ is a finite-index and torsion-free subgroup of the
group O(1) ⊆ O of units having norm one in some order O ⊆ B in a totally definite quaternion
algebra B 6= Mat2×2(K) defined over K (see [76, Example IV.1.5]).

Example 2.20 (Heights of motives). Let F and E be two number fields, such that F is the base
field and E is the field of coefficients of the abelian category of mixed motives MM(F ;E),
defined following one of the constructions provided by Jannsen (see [44, § 4]), Huber (see [41,
§ 22]) or Nori (see [42, Chapter 9]).

Then Kato constructs in [47] a series of height functions which measure the complexity of an
object X ∈ MM(F ;E), using the v-adic Hodge theory corresponding to any place v ∈ MF .
One of the richest examples of such a height is given by the function

(8)
h∗,♦ : MM(F ;E)→ R

X 7→ h♦(X) +
∑
w∈Z

h∗(grWw (X))

which is the logarithmic version of the height H∗,♦ defined in [47, § 1.7.1]. Here

(9) grWw (X) :=
Ww(X)

Ww−1(X)

denotes the graded piece of X with respect to the ascending weight filtration W, and the
various heights h∗(grWw (X)) appearing in (8) are a generalisation of Faltings’s height (see
Example 2.16) to pure motives. On the other hand, the height h♦(X) measures the distance
between X and the semi-semplification

Xss :=
⊕
w∈Z

grWw (X)

and thus can be seen as a measure of the mixed nature of X.
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It is extremely interesting to study the Northcott property for the height h∗,♦, in view of the
many consequences that this would have, which are investigated in [47, § 2]. In particular, [47,
Proposition 2.1.17] shows that the Northcott property for h∗,♦ implies the finite generation of
motivic cohomology, which would be a motivic analogue of the Mordell-Weil theorem. Special
instances of the Northcott property for the height h∗,♦ have been recently proved to hold by
Koshikawa (see [49, 50]) and Nguyen (see [62]). In particular, Koshikawa shows that h∗,♦ has
the Northcott property when restricted to the set of pure motives X which are isogenous to
a fixed pure motive X0. We note that in this case h∗,♦(X) = h∗(X) because h♦(X) = 0 for
pure motives X. Koshikawa’s result is reminiscent of the similar Northcott property for the
Faltings height (see [21, § 4]), which allowed Faltings himself to show the Tate conjecture for
abelian varieties.

3. Special values inside the critical strip: number fields

We give now a proof of Theorem 1.1.

Proof (of Theorem 1.1). Let B > 0 be a real number, and recall that S denotes the set of
isomorphism classes of number fields. We will prove that |ζ∗F (0)| ≤ B implies that |∆F | is
bounded above, and conclude by Hermite’s discriminant theorem (see [61, Theorem III.2.16]).

By the class number formula (1), if |ζ∗F (0)| ≤ B, then we have

(10)
hFRF
wF

≤ B.

The proof proceeds with two steps: first we prove that inequality (10) implies an upper
bound on RF . This will lead to finiteness, except possibly for CM fields. The second step is
proving finiteness of CM fields with |ζ∗F (0)| bounded from above.
Step 1: Observe first of all that for every number field F of degree dF := [F : Q] and

number of roots of unity wF := |(O×F )tors|, the inequality ϕ(wF ) ≤ dF holds true, where ϕ is
Euler’s totient function. Indeed Q(µwF ) ⊆ F , where µn ⊆ Q denotes the group of n-th roots
of unity. Then one can use the easy estimate 2ϕ(n) ≥

√
n to get that wF ≤ 4 d2

F . Now, for
every number field F one has that RF ≥ c1 c

dF
2 , where c1 = (11.5)−39 and c2 = 1.15, as it

was proved by Zimmert in [81, Satz 3] (see also [70] for a simpler proof, and [26] for a more
general statement). This surely implies the weaker inequality wF ≤ c3

√
RF for some absolute

constant c3 ∈ R>0. Going back to (10) and using hF ≥ 1, we see that |ζ∗F (0)| ≤ B implies
that RF ≤ (c3B)2. By [64, Theorem 1.1] we obtain that the set

{[F ] ∈ S \ SCM | |ζ∗F (0)| ≤ B}

is finite, where SCM is the set of isomorphism classes of CM number fields. We recall briefly
the argument here for completeness. Observe that Zimmert’s inequality RF ≥ c1 c

dF
2 implies

that number fields with regulator bounded from above have degree bounded from above (recall
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c2 > 1). Then we can use [25, Theorem C] providing us with the inequality

(11) RF ≥
c4

d2dF
F

(
log

(
|∆F |
ddFF

))r1(F )+r2(F )−1−r0(F )

where c4 ∈ R>0 is an absolute constant, r1(F ) is the number of real embeddings of F , r2(F )

is the number of pairs of complex embeddings of F , and

r0(F ) := max {r1(L) + r2(L)− 1 | L ( F}

is the biggest unit rank of proper sub-fields of F . This gives a useful upper bound on the
discriminant if and only if F is not a CM field. Indeed, we always have

r0(F ) ≤ r1(F ) + r2(F )− 1

and the equality r0(F ) = r1(F ) + r2(F ) − 1 is satisfied if and only if F is a CM field (see
[64, Proposition 3.7]). The final step is Hermite’s discriminant theorem, which shows that the
discriminant has the Northcott property.
Step 2: We now want to prove that the set

(12) {[F ] ∈ SCM | |ζ∗F (0)| ≤ B}

is finite, where SCM is the set of isomorphism classes of CM fields. To do so observe that
for a CM field F of degree dF := [F : Q] and with maximal real sub-field denoted F+, the
inequality RF ≥ 2

dF
2
−1RF+ holds true (see [64, Proposition 3.7]), and thus any upper bound

on |ζ∗F (0)| entails an upper bound on RF+ . This implies by [64, Theorem 1.1] that if F is
an element of the set given in (12), then F+ belongs to a finite set of isomorphism classes
of totally real fields. Hence to conclude we can assume that F+ is fixed. Then any upper
bound on |ζ∗F (0)| implies an upper bound on hF , which in turn implies the finiteness of the
set given in (12) by results of Siegel and Stark. To be more precise, when F+ = Q (hence F
is an imaginary quadratic field), Siegel proved the following: for any fixed ε > 0 there exists
a constant c5(ε) > 0, such that for any imaginary quadratic field F

hF ≥ c5(ε) |∆F |
1
2
−ε.

This implies that the set of isomorphism classes of imaginary quadratic fields of class number
bounded from above is finite by Hermite’s theorem (see [28] for a short and elegant proof of
Siegel’s result). If F+ 6= Q we can use a result of Stark, who proved the following: for any
fixed ε > 0 there exists a constant c6(ε) > 0, such that for any CM field F of degree dF ≥ 4,

(13) hF ≥
c6(ε)dF

dF g(F+)

(
|∆F |
|∆F+ |2

) 1
2
− 1
dF

|∆F |
1
2
− 2
dF
−ε

(see [72, Theorem 2]) where for every number field κ we set g(κ) = 1 if there is a tower
Q = κ0 ⊆ · · · ⊆ κn = κ such that κi ⊆ κi+1 is Galois, and g(κ) = [κ : Q]! otherwise. Since
we fixed F+ then (13) gives us immediately an upper bound for the absolute discriminant
∆F , which depends on hF (recall dF ≥ 4). This in turn implies the finiteness of isomorphism
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classes of CM fields with F+ 6= Q fixed and hF bounded, again by Hermite’s theorem. Putting
everything together, we have proved that the set given in (12) is finite and thus we completed
the proof. �

Remark 3.1. If we look at the special value of ζF (s) at s = 1, the class number formula reads

ζ∗F (1) =
2r1(2π)r2

wF

hFRF√
|∆F |

.

By the Brauer-Siegel Theorem [54, Chapter XVI], when the degree of F is bounded in a
family, we have |∆F |

1
2
−ε � hFRF � |∆F |

1
2

+ε. It seems thus difficult to derive any Northcott
property for |ζ∗F (1)|. This phenomenon will reappear in the case of abelian varieties, which
we will study in the next section.

4. Special values inside the critical strip: abelian varieties

In this section, we investigate the possible Northcott property of the special value at the
integer s = 1 of the L-functions L(A, s) := L(H1(A), s) associated to abelian varieties A
defined over a number field F . The main outcome of the discussion is that even assuming the
Birch and Swinnerton-Dyer conjecture, it is not possible, so far, to prove a Northcott property
in this case. According to the heuristics of Watkins about elliptic curves E over Q (see [77]),
one is in fact lead to the conclusion that the Northcott property for L∗(E, 1) could be unlikely
to hold in general.

We note that it is not clear whether we can expect a similar Northcott property as in the
case of the special values ζ∗F (0) which we considered in the previous section. First of all, if
we want to follow the strategy that we used in the previous section, we should relate the
special value L∗(A, 1) to some regulator determinant. This relation was given by the class
number formula (1) in the case of the special value ζ∗F (0) studied in the previous section, and
was thus unconditional. On the other hand, L∗(A, 1) is related to a regulator determinant by
conjectural equality

(14) L∗(A, 1)
?
=

( ∏
v∈M0

F
cv(A)

|A(F )tors| |A∨(F )tors|

)
|X(A/F )|RA/F

Ω−1
A

which is the subject of the celebrated conjecture by Birch and Swinnerton-Dyer (see [74]).
Now, the first step in the proof of Theorem 1.1 was observing that the quantity |(O×F )tors|

appearing in the class number formula (1) is clearly bounded from above by a polynomial in
the degree [F : Q] of the number field F . An analogous statement for abelian varieties is the
content of the following conjecture.

Conjecture 4.1 (Torsion conjecture). For every d ∈ N≥1 and every g ∈ N≥1 there exists a
natural number c(g, d) ∈ N such that for all number fields F of degree d = [F : Q], for all
g-dimensional abelian varieties A defined over F , we have |A(F )tors| ≤ c(g, d).
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We recall that, in the case of elliptic curves, Conjecture 4.1 is proved to be true, thanks to
work of Merel (see [58]). Moreover, the prime number theorem shows easily that

|A(F )tors| |A∨(F )tors| � (log|NF/Q(fA)|)4 dim(A)

as explained in [38, Lemma 3.6].
Now, observing that the Tamagawa numbers cv(A) are positive integers, we see that any

upper bound for the quantity |L∗(A, 1)| entails an upper bound for the quantity

(15)
|X(A/F )|RA/F

Ω−1
A

if one assumes the validity of the formula (14), and of Conjecture 4.1. Since our goal is to
study the Northcott property for the quantity |L∗(A, 1)|, it would be useful to compare the
quantity (15) to other quantities for which a Northcott property is already known to hold. The
best candidates for this are the stable Faltings height hst(A) and the norm of the conductor
ideal fA of the abelian variety A.

This is exactly the same strategy which was achieved in the proof of Theorem 1.1, where the
quantity hF RF was compared to the quantity |∆F |, which satisfies the Northcott property
thanks to Hermite’s theorem. However, there is one fundamental difference between the proof
of Theorem 1.1 and the current discussion: both the numerator and the denominator of the
ratio (15) are comparable to something satisfying a Northcott property, at least conjecturally.
In that respect, that case of |L∗(A, 1)| is closer to the case of |ζ∗F (1)| described at the end of
the previous section.

Let us be more precise. First of all, one has that

H(A)� Ω−1
A � H(A)(log(H(A)))dim(A)/2

as shown in [38, Lemma 3.7]. Recent works of Hindry [38], Hindry-Pacheco [39] and Griffon
[29, 30, 31, 32] on the analogue of the Brauer-Siegel estimate for abelian varieties show that
the numerator of (15) is also expected to be comparable (in some cases) to H(A). Hence it is
necessary to gain further evidence in order to be able to decide if a Northcott property for the
special value L∗(A, 1) associated to abelian varieties holds in some cases. In particular, both
the numerator and denominator of the ratio (15) appear to be comparable (in some cases) to
H(A). This makes it extremely difficult to prove, or even expect, a Northcott property for
the special value L∗(E, 1). In fact, the heuristics proposed by Watkins in [77] provide some
evidence to expect that L∗(E, 1) does not satisfy a Northcott property. Indeed, Watkins’s
work predicts the existence of infinitely many elliptic curves E defined over Q for which
|X(E/F )|RE/F is bounded (see in particular [77, § 4.5]).

In the case of elliptic curves, one knows from [4] that the following inequality holds

(16)
RE/F

|E(F )tors| |E∨(F )tors|
� h

rE/F−4

3 (log(3h))
2rE/F+2

3
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where h := max{1, h(j(E))} is a quantity comparable with the stable Faltings height (see for
instance [65, Lemma 3.2]), and rE/F := rk(E(F )). The inequality (16) shows that a part of
the right hand side of (14) can indeed be related to some height, even if this relation is too
weak to conclude (even assuming the validity of the Birch and Swinnerton-Dyer conjecture)
that the special value L∗(E, 1) satisfies a Northcott property.

5. Special values at the left of the critical strip and functional equations

The aim of this section is to show how to get a Northcott property for special values of
motivic L-functions at the left of the critical strip using the conjectural functional equation.
To do so, we need to introduce a certain amount of notation relative to the theory of motives.

First of all, we fix a number field F , over which our motives will be defined, and a number
field E, which is the field of coefficients for our motives. Then the works of Jannsen (see
[44, § 4]), Huber (see [41, § 22]) and Nori (see [42, Chapter 9]) show that we can define (in
three different ways) an abelian category MM(F ;E) of mixed motives defined over F with
coefficients in E, which is constructed from suitable categories of vector spaces with extra
structure, defined over F . The three different constructions of Jannsen, Huber and Nori are
not known to be equivalent (see [42, Remark 6.3.12 and § 10.1]), but our result holds for each
of them.

Let us now recall that each object X ∈ MM(F ;E) is endowed with an increasing weight
filtration W, and for every w ∈ Z one says that X is pure of weight w if X ∼= grWw (X).
Moreover, if one denotes byMF the set of places of the number field F , then one can associate
to every motive X ∈ MM(F ;E) and every place v ∈MF the realisations Rv(X). These are
v-adic Galois representations for every non-Archimedean place v ∈ M0

F , and they are mixed
Hodge structures for every Archimedean place v ∈M∞F .

These realisations are used to define the local L-factors L(Rv(X), s)σ, associated to every
place v ∈MF and every embedding σ : E ↪→ C. In particular, the Archimedean L-factors are
defined as
(17)

L(H/K , s)σ :=


∏
j∈Z ΓR(s− j + εj)

n+
j,σ(H/R) ΓR(s− j + (1− εj))n

−
j,σ(H/C), if K ∼= R,∏

j∈Z ΓC(s− j)nj,σ(H/C), if K ∼= C,

for every mixed Hodge structure H/K defined over a complete Archimedean field K. We recall
that a mixed Hodge structureH/C consists of a triple (H,W•(H), F •(HC)), whereH is a vector
space defined over Q, endowed with an increasing filtration W•(H) (called weight filtration),
and F • is a decreasing filtration (called Hodge filtration) on the vector space HC := H ⊗Q C.
Moreover, a mixed Hodge structure H/R consists simply of a mixed Hodge structure defined
over C together with an action of Gal(C/R), which amounts to a direct sum decomposition
H = H+⊕H− (at the level of Q-vector spaces), which is compatible with the weight filtration
and such that the Hodge filtration is induced from a filtration defined on the real vector
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space (HC)Gal(C/R) := H+ ⊕ iH−. Let us also recall that the functions ΓC(s) := (2π)−sΓ(s)

and ΓR(s) := (π−s/2/
√

2) Γ(s/2) appearing in (17) follow Deninger’s normalisation (see [23,
Remarque 12.2]). Moreover, for every mixed Hodge structure H defined over C, every j ∈ Z
and every embedding σ : E ↪→ C we set

nj,σ(H/C) := dimC(grjγ(HC)⊗E⊗C,σ C)

where γ• denotes the decreasing filtration on HC defined as

γn(HC) := Fn(HC) ∩ Fn(HC) = (Fn(HC) ∩H)⊗ C.

Finally, if H is a mixed Hodge structure defined over R we define

nεj,σ(H/C) := dimC(grjγ(HC)⊗E⊗C,σ C)ε

for every integer j ∈ Z, every embedding σ : E ↪→ C and every sign ε ∈ {+,−}. Here, the
complex vector space (grjγ(HC)⊗E⊗C,σ C)± is defined as the ±1-eigenspace of the involution
induced on grjγ(HC)⊗E⊗C,σ C by the action of Gal(C/R) on H and on C.

To conclude the introductory part of this section, let us recall that the local L-factors
L(Rv(X), s)σ are conjectured to be defined over E (see [23, § 3.3]). If this is the case, one can
put them together in the formal Euler products

L(X, s)σ :=
∏

v∈MF \S

L(Rv(X), s)σ

where S ⊆MF denotes any finite set of places. These formal products are known to converge
for <(s) ≥ 1 + wmax(X)/2, where wmax(X) is the maximum w ∈ Z such that grWw (X) 6= 0.
Moreover, they are conjectured to have a meromorphic continuation to the whole complex
plane, and the completed L-function

L̂(X, s) := (L∅(X, s)σ)σ∈Hom(E,C) : C 99K E ⊗ C ∼=
∏

σ∈Hom(E,C)

C

is conjectured to satisfy the functional equation

(18) L̂(X, s) = ε(X, s) L̂(X∨, 1− s)

whereX∨ ∈MM(F ;E) is the dual (with respect to the tensor product) ofX, and the ε-factor
is defined as ε(X, s) := a(X) eb(X)s, for two numbers a(X), b(X) ∈ E ⊗ C.

We are finally ready to prove the Northcott property for special values of motivic L-
functions, taken at the left of the critical strip, that we announced in Theorem 1.2.

Proof (of Theorem 1.2). Our aim is to prove that the set SB1,B2 defined in (2) is finite. Recall
that SB1,B2 is defined using a fixed norm |·| on the finite dimensional complex vector space
E ⊗ C. Applying (18) we see that the bound |L∗(X,n)| ≤ B1 is equivalent to

(19) |ε(X,n)| ≤ B1 |L∗(X∨, 1− n)|−1 |L∗∞(X,n)|
|L∗∞(X∨, 1− n)|
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where L∞ :=
∏
v∈M∞F

L(Rv(X), s)C denotes the Archimedean part of the completed L-

function L̂(X, s). Since dim(X) is bounded from above, we see from the definition of the
Archimedean component of the L-function that there exists B3 ∈ R≥0 (depending on B2)
such that

(20) X ∈ SB1,B2 ⇒
|L∗∞(X,n)|

|L∗∞(X∨, 1− n)|
≤ B3

which can be combined with (19) to get that

(21) |ε(X,n)| ≤ (B1B3) |L∗(X∨, 1− n)|−1

for every X ∈ SB1,B2 . We note that, in order for the implication (20) to hold, it would have
been sufficient, in the definition of the set SB1,B2 given in (2), to bound the quantity

h∞(X) := max
j∈Z

σ∈Hom(E,C)

(
{nj,σ(Rv(X)) | v ∈MC

F } ∪ {nεj,σ(Rv(X)) | ε ∈ {+,−}, v ∈MR
F }
)

instead of the dimension dim(X). Clearly, bounding dim(X) implies a bound of dim(Rv(X))

for every v ∈MF , and this in turn implies a bound for h∞(X).
Now, the assumption that X ∼= grWw (X), i.e. that X is pure of weight w, implies that

for every non-Archimedean place v ∈ M0
F the absolute values of the roots of the polynomial

fRv(X) attached to the restriction of the Galois representation Rv(X) to Gal(Fv/Fv) (see [24,
§ 3.3]) are bounded by a function depending only on w, which is equal to |NK/Q(pv)|w/2 for
almost all places v ∈ M0

F . Moreover, since X is supposed to be pure of weight w, the dual
X∨ is isomorphic to the Tate twist X(w), which shows that

|L∗(X∨, 1− n)| = |L∗(X,w + 1− n)|.

Combining this with the previous observation we see that

(22) X ∈ SB1,B2 ⇒ |L∗(X∨, 1− n)| ≥ B4

for some B4 ∈ R, depending only on w and n. Hence, putting together (21) and (22) we see
that |ε(X,n)| ≤ B5 for every X ∈ SB1,B2 , where B5 := B1B3/B4.

To conclude, it is sufficient to recall that for every X ∈ SB1,B2 we have

|ε(X,n)| = |∆F |
w+1
2

dim(Rv(X)) |NF/Q(fRv(X))|
w+1
2
−n ≤ B5

where v ∈ M0
F is any non-Archimedean place at which X has good reduction (see [69, § 12,

Proposition]). Thus we see that both the dimension dim(X) and the norm of the conductor of
the Galois representations Rv(X) are bounded from above. Hence we can apply the Northcott
property for the conductor that we have seen in Example 2.18 to see that there are only finitely
many R`(X), up to isomorphism. SinceMM(F ;E) is one of the categories of mixed motives
defined by Jannsen, Huber or Nori, every motive is determined by its realisations, and therefore
we have also finitely many elements in SB1,B2 . �
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