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Want to Gather? No Need to Chatter!

Sébastien Bouchard∗ Yoann Dieudonné† Andrzej Pelc‡

Abstract

A team of mobile agents, starting from different nodes of an unknown network, possibly at different
times, have to meet at the same node and declare that they have all met. Agents have different labels
which are positive integers, and move in synchronous rounds along links of the network. The above task
is known as gathering and was traditionally considered under the assumption that when some agents are
at the same node then they can talk, i.e., exchange currently available information. In this paper we ask
the question of whether this ability of talking is needed for gathering. The answer turns out to be no.

Our main contribution are two deterministic algorithms that always accomplish gathering in a much
weaker model. We only assume that at any time an agent knows how many agents are at the node that it
currently occupies but agents do not see the labels of other co-located agents and cannot exchange any
information with them. They also do not see other nodes than the current one. Our first algorithm works
under the assumption that agents know a priori some upper bound N on the size of the network, and
it works in time polynomial in N and in the length ` of the smallest label. Our second algorithm does
not assume any a priori knowledge about the network but its complexity is exponential in the size of
the network and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher
scenario.

As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental
problem of leader election among agents: One agent is elected a leader and all agents learn its identity.
As an application of our result we also solve, in the same model, the well-known gossiping problem:
if each agent has a message at the beginning, we show how to make all messages known to all agents,
even without any a priori knowledge about the network. If agents know an upper bound N on the size
of the network then our gossiping algorithm works in time polynomial in N , in the length of the smallest
label and in the length of the largest message. This result about gossiping is perhaps our most surprising
finding: agents devoid of any transmitting devices can solve the most general information exchange
problem, as long as they can count the number of agents present at visited nodes.
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1 Introduction

1.1 The background

A team of at least two mobile agents, starting from different nodes of an unknown network, possibly at
different times, have to meet at the same node and declare that they have all met. This basic task, known as
gathering, has been extensively studied in the literature (cf., e.g., surveys [4, 35]). Gathering often has to
be solved in real life when some people have to meet in a city whose streets form a network. In computer
science applications, mobile agents usually represent software agents navigating in computer networks. In
robotics applications, agents may represent mobile robots moving along corridors of a contaminated mine
that is not accessible to humans. The reason to meet may be to gather in one place samples previously
collected by the agents, or to coordinate some future task, such as network maintenance or finding a map of
the network.

1.2 The model and the problem

The network is modeled as a simple undirected connected graph. In the sequel, we refer to it simply as a
graph. The number of nodes in the graph is denoted by n and is called the size of the graph. As it is usually
done in the literature concerning rendezvous of mobile agents (cf. [35]), we seek gathering algorithms that
do not rely on the knowledge of node labels, and can work in anonymous graphs as well. The importance of
designing such algorithms is motivated by the fact that, even when nodes are equipped with distinct labels,
agents may be unable to perceive them because of limited perception capabilities, or nodes may be reluctant
to reveal their labels, e.g., due to security or privacy reasons. Also note that if nodes had distinct labels,
then agents might explore the graph and meet in the smallest node, hence gathering would reduce to the
well-studied task of exploration.

On the other hand, we assume that edges incident to a node v have distinct labels in {0, . . . , d − 1}, where
d is the degree of v. Thus every undirected edge {u, v} has two labels, which are called its port numbers
at u and at v. Port numbering is local, i.e., there is no relation between port numbers at u and at v. Note
that in the absence of port numbers, edges incident to a node would be undistinguishable for agents and
thus gathering would be often impossible, as the adversary could prevent an agent from taking some edge
incident to the current node.

We consider a team of at least two agents that start from different nodes of the graph (hence there are at most
n agents) and traverse its edges in synchronous rounds. Agents cannot mark visited nodes or traversed edges
in any way. The adversary wakes up some of the agents in possibly different rounds. A dormant agent, not
woken up by the adversary, is woken up by the first agent that visits its starting node, if such an agent exists.
Agents have different labels which are positive integers. Each agent knows its label but it does not know the
labels of the other agents. Agents execute the same deterministic algorithm with a parameter which is the
label of the agent. Note that in the absence of different labels, deterministic gathering is not always possible,
as witnessed by the example of two identical agents starting simultaneously in a ring all of whose edges have
port numbers 0 and 1. Every agent starts executing the algorithm in the round of its wake-up. In every round
an agent may perform some local computations and then it executes a move instruction: it either moves to
an adjacent node by a chosen port p by executing the instruction take port p, or stays idle at the current
node by executing the instruction wait. Once the instruction take port p (resp. wait), performed by
an agent at node v in round r is completed, the agent is in round r + 1 at a node u 6= v (resp. at node v).

1



When an agent enters a node, it learns its degree and the port of entry. Agents that cross each other on an
edge, traversing it simultaneously in different directions, do not notice this fact. We assume that the memory
of the agents is unlimited: from the computational point of view they are modeled as Turing machines. The
time complexity of an algorithm is the worst-case number of rounds between the wake-up of the earliest
agent until the completion of the algorithm.

The above described assumptions are standard in the literature concerning mobile agents gathering and were
used, e.g., in [10, 20, 24, 37, 39]. However, in all these papers one additional crucial assumption was made.
When some agents are at the same node then they can talk, i.e., exchange currently available information.
In particular, they see the labels of the co-located agents. This ability of information exchange among co-
located agents was very strongly used in previous gathering algorithms. A subset of agents that met at some
node could, e.g., choose the agent with smallest label among them, and subsequently move together as this
smallest agent would move, thus successively decreasing the number of moving groups, eventually meeting
at the same node.

In this paper we ask the question of whether this ability of talking among co-located agents is needed for
gathering. The answer turns out to be no. Indeed, we replace the assumption about the ability of talking
among agents within a node with the following much weaker assumption:

• In any round, an agent knows how many agents are at the node that it currently occupies but agents
do not see the labels of other co-located agents and cannot exchange any information with them.

This assumption can be implemented by equipping nodes with counters recording the current number of
agents at a node. Agents need only be able to read these counters but can be devoid of any transmitting
devices.

1.3 Our results

Our main contribution are two deterministic algorithms that always accomplish gathering in the above de-
scribed model, much weaker than the traditional one. Our first algorithm works under the assumption that
agents know a priori some upper bound N on the size of the network, and it works in time polynomial in
N and in the length ` of the smallest label. Our second algorithm does not assume any a priori knowledge
about the network but its complexity is exponential in the size of the network and in the labels of agents. Its
purpose is to show feasibility of gathering under this harsher scenario.

We believe that accomplishing gathering in the weak model considered in this paper significantly increases
the applicability of the solution compared to gathering algorithms working in the traditional model, as it
permits us to solve gathering in scenarios where agents are deprived of direct means of communication.

As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental
problem of leader election (cf. [34]) among agents: One agent is elected a leader and all agents learn its
identity. As an application of our result we also solve, in the same model, the well-known gossiping problem:
if each agent has a message at the beginning, we show how to make all messages known to all agents, even
without any a priori knowledge about the network. If agents know an upper bound N on the size of the
network then our gossiping algorithm works in time polynomial in N , in the length of the smallest label
and in the length of the largest message. This result about gossiping is perhaps our most surprising finding:
agents devoid of any transmitting devices can solve the most general information exchange problem, as long
as they can count the number of agents present at visited nodes.
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In the absence of direct communication, a natural idea that comes to mind to solve the gathering problem,
is to emulate the unavailable mechanism of communication using moves of agents. Indeed, this is the basic
approach that we adopt. However, this idea, while natural, turns out to be very delicate to put in use.
Indeed, without special care, one gets soon to a dangerous situation where communication movements of
one group of agents can interfere with communication movements of another closely located group. On top
of this difficulty we have another one: movements of agents must serve to accomplish two different goals,
one is to communicate with other agents, and the other is to travel in order to meet. Hence we face the
danger of “travelling” movements interfering with “communication” movements. Moreover, it should be
stressed that an agent does not, in fact, “see” another agent entering or leaving its node: it can only see the
cardinality of the set of agents occupying its current node, and, e.g., notice changes in it while waiting at a
node. Hence, for example, an agent will not notice any change, if one other agent leaves its node trying to
communicate something, and another agent enters its node simply navigating in the graph. Of course, all the
above challenges were entirely absent in the traditional model. Overcoming these difficulties in the design
of our gathering and gossiping algorithms is the main technical contribution of this paper.

1.4 Related work

Gathering has been studied both for two mobile agents, when it is usually called rendezvous, and for larger
teams. An extensive survey of randomized rendezvous in various scenarios can be found in [4], cf. also
[2, 3, 8]. Deterministic rendezvous in networks has been surveyed in [35]. In several papers, the geometric
scenario was considered (rendezvous in an interval of the real line, see, e.g., [8, 9, 28], or in the plane, see,
e.g., [5, 6]). Gathering more than two agents has been studied, e.g., in [23, 33, 38, 39]. In [39] the authors
considered gathering many agents with unique labels, and gathering many labeled agents in the presence of
Byzantine agents was studied in [10, 24]. The problem was also investigated in the context of multiple robot
systems, cf. [14, 26], and fault tolerant gathering of robots in the plane was studied, e.g., in [1, 15].

For the deterministic setting a lot of effort has been dedicated to the study of the feasibility of rendezvous,
and to the time required to achieve this task, when feasible. For instance, deterministic rendezvous with
agents equipped with tokens used to mark nodes was considered, e.g., in [32]. Deterministic rendezvous
of two agents that cannot mark nodes but have unique labels was discussed in [20, 37]. These papers are
concerned with the time of rendezvous in arbitrary graphs. In [20] the authors show a rendezvous algorithm
polynomial in the size of the graph, in the length of the shorter label and in the delay between the starting
time of the agents. In [37] rendezvous time is polynomial in the first two of these parameters and independent
of the delay.

Memory required by two anonymous agents to achieve deterministic rendezvous has been studied in [27]
for trees and in [16] for general graphs. Memory needed for randomized rendezvous in the ring is discussed,
e.g., in [31].

Apart from the synchronous model used in this paper, several authors have investigated asynchronous gath-
ering in the plane [13, 26] and in network environments [7, 17, 19, 25]. In the latter scenario the agent
chooses the edge which it decides to traverse but the adversary controls the speed of the agent. Under this
assumption rendezvous in a node cannot be guaranteed even in very simple graphs and hence the rendezvous
requirement is relaxed to permit the agents to meet inside an edge.

A different asynchronous model for gathering in ring networks was considered in [18, 29]. In this model,
agents were memoryless but they could perform look operations which gave them a snapshot of the entire
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network with the positions of all agents in it.

In [22], the authors considered the problem of network exploration by many agents that could not com-
municate between them. However, the information available to an agent in each round was much different
than in the present paper. Indeed, in [22], agents were getting local traffic reports consisting of answers to
three questions: “Am I alone in the node?”, “Did any agent enter this node in this round?”, “Did any agent
leave this node in this round?”. To see that this feedback cannot be derived from our present assumption
of knowing the number of agents co-located with an agent in a given round, consider the situation when an
agent a stays at a node, and in a given round one other agent leaves the node and another agent enters it. In
our present model, agent a does not notice any change, while in the model from [22] it gets reports about
somebody leaving the node and somebody entering it.

In [21], the problem of conveying bits of information using movements of robots was considered in a context
much different from ours. Mobile robots were moving in the plane and they could periodically get snapshots
of the entire configuration of robots.

2 Preliminaries

In this section we introduce some conventions, definitions and procedures that will be used to describe and
analyze our algorithms.

Let us start with some conventions. We say that the execution E of a sequence of instructions lasts T rounds
iff during E the agent executes exactly T move instructions of type wait or take port p. Moreover,
if E starts in round t, we say that E is completed in (resp. is completed by) round t + T iff E lasts exactly
T rounds (resp. at most T rounds). In our pseudocodes, we often use the shortcut wait x rounds: this
instruction is equivalent to a sequence of x consecutive instructions wait. Sometimes, we also use the
instruction wait until event: this is equivalent to execute the instruction wait in each round, until
reaching a round in which the event occurs.

As mentioned earlier, in order to remedy the lack of direct means of communication, the agents will be
required to use movements as a vector for the transmission of information. Hence in our algorithms some
of the instructions are dedicated to handling messages via strings. Throughout the paper, we consider only
binary strings over the alphabet {0, 1}. The empty string will be denoted by ε. {0, 1}+ denotes the set of
non-empty strings. The length of a string s, i.e., its number of bits, will be denoted by |s| and its ith bit will
be referred to as s[i]. We will sometimes use the notation s[i, j] to indicate the substring from s[i] to s[j] (s[i]
and s[j] included). If i > j or i (resp. j) does not belong to {1, . . . , |s|}, we consider that s[i, j] = ε. We
will also use the functions code and decode that are borrowed from [20]. Given a string s, code(s) = 01 if
s = ε, code(s) = s[1]s[1]s[2]s[2] . . . s[|s|]s[|s|]01 otherwise. The function decode is the inverse function
of code, i.e. decode(code(s)) = s. The next proposition gives some properties of function code.

Proposition 2.1 Let s1 be a string belonging to {0, 1}+. We have the following properties:

• |code(s1)| is even.

• code(s1)[k, k + 1] = 01 and k is odd iff k + 1 = |code(s1)|.

• Given a string s2 6= s1 belonging to {0, 1}+, code(s1) cannot be the prefix of code(s2).
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The concatenation of two strings s1 and s2 will be denoted by s1s2, and for every non negative integer i, the
word wi = ε if i = 0, and wi = wwi−1 otherwise.

We say that a sequence of i integers (x1, x2, . . . , xi) is a path from a node u in the graph iff (1) i = 0 or
(2) there exists an edge e between node u and a node w such that the port number of edge e at node u is x1

and (x2, . . . , xi) is a path from node w in the graph. Given a path σ from node u, we denote byN (σ, u) the
set of nodes that are visited by following path σ from node u, including the starting node and the terminal
node: if this terminal node is v, we will say that σ is a path from node u to node v. As for binary strings, the
length of a path p, corresponding to its number of elements, will be denoted by |p|, and its ith element will
be referred to as p[i].

We now recall three basic procedures, known from the literature (cf. [16, 37]), that will be used to design
our gathering algorithm.

The first procedure, due to Ta-Shma and Zwick [37], aims at gathering two agents in a graph of unknown
size. We will call this procedure TZ(L), where L is a non negative integer given as input parameter. In [37],
the authors give a polynomial P in two variables, increasing in each of the variables, such that, if two agents
start executing procedure TZ in possibly different round, one with an input parameter L1 and the other with
an input parameter L2 6= L1, then they will meet after at most P(n, l) rounds since the start of the later
agent, where l is the length of the binary representation of the smaller integer between L1 and L2.

The second procedure, explicitly described in [10] (and derived from a proof given in [12]), allows an agent
to perform a graph exploration (i.e, visiting all nodes of the graph) without knowing any upper bound on
the size of the graph, using a fixed token placed at the starting node of the agent. (In our applications, the
role of the token will be played by a group of agents co-located at the same node). The execution time
of the procedure is polynomial in the size of the graph, the exact value of which is learned by the agent
when the execution is completed. We call this procedure EST, for exploration with a stationary token. The
maximum time of execution of the procedure EST in a graph of size at most n ≥ 2 is bounded by the value
T(EST(n)) = n5.

The third and final procedure borrowed from the literature is based on universal exploration sequences
(UXS) and is a corollary of the result of Reingold [36]. Given any positive integer N ≥ 2, the procedure
EXPLO(N) allows the agent to visit all nodes of any graph of size at most N , starting from any node of this
graph and coming back to it, using a number of edge traversals that is polynomial in N . In the first half of
the procedure, which will be called the effective part, after entering a node of degree d by some port p, the
agent computes the port q by which it has to exit; more precisely q = (p + xi) mod d, where xi is the
corresponding term of the UXS. In the second half of the procedure, which will be called the backtrack part,
the agent backtracks to its starting node by traversing in the reverse order the entire sequence of edges it has
traversed during the first half (some edges may be traversed several times). We denote by T(EXPLO(N)) the
execution time of procedure EXPLO with parameter N : this time is polynomial in N .

Throughout the paper, an agent will often need to use the number of agents (including itself) that occupy its
current node: this value will be denoted by CurCard (which stands for “current cardinality”).

3 Known upper bound on the size of the graph

This section is dedicated to the presentation and the analysis of our algorithm GatherKnownUpperBound

that allows the agents to solve gathering in our model, provided they initially know a common upper bound
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on the graph size. Throughout this section, this known upper bound is denoted by N .

3.1 Intuition

In order to better describe the high-level idea of our algorithm, let us assume an ideal situation in which all
the agents have labels of the same length µ. Let us also assume that all agents are initially woken up at the
same time by the adversary.

In such an ideal situation, we can solve the gathering problem via a strategy made up of consecutive steps
1, 2, 3, etc. The agents start each step i simultaneously. At the beginning of step i they are distributed over
ki distinct nodes. The intended goal is either to get the agents to declare gathering at the same time once
step i is completed if ki = 1, or otherwise to get all agents to start simultaneously step i + 1 from at most
ki+1 ≤ bki2 c distinct nodes. Since the beginning of step 1 coincides with the round when the adversary
wakes up all agents, we can consider a step i ≥ 1 initiated at the same time by all agents from ki distinct
nodes, and explain how to reach the intended goal mentioned above. This is the purpose of the following
paragraphs in which we will use the notion of invisibility that can be intuitively defined as follows: two
agents (or two groups of agents), executing the same sequence of instructions X starting at the same round
but from two distinct nodes, are said to be invisible to each other if they do not meet when executing X .

At the beginning of step i, an agent first applies the simple procedure described in Algorithm 1 that is based
on the graph traversal routine EXPLO introduced in Section 2. Recall that this procedure consists of two
successive parts of equal durations: the effective part, in which each node is visited at least once, and the
backtrack part in which the agent executes in reverse order all edge traversals made during the effective part.

Algorithm 1
1: c:= CurCard

2: execute EXPLO(N) and interrupt it as soon as there are more than c agents in my node
3: wait until the time spent executing Algorithm 1 is precisely T(EXPLO(N)) rounds

It should be noted that the agents that are initially together remain so during the execution of Algorithm 1.
Hence, after having applied this algorithm, an agent is either (1) with more agents than at the beginning of
the step or (2) with exactly the same number of agents.

Let us first focus on the former situation. This situation necessarily implies that two groups of agents
starting step i from two distinct nodes are not invisible to each other during the execution of the procedure
EXPLO(N), and thus even not invisible to each other during the effective part of EXPLO(N), due to symmetry
arguments. Therefore, as soon as the first T(EXPLO(N))

2 rounds of the execution of Algorithm 1 are elapsed,
we get at most two kinds of groups: the old ones (if any) that have not met any group yet and the new
ones (at least one exists) that result from the merge of at least two old groups. In view of the fact that the
old groups, which have not merged yet, were invisible to each other when executing the effective part of
EXPLO(N) and the fact that every new group remains idle during the last T(EXPLO(N))

2 rounds, we have the
guarantee that each remaining old group meets a new one when executing the backtrack part of EXPLO(N).
Thus, the execution by every agent of Algorithm 1 lasts exactly T(EXPLO(N)) rounds: when it is completed
the agents are all situated in at most bki2 c distinct nodes. Note that all agents know this, and know that every
agent knows this because if an agent ends up sharing its node with more agents than at the beginning of the
step, it follows from the above explanations that this is the case for the other agents as well. Hence, we can
fulfill our intended goal by just requiring an agent to start step i+ 1 if, after having applied Algorithm 1, it
is with more agents than at the beginning of the step.
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Now, let us focus on the latter situation in which, after having applied Algorithm 1, an agent is exactly with
the same number of agents as at the beginning of step i. For an agent experiencing this situation, it could
be tempting to think that everyone is together as, after all, it has not met any new agent when executing
Algorithm 1. However, at this stage, this would be premature and thus dangerous. In fact, it can be shown
that the current situation implies that: either ki = 1 (i.e. all agents are indeed together), or ki ≥ 2 but the
ki groups are pairwise invisible to each other when executing Algorithm 1 (the procedure EXPLO(N) does
not guarantee rendezvous of two agents starting at different nodes). However, these possible invisibilities
that could appear detrimental at first glance, we turn them to our advantage. Indeed, we are actually in a
convenient situation to allow each agent, using movements, to communicate with the agents of its group,
without being disturbed by the agents of the other groups. Those communications aim at ensuring that in
each group the agents end up knowing the label of one of them.

To achieve this, still in step i, the agents will act in phases 1, 2, 3 . . . , µ, each lasting 2·T(EXPLO(N)) rounds.
At the beginning of phase k, we have the following property P(k): in every group G, there is an agent with
label L such that all agents of G know the prefix pk−1 of length k−1 of the binary representation of L (note
that P(1) is trivially satisfied at the beginning of the first phase). Let us see how these agents proceed to
have the property P(k + 1) satisfied when phase k is completed.

During the first (resp. last) T(EXPLO(N)) rounds of phase k, the agents having a label whose prefix is
pk−10 execute EXPLO(N) (resp. remain idle) while the others remain idle (resp. execute EXPLO(N)). The
respective invisibilities of the groups come into the picture as they imply the following crucial property:
two agents belonging to two distinct groups and executing EXPLO(N) in the first (resp. last) T(EXPLO(N))
rounds cannot meet each other within phase k. This is crucial because it means that when a set of agents
belonging to the same group move together by executing EXPLO(N), they visit a node that contains only
agents belonging to this set. Hence, by comparing the number of agents sharing its node at the beginning
of phase k to the minimum number of agents with which it was at some node when executing EXPLO(N),
every agent can determine the number of agents of its group for which pk−10 is a prefix. Once phase k
is completed, if an agent concludes that there is at least one agent in its group that has a label prefixed by
pk−10, then all agents of the group conclude the same, and then pk is set to pk−10, otherwise pk is set to
pk−11.

After phase µ, in each group G all agents know the same label pµ of an agent belonging to G: this label can
now be used to break the invisibility of G via procedure TZ introduced in the preliminaries section. Indeed,
by requiring each agent, once its execution of phase µ is completed, to execute Algorithm 2 that relies on
procedure TZ, we can show, using similar arguments as before, that we reach a configuration where: either
(1) the number of groups is at most bki2 c and the cardinality of each of them has increased, or (2) there
is only one group and its cardinality has remained unchanged since the beginning of the phase. Note that
every agent can detect in which of these two situations it is, just by looking at the cardinality of its group. If
the agents are in the first situation, then they start step i + 1, otherwise they declare that gathering is over:
whichever is the case, they can do it at the same time in view of line 7 of Algorithm 2. Hence, in our ideal
scenario, we can prove that gathering is declared after at most dlogNe steps, leading to a time complexity
polynomial in N and µ.

Of course, things get more complicated when we are in a scenario that is not necessarily ideal. However, it is
through those conceptual principles, together with extra algorithmic ingredients (to circumvent the possible
desynchronizations between the wake-ups of the agents as well as the possible different label lengths) that
we finally obtain a gathering algorithm working in the general case with a time complexity polynomial in
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N and in the length of the smallest label among the agents.

Algorithm 2
1: c← CurCard

2: pµ ← the label learned when phase µ is completed
3: execute TZ(pµ) and interrupt it as soon as there are more than c agents in my node or the execution has lasted P(N,µ) rounds
4: if there are c agents in my node then
5: execute EXPLO(N) and interrupt it as soon as there are more than c agents in my node
6: end if
7: wait until the time spent executing Algorithm 2 is precisely P(N,µ) + T(EXPLO(N)) rounds

3.2 Algorithm

Algorithm 3 gives the pseudocode of GatherKnownUpperBound. Some of its instructions contain durations
that are specified using the value Dk: for every non negative integer k, Dk is precisely equal to P(N, k) +
3(k+ 2)T(EXPLO(N)). The execution by an agent of Algorithm 3 terminates when it declares the gathering
is achieved. We show in the proof of correctness that all agents end up making such a declaration in the
same round and in the same node. We also show that there is a label L belonging to an agent such that at
the end of the execution of Algorithm 3 by any agent, the variable λ is equal to L. This shows the promised
solution of leader election, as a by-product.

Algorithm GatherKnownUpperBound relies on an important subroutine, which is the function Communicate
(cf. Algorithm 4). It is this function that will enable breaking possible invisibilities mentioned earlier,
by allowing at some point some agent to make its label known. In Algorithm 3, each call to function
Communicate is given three input parameters: an integer i corresponding to the number of bits that will
be transmitted/received during the call, a string s = code(x) where x is the binary representation of the
agent’s label, and a boolean bool indicating whether the agent will attempt to transmit its parameter s or
not during the call. Note that the third parameter can appear futile in our current context as in each call to
Communicate in Algorithm 3 the input boolean is always true: however it will be useful in our gossiping
algorithm (see Section 5) which also relies on this function.

The output of function Communicate is a couple (l, k) such that l is a binary string and k an integer. Simi-
larly as for the input parameter bool of function Communicate, the second element k will be useful only in
our gossiping algorithm. Assume that a group G of agents start executing function Communicate(i, s, bool)
with the same parameter i. Provided some conditions are fulfilled (see Lemma 3.1), l will correspond to one
of the strings s given as input parameter by an agent of G for which bool = true, and k will correspond to
the number of agents in G for which the input parameter s is equal to l and bool is equal to true.

3.3 Correctness and complexity analysis

We start our analysis with the following technical lemma about function Communicate (cf. Algorithm 4).
Every execution by an agent of the for loop within function Communicate(k, ∗, ∗) will be viewed as a
series of consecutive steps j = 1, 2, . . . , k, where step j is the part of its execution corresponding to the jth
iteration of the for loop. The part of the execution by an agent which is before step 1 will be called step 0.

Lemma 3.1 Let G be the set of all agents located at a given node v in a given round t. Assume that all
agents of G start executing function Communicate(i, s, bool) in round t. Also assume that in all these
executions the following three conditions are satisfied:
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Algorithm 3 Algorithm GatherKnownUpperBound executed by an agent labeled L
1: begin
2: execute EXPLO(N)
3: wait T(EXPLO(N)) rounds
4: i← 1
5: repeat
6: c← CurCard

7: λ← 0
8: execute the following begin-end block and interrupt it before its completion as soon as CurCard > c
9: begin

10: wait Di rounds
11: execute EXPLO(N)
12: wait T(EXPLO(N)) rounds
13: execute EXPLO(N)
14: end
15: if CurCard > c then
16: wait until having seen Di+1 consecutive rounds without any variation of CurCard since its latest change (the current

round and the round of its latest change included).
17: else
18: xL ← the binary representation of L
19: (l, k)← Communicate(i, code(xL), true)
20: if there exists an odd integer z < |l| such that l[z, z + 1] = 01 then
21: λ← the integer for which decode(l[1, z + 1]) is the binary representation
22: end if
23: execute the following begin-end block and interrupt it before its completion as soon as CurCard > c
24: begin
25: wait T(EXPLO(N)) rounds
26: execute TZ(λ) for Di consecutive rounds
27: wait T(EXPLO(N)) rounds
28: execute EXPLO(N)
29: end
30: if CurCard > c then
31: wait until having seen Di+1 consecutive rounds without any variation of CurCard since its latest change (the current

round and the round of its latest change included).
32: end if
33: end if
34: wait Di+1 rounds
35: if CurCard = c and λ 6= 0 then
36: declare the gathering is achieved
37: end if
38: i← i+ 1
39: until the gathering has been declared achieved
40: end

9



Algorithm 4 Algorithm Communicate(i, s, bool)
1: begin
2: c← CurCard

3: k ← 1
4: l← ε
5: if |s| ≤ i and bool = true then
6: participate← true

7: else
8: participate← false

9: end if
10: for j ← 1 to i do
11: if participate = true and j ≤ |s| and s[j] = 0 then
12: wait T(EXPLO(N)) rounds
13: execute EXPLO(N)
14: wait 3T(EXPLO(N)) rounds
15: l[j]← 0
16: if c > 1 then
17: k ← the smallest value reached by CurCard during the latest execution of line 13
18: end if
19: else
20: /* participate = false or s[j] = 1 or j > |s| */
21: wait 3T(EXPLO(N)) rounds
22: execute EXPLO(N)
23: wait T(EXPLO(N)) rounds
24: c′ ← the smallest value reached by CurCard during the latest execution of line 22
25: if c = 1 or c′ = c then
26: l[j]← 1
27: else
28: l[j]← 0
29: participate← false

30: k ← c− c′
31: end if
32: end if
33: end for
34: return (l, k)
35: end

10



• The input parameter i is a positive integer that is the same for all agents.

• The input parameter bool is a boolean and the input parameter s = code(x) for some binary string
x.

• There is only one agent in G, or during each call to procedure EXPLO(N) by any agent A of G, there
is a round when agent A is in a node u 6= v with no agent that does not belong to G.

Let G be the set of agents of G for which bool = true and |s| ≤ i in their respective call to function
Communicate(i, s, bool). The execution of function Communicate(i, s, bool) by each agent of G is com-
pleted at node v, in round t + 5iT(EXPLO(N)), and its return value is a couple (l, k) having the following
properties.

• If G 6= ∅, then l = σ1i−|σ|, where σ is the lexicographically smallest input parameter s used by an
agent of G, and k is the number of agents belonging to G for which the input parameter s = σ.

• Otherwise, l = 1i and k = 1.

Proof. In this proof, each time we refer to a specific line, it is one of Algorithm 4, and thus we omit to
mention it, in order to facilitate the reading. In view of Algorithm 4 and the first two conditions of the
lemma, we know that for each 1 ≤ j ≤ i the execution by each agent of G of the jth step of function
Communicate is started (resp. completed) at node v in round t + 5(j − 1)T(EXPLO(N)) (resp. in round
t + 5jT(EXPLO(N))). Note that in the case where G = ∅, all agents always stay together from round t
to t + 5iT(EXPLO(N)). Indeed, in each step it executes, every agent applies the instructions of lines 21
to 23 because its variable participate is necessarily set to false (cf. lines 5 to 9) given that G = ∅. By the
third condition of the lemma, this implies that in the execution of each step 1 ≤ j ≤ i by every agent, the
condition of line 25 evaluates to true, l[j] is assigned the bit 1, while k remains unchanged. Hence, when
the execution of step i is completed by an agent in round t + 5iT(EXPLO(N)), its variable l is equal to 1i

and its variable k has still the same value as in round t i.e., 1. Therefore the lemma is true when G = ∅.

Now, consider the complementary case where G 6= ∅. For any binary string w, denote by Gw the set of
all agents of G for which the input parameter s is prefixed by w. To analyse properly the current case, we
introduce the property Ψ(p) which involves Gw. We say that Ψ(p) holds iff for each agent the following
three conditions are met when its execution of step p is completed in round t + 5pT(EXPLO(N)): (1) its
variable l is equal to σ[1,min{p, |σ|}]1max{0,p−|σ|}, (2) if 1 ≤ p ≤ |σ| and σ[p] = 0, then its variable k is
equal to the number of agents belonging to Gσ[1,min{p,|σ|}], and (3) its variable participate is equal to true
iff the agent belongs to Gσ[1,min{p,|σ|}].

To proceed further, we need to prove the following claim.

Claim 3.1 Property Ψ(p) holds for every 0 ≤ p ≤ i.

Proof of the claim. We prove the claim by induction on p. Note that Ψ(0) is satisfied. Thus, let us assume
that there exists a non negative integer p < i such that Ψ(p) is true and let us prove that Ψ(p+ 1) is true as
well.
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First assume that |σ| ≤ p or σ[p+1] = 1. By the inductive hypothesis, we know that during the execution by
an agentA of step p+1, the condition of line 11 evaluates to true iff agentA belongs toGσ[1,min{p,|σ|}] while
its input parameter s has length at least p+ 1 and has bit 0 in position p+ 1. Note that if |σ| ≤ p, an agent
cannot belong to Gσ[1,min{p,|σ|}] = Gσ while having an input parameter s of length at least p + 1 because,
according to Proposition 2.1, no input parameter s different from σ can be prefixed by σ (by the second
condition of the lemma, each input parameter s is the image of a binary string under function code). Also
note that if σ[p+1] = 1, then the condition of line 11 evaluates to true in an execution of step p+1 by an agent
A only if A belongs to Gσ[1,p]0: however this set is empty, as otherwise we would get a contradiction with
the definition of σ. Hence, the condition of line 11 evaluates to false during the execution by every agent of
step p+1. From round t+5pT(EXPLO(N)) to round t+5(p+1)T(EXPLO(N)), all the agents execute the else
block starting at line 21: in particular they are always together when executing lines 21 to 23. By the third
condition of the lemma, it follows that the condition of line 25 evaluates to true during the execution by every
agent of step p+1. Thus, in view of the first condition of property Ψ(p), if p+1 > |σ| (resp. p+1 ≤ |σ|) then
the variable l of each agent is equal to σ[1, |σ|]1(p−|σ|)+1 (resp. σ[1, p]1 = σ[1, p+1]) when its execution of
step p+ 1 is completed in round t+ 5(p+ 1)T(EXPLO(N)). This implies that the variable l of each agent is,
at that point, equal to σ[1,min{p+ 1, |σ|}]1max{0,p+1−|σ|}, and thus the first condition of property Ψ(p+ 1)
holds. Moreover, the second condition of property Ψ(p+1) directly follows from the assumption that |σ| ≤ p
or σ[p + 1] = 1. Finally, we know that if |σ| ≤ p, then Gσ[1,min{p,|σ|}] = Gσ[1,min{p+1,|σ|}] = Gσ. We
also know that if σ[p + 1] = 1, then Gσ[1,p] = Gσ[1,p]1 = Gσ[1,p+1]: indeed no agent can have a parameter
s that is a prefix of σ by Proposition 2.1, and according to the explanations given above Gσ[1,p]0 = ∅ if
σ[p + 1] = 1. As a result, Gσ[1,min{p,|σ|}] = Gσ[1,min{p+1,|σ|}]. Hence, in view of the fact that no agent
changes its variable participate during its execution of step p+ 1, the third condition of property Ψ(p+ 1)
holds as well. This closes the analysis when |σ| ≤ p or σ[p+ 1] = 1.

Now assume that we are in the complementary case in which σ[p+ 1] = 0 and |σ| ≥ p+ 1. As mentioned
earlier, during the execution by an agentA of step p+1, the condition of line 11 evaluates to true iff agentA
belongs to Gσ[1,min{p,|σ|}] while its input parameter s has length at least p+1 and has bit 0 in position p+1.
As σ[p+ 1] = 0 and |σ| ≥ p+ 1, we know that σ[1,min{p, |σ|}]0 = σ[1, p+ 1], and thus the condition of
line 11 evaluates to true during the execution by an agent A of step p + 1 iff agent A belongs to Gσ[1,p+1].
(Note that since σ[p+ 1] = 0 and |σ| ≥ p+ 1, there is at least one agent in Gσ[1,p+1]). Hence, from round
t+5pT(EXPLO(N)) to round t+5(p+1)T(EXPLO(N)), all the agents ofGσ[1,p+1] (resp. G\Gσ[1,p+1] if any)
execute the then block starting at line 12 (resp. the else block starting at line 21): in particular they are always
together when executing lines 12 to 14 (resp. lines 21 to 23). From the waiting periods of lines 12, 14, 21
and 23, it follows that during the entire execution of procedure EXPLO(N) at line 13 (resp. at line 22) by an
agent of Gσ[1,p+1] (resp. G \Gσ[1,p+1]) in step p + 1, the agents of G \Gσ[1,p+1] (resp. Gσ[1,p+1]) are idle
at node v. All of this, the inductive hypothesis and the third condition of the lemma imply that when the
execution of step p+1 is completed by an agent ofGσ[1,p+1] in round t+5(p+1)T(EXPLO(N)), its variable
k, its variable l, and its variable participate are respectively equal to the number of agents in Gσ[1,p+1], to
l[1, p]0 = σ[1, p+ 1] and to the boolean true (its variable participate remains unchanged in step p+ 1). It
also follows that the variable c′ is assigned the number of agents in G \Gσ[1,p+1] in the execution by every
agent of G \ Gσ[1,p+1] of line 24 in step p + 1. Note that since there is at least one agent in Gσ[1,p+1], we
have c ≥ 2 and c′ 6= c for each agent of G\Gσ[1,p+1] when it executes line 25 in step p+ 1 (the condition of
this line then evaluates to false). Hence, by lines 28 to 30, we know that when the execution of step p+ 1 is
completed by an agent of G \Gσ[1,p+1] in round t+ 5(p+ 1)T(EXPLO(N)), its variable k, its variable l, and
its variable participate are respectively equal to the number of agents in Gσ[1,p+1], to l[1, p]0 = σ[1, p+ 1]
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and to the boolean false. As a result, when σ[p + 1] = 0 and |σ| ≥ p + 1, Ψ(p + 1) holds. This ends the
proof of the claim by induction. ?

By Claim 3.1, property Ψ(i) holds. This means that in the execution of function Communicate by every
agent we have l = σ[1,min{i, |σ|}]1max{0,i−|σ|} when the function is completed. Since G 6= ∅, we know
that i ≥ |σ|, and thus, for each agent, l = σ1i−|σ| at that time. Consequently, all that remains to be shown is
that when the execution of step p+ 1 is completed by an agent in round t+ 5iT(EXPLO(N)), the variable k
of the agent is equal to the number of agents belonging to G for which the input parameter s = σ.

By the third conditions of properties Ψ(|σ| + 1), . . . ,Ψ(i) and the condition of line 11, the agents stay
together from the beginning of their execution of step |σ|+1 till the end of their execution of step i, and thus
during this period the variable k of each agent remains unchanged. Moreover, we know by Proposition 2.1
that every input parameter s is of even length, which means that there is no agent having an input parameter
s that is equal to σ[1, |σ| − 1]. We also know that there is no agent of G having a parameter s prefixed by
σ[1, |σ| − 1]0, as otherwise we get a contradiction with the definition of σ (its last bit is 1). As a result, we
have Gσ[1,|σ|−1] = Gσ, and since σ[|σ|] = 1, we know in view of the third condition of property Ψ(|σ|)
and the condition of line 11, that all the agents stay together during step |σ|. Hence, the variable k of each
agent remains unchanged from the beginning of its execution of step |σ| till the end of its execution of step
i. Note that in view of the definition of function code, we have σ[|σ| − 1] = 0. Also note that Ψ(|σ| − 1)
holds by Claim 3.1. It follows that when the execution of step |σ| − 1 is completed by an agent A in round
t+5(|σ|−1)T(EXPLO(N)) (and, by extension, when the execution of step i is completed by agentA in round
t+ 5iT(EXPLO(N))) the variable k of agent A is equal to the number of agents in Gσ[1,|σ|−1]. However, we
have shown above that Gσ[1,|σ|−1] = Gσ. Since, by Proposition 2.1, no parameter s distinct from σ can be
prefixed by σ, Gσ is precisely the set of the agents for which the input parameter s is equal to σ. Hence, at
the end of its execution of step i, the variable k of an agent is equal to the number of agents of G for which
the input parameter s is equal to σ, which concludes the proof of the lemma. �

Now we can turn attention to Algorithm GatherKnownUpperBound. All further results of this section are
stated assuming that the algorithm that is executed by an agent when it wakes up is GatherKnownUpperBound
(cf. Algorithm 3). Every execution by an agent of the repeat loop of Algorithm 3 will be viewed as a series
of consecutive phases i = 1, 2, 3, . . ., where phase i is the part of its execution corresponding to the ith
iteration of the repeat loop. The part of the execution by an agent which is before phase 1 will be called
phase 0. Given an agent A, we denote by tA,i the round, if any, when agent A starts executing phase i.

Lemma 3.2 will allow us to use Lemma 3.1 in the proof of Lemma 3.3. At a high level, Lemma 3.2 exploits
the possible “invisibilities” presented in the intuitive explanations of Section 3.1, and will contribute to show-
ing that function Communicate is used properly in every execution of Algorithm GatherKnownUpperBound.

Lemma 3.2 Consider the set G of all agents located at a given node v in a given round t and assume that
the following three conditions are satisfied:

• All agents of G start executing phase i ≥ 1 in round t.

• For every couple of agents X and Y (not necessarily in G), |tX,i − tY,i| ≤ Di

• The condition of line 15 in Algorithm 3 evaluates to false in the execution by every agent (in G or
outside of G) of phase i.
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We have the following two properties.

• Property 1: For every agent X , |t− tX,i| ≤ T(EXPLO(N))
2 .

• Property 2: There is only one agent in G, or during each call to procedure EXPLO(N) made by every
agent A of G when executing function Communicate in phase i, there is a round when agent A is in
a node u 6= v with no agent that does not belong to G.

Proof. LetA (resp. X) be an agent ofG (resp. an agent that does not belong toG). We first prove property 1.
Assume, by contradiction, that the three conditions of the statement are satisfied and T(EXPLO(N))

2 < |t −
tX,i| ≤ Di. It follows that either agent A has time to execute entirely the effective part of the first execution
of EXPLO(N) of phase i together with the other agents of G (cf. line 11 of Algorithm 3) while X is waiting
in phase i (cf. line 10 of Algorithm 3), or agent X has time to execute entirely the effective part of the
first execution of EXPLO(N) of phase i while A is waiting with the other agent of G in phase i. Hence,
the condition of line 15 in Algorithm 3 evaluates to true in the execution by agent A of phase i. This is a
contradiction, which proves the first property of this lemma.

Now, we prove property 2. Note that this property is necessarily true if G contains at most one agent. Sup-
pose by contradiction that the three conditions of the statement are satisfied, G contains at least two agents,
and there exists a call to procedure EXPLO(N) made by agent A (when executing function Communicate in
phase i), during which agent A is with an agent that does not belong to G, each time it is at a node u 6= v.

Since G contains at least two agents, there exists a node x in the graph from which no agent starts executing
phase i of Algorithm GatherKnownUpperBound because the number of agents is at most the size of the
graph. Moreover, in view of the fact that the third condition of the statement is satisfied, we know that each
agent starts function Communicate in phase i and each of its steps at the node (different from x) from which
it started phase i. This implies that there is a positive integer k at most equal to i such that agent A meets
an agent B, not belonging to G, at node x in some round tx when agent A is executing EXPLO(N) in the
kth step of Communicate. Denote by sA (resp. sB) the round when agent A (resp. agent B) starts the kth
step of Communicate, and denote by v′ the node from which agent B starts phase i as well as the i steps of
Communicate called in this phase. Note that since each step of Communicate lasts exactly 5T(EXPLO(N))
rounds (cf. lines 12 to 14 and lines 21 to 23 of Algorithm 4) and the condition of line 15 in Algorithm 3
evaluates to false in the execution of phase i by every agent (in G or outside of G), we have the following
claim.

Claim 3.2 sB − sA = tB,i − tA,i.

Recall that agent A is executing EXPLO(N) in the kth step of Communicate when it meets agent B at
node x in round tx. According to Claim 3.2, by the first property and the fact that within each step of
Communicate, an execution of EXPLO(N) is directly preceded and followed by a waiting period of length
at least T(EXPLO(N)), we know that agent B is also processing the kth step of Communicate in round
tx. Note that in view of the definition of node x, the node v′ from which agent B started phase i of
Algorithm GatherKnownUpperBound and the kth step of function Communicate is different from node x.
This implies that agent B is executing EXPLO(N) in round tx, and thus either each of agents A and B is
executing EXPLO(N) at line 13 of Algorithm 4 in the kth step of function Communicate in round tx, or each
of agentsA andB is executing EXPLO(N) at line 22 of Algorithm 4 in the kth step of function Communicate
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in round tx. Indeed, by Claim 3.2 and by the first property, we have |sB − sA| ≤ T(EXPLO(N))
2 . Since within

every step a possible execution of line 13 (resp. line 22) in Algorithm 4 occurs just after a waiting period
of length exactly T(EXPLO(N)) (resp. 3T(EXPLO(N))) starting at the beginning of the step, in round tx we
cannot have an agent that is executing EXPLO(N) at line 13 of Algorithm 4 in the kth step, while the other
agent is executing EXPLO(N) at line 22 of Algorithm 4 in the kth step.

Consider only the case where each of agents A and B is executing EXPLO(N) at line 13 of Algorithm 4 in
the kth step in round tx, as the complementary case can be analyzed in a similar way.

When agentA (resp. B) starts procedure EXPLO(N) from node v (resp. node v′) in round sA+T(EXPLO(N))
(resp. sB + T(EXPLO(N))), agents A and B meet at node x in round tx = sA + T(EXPLO(N)) + ζ, where ζ
is some non negative integer less than T(EXPLO(N)). However, by Claim 3.2, sB − sA = tB,i − tA,i. This
implies that when each agent ofG (resp. agentB) starts the first execution of procedure EXPLO(N) of phase
i from node v in round tA,i + Di (resp. from node v′ in round tB,i + Di), agent B and all the agents of G
are together at node x in round tA,i + Di + ζ < tA,i + Di + T(EXPLO(N)). Hence, the third condition of
the statement of the theorem is not satisfied, which is a contradiction. This proves property 2 and concludes
the proof of the lemma. �

The next lemma proves several properties that will serve directly to establish correctness and analyze the
complexity of Algorithm GatherKnownUpperBound. The lemma makes use of the notation ` which refers
to the length of the binary representation of the smallest label among the agents. It also makes use of the set
Φi which is defined as follows. Given a positive integer i, Φi is the set of couples (v, t) such that (v, t) ∈ Φi

iff there exists an agent that starts executing phase i from node v in round t. The cardinality of Φi is denoted
by |Φi|.

Lemma 3.3 Let i be a non negative integer such that no agent declares that gathering is achieved before
executing phase i. For every couple of agents A and B, we have the following two properties:

• P1(i): |tA,i − tB,i| ≤ Di.

• P2(i): if tA,i+1 and tB,i+1 exist, and agents A and B are at the same node in round tA,i+1, then
tA,i+1 = tB,i+1.

Moreover, denote by F the earliest agent (or one of the earliest agents) that starts executing phase i. At
least one of the following three properties holds.

• P3(i): |Φi+1| ≤ b |Φi|2 c. Furthermore, either every agent starts phase i+ 1 during the interval {tF,i +
Di + 2Di+1, . . . , tF,i + 2Di + 2Di+1 + 3T(EXPLO(N))}, or every agent starts phase i+ 1 during the
interval {tF,i+2Di+1 +Di+(5i+4)T(EXPLO(N)), . . . , tF,i+2Di+1 +2Di+(5i+6)T(EXPLO(N))}.

• P4(i): All agents declare that gathering is achieved at the same node in round tF,i + Di+1 + 2Di +
(5i + 6)T(EXPLO(N)). Furthermore, there exists a label L belonging to an agent of the team such
that the variable λ of every agent in Algorithm 3 is equal to L in round tF,i + Di+1 + 2Di + (5i +
6)T(EXPLO(N)).

• P5(i): i < 2` + 2 and every agent A starts executing phase i + 1 after having spent exactly
2T(EXPLO(N)) rounds if i = 0 (resp. exactly Di+1 + 2Di + (5i + 6)T(EXPLO(N)) rounds if i > 0)
in phase i.
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Proof. Throughout this proof, each time we refer to a specific line, it is one of Algorithm 3, and thus we
omit to mention it, in order to facilitate the reading.

The proof is by induction on i. Let us first consider the base case i = 0. According to line 2, we know that
the delay between the starting times of phase 0 of any two agents is at most T(EXPLO(N))

2 rounds. Indeed, as
soon as the execution of the effective part of EXPLO(N) in phase 0 is completed by the first woken up agent,
all nodes have been visited at least once and there cannot remain any dormant agent in the network. Hence,
property P1(0) is true.

Concerning property P2(0), note that every agent starts phase 1 from its initial node in view of the backtrack
part of EXPLO(N). Moreover, since the delay between the starting times of phase 0 of any two agents is at
most T(EXPLO(N))

2 rounds, we know that when an agent A starts phase 1, every other agent B is waiting in
its initial node (B has at least started the waiting period in phase 0 but it cannot have started any move in
phase 1 because in this phase, the first move is necessarily preceded by a waiting period of length at least
D1 >

T(EXPLO(N))
2 ). Thus, P2(0) is also true because the initial nodes of the agents are pairwise distinct. To

conclude the base case, note that every agent A starts phase 1 in round tA,0 + 2T(EXPLO(N)) in view of
line 2. Hence, since 0 < ` we also know that P5(0) is satisfied. As a result, the theorem holds when i = 0.

Now, let us assume that there exists an integer k ≥ 0 such that the lemma is true when i = k, and let us
prove that the lemma is still true when i = k + 1 and no agent has declared the gathering achieved before
executing phase k + 1. We have the following claim.

Claim 3.3 Property P1(k + 1) is satisfied.

Proof of the claim. Since, by assumption no agent declares the gathering achieved before executing phase
k+1, we know that property P4(k) is not satisfied and thus property P3(k) or P5(k) is true. If property P5(k)
is true, then agents A and B spend exactly the same time to execute phase k, and thus |tA,k+1 − tB,k+1| ≤
Dk ≤ Dk+1 in view of property P1(k). If P5(k) is false and P3(k) is true, then |tA,k+1 − tB,k+1| ≤
Dk + 3T(EXPLO(N)) ≤ Dk+1. Hence P1(k + 1) is true, which concludes the proof of this claim. ?

In the light of Claim 3.3, it remains to show that property P2(k + 1) and at least one property among
P3(k + 1), P4(k + 1) and P5(k + 1) hold. To this end, we introduce the property Γ(x) that is satisfied
iff there exists at least one execution of phase x by some agent in which the condition of line 15 or line 30
evaluates to true. The rest of this proof is conducted by discussing the cases where Γ(k+1) holds and where
it does not. For each (v, t) belonging to Φk+1, denote byG(v,t) the group of agents that start executing phase
k + 1 from node v in round t. Note that in view of property P2(k), all the agents that are at node v in round
t belongs to G(v,t), and then all agents of G(v,t) start together phase k + 1 by assigning to the variable c the
number of agents in G(v,t). In each round when the agents of G(v,t) are together in phase k + 1, they can
then detect whether there is a co-located agent that does not belong to G(v,t) by comparing the variable c
to CurCard. In the rest of this proof, when we speak of a group, we always mean a group G(v,t) such that
(v, t) ∈ Φk+1.

Claim 3.4 Assume that property Γ(k + 1) is not satisfied. Then property P2(k + 1), as well as property
P4(k + 1) or property P5(k + 1) hold.

Proof of the claim. Consider any agent A and denote by v the node from which agent A starts phase k+ 1.
The group G(v,tA,k+1) to which agent A belongs is shortly denoted by G. Given an agent labeled L, we will
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denote by xL the binary representation of its label, and the binary string code(xL) will be called the code
of this agent.

According to Claim 3.3, we have |tX,k+1 − tY,k+1| ≤ Dk+1 for every couple of agents (X,Y ), and, since
Γ(k+1) is not satisfied, the condition of line 15 evaluates to false in all the execution of phase k+1. Hence,
in view of the second property of Lemma 3.2, we know that there is only agentA inG, or during each call to
procedure EXPLO(N) made by any agentB ofG (including agentA) when executing function Communicate
in phase i, there is a round when agent B is at a node u 6= v with no agent that does not belong to G. As the
condition of line 15 evaluates to false in all the executions of phase k+1 by the agents ofG, we also know in
view of lines 10 to 19 that each agent of G start executing function Communicate(k + 1, code(xL), true)
(where L is its label) from node v in round tA,k+1 + Dk+1 + 3T(EXPLO(N)). As a result, Lemma 3.1
implies that the execution of function Communicate by each agent of G is completed at node v, in round
tA,k+1 +Dk+1 + 3T(EXPLO(N)) + 5(k+ 1)T(EXPLO(N)), and its return value is a couple (l, ∗), where l is
as follows. Denote by G the set of all agents for which the length of the code is at most k + 1. If G 6= ∅,
then l = code(x)1k+1−|code(x)| where code(x) is the lexicographically smallest code of an agent belonging
to G. Otherwise l = 1k+1.

Let us first consider the case where k+ 1 < 2`+ 2. In view of the definition of function code we know that
G = ∅, and thus l = 1k+1. Therefore, we know that in the execution of phase k + 1 by every agent of G,
the condition of line 20, and thus the condition of line 35, both evaluate to false. It follows that all agents of
G are always together from round tA,k+1 +Dk+1 + 3T(EXPLO(N)) + 5(k + 1)T(EXPLO(N)) till the round
tA,k+1 +Dk+2 + 2Dk+1 + (5(k+ 1) + 6)T(EXPLO(N)) in which they start phase k+ 2. Hence, each agent
starts executing phase k+2 after having spent exactlyDk+2 +2Dk+1 +(5(k+1)+6)T(EXPLO(N)) rounds
in phase k + 1. This proves property P5(k + 1).

To prove property P2(k + 1), it is just enough to show there is no agent outside of G at the same node w as
agent A in round tA,k+2. Suppose by contradiction that such an agent exists and call it X . Denote by GX
the group to which agent X belongs at the beginning of phase k + 1. Using the same arguments as those
used above for group G, we know that all agents of GX are always together from round tX,k+1 + Dk+1 +
4T(EXPLO(N))+5(k+1)T(EXPLO(N)) till the round tX,k+1+Dk+2+2Dk+1+(5(k+1)+9)T(EXPLO(N))
in which they start phase k+2. In particular, similarly as the agents ofG, the agents ofGX execute together
the block made of the lines 24 to 29. According to the first property of Lemma 3.2, and in view of property
P5(k + 1) and of the assumption that property Γ(k + 1) is not satisfied, we know that |tX,k+2 − tA,k+2| ≤
T(EXPLO(N))

2 . This implies that agent X cannot be at node w in round tA,k+2 after a move of phase k+ 2, due
to the fact that in phase k+2 the first move is preceded by a waiting period of length larger than T(EXPLO(N))

2 .
Hence agent X , as well as A, has been at node w since its execution of line 28 in phase k + 1 is completed.
If the execution of line 28 in phase k+ 1 is completed in the same round by agents A and X , then the agents
of GX and G are at node w when they evaluate the condition of line 30. Hence, this condition evaluates
to true for all these agents in their execution of phase k + 1: this contradicts the assumption that property
Γ(k + 1) is not satisfied. Otherwise, in view of the delay |tX,k+2 − tA,k+2| ≤ T(EXPLO(N))

2 , one of the two
groups is executing the waiting period of Dk+2 rounds at line 34 at node w, when the execution of line 28 is
completed by the other group at node w. This implies that G and GX are together when the agents of one of
these groups evaluate the condition of line 30. Then, we again get a contradiction with the assumption that
property Γ(k + 1) is not satisfied, which proves property P2(k + 1).

Let us now consider the complementary case where k + 1 ≥ 2` + 2. Denote by γ the label of the agent
having the lexicographically smallest code among the agents of the team having a code of length at most
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k + 1. Note that, in the considered case, γ necessarily exists in view of the definition of function code.

If |Φk+1| = 1 then all the agents belong to G, and G 6= ∅. This means that the first element l of the return
value of function Communicate in phase k + 1 is code(xγ)1k+1−|code(xγ)| for all agents in the team. In
view of Proposition 2.1, in every execution of phase k+ 1, the condition of line 20 evaluates to true and the
variable λ is assigned the label γ. From this and the fact that property Γ(k+1) is not satisfied, the condition
of line 35 evaluates to true in each of the executions of phase k+1. It follows that all agents ofG (and thus all
agents in the graph) are always together from round tA,k+1+Dk+1+3T(EXPLO(N))+5(k+1)T(EXPLO(N))
till the round tA,k+1 +Dk+2 + 2Dk+1 + (5(k + 1) + 6)T(EXPLO(N)) in which they declare that gathering
is achieved (cf. lines 23 to 36). Property P4(k + 1) is then true, and so is property P2(k + 1) because no
agent starts phase k + 2.

If |Φk+1| ≥ 2 then let us choose an agent B 6= A respecting the following conditions: (1) the group
G(v′,tB,k+1) to which agent B belongs is such that (v, tA,k+1) 6= (v′, tB,k+1) and (2) if the agent labeled
γ is not in G then B has label γ. The set G(v′,tB,k+1) is shortly denoted by G′. Via similar arguments
to those used before, we can show that the agents of G (resp. G′) start executing procedure TZ(l) (resp.
TZ(l′)) from node v in round tA,k+1 +Dk+1 + (5(k + 1) + 4)T(EXPLO(N)) (resp. from node v′ in round
tB,k+1 +Dk+1 + (5(k+ 1) + 4)T(EXPLO(N))) for some integers l and l′. Actually, due to the definition of
B, Proposition 2.1, as well as lines 20 and 21, we know that l 6= l′ and γ ∈ {l, l′}. Both these executions of
procedure TZ are not interrupted prematurely because property Γ(k + 1) is not satisfied, and thus each of
them lasts exactlyDk+1 ≥ P(N, k+1)+ T(EXPLO(N))

2 rounds. By Claim 3.3, we know that the delay between
the starting times of phase k + 1 for any two agents is at most Dk+1. Hence, in view of the definition of G
(resp. G′) and the fact that property Γ(k + 1) is not satisfied, we can apply the first property of Lemma 3.2
to state that |tA,k+1−tB,k+1| ≤ T(EXPLO(N))

2 . Therefore, there exists a time interval T of at least P(N, k+1)
rounds during which the agents ofG and the agents ofG′ execute line 26. In particular, during interval T the
agents of one group execute together procedure TZ(l), while the agents of the other group execute together
procedure TZ(l′). Since γ ∈ {l, l′} and the length of the binary representation of γ is at most k + 1, the
agents of G and G′ share the same node in some round during interval T , due to the properties of procedure
TZ (cf. Section 2). However this is a contradiction with the fact that property Γ(k + 1) is not satisfied.

To sum up, we have proved that if property Γ(k + 1) is not satisfied, then property P2(k + 1) is true and so
is property P4(k + 1) or P5(k + 1). This concludes the proof of this claim. ?

The following claim is complementary to the previous one.

Claim 3.5 Assume that property Γ(k + 1) is satisfied. Then properties P2(k + 1) and P3(k + 1) hold.

Proof of the claim. We first consider the situation where there exists at least one execution of phase k + 1
by some agent in which the condition of line 15 evaluates to true (the complementary situation is adressed
thereafter). Let (u, r) be the couple (or one of the couples) of Φ(k+ 1) such that for all (u′, r′) of Φ(k+ 1),
r′ ≥ r. In view of the waiting periods of Dk+1 rounds at the beginning of phase k + 1 and at the end of
phase k, as well as the properties P1(k + 1) and P2(k), no group can meet an agent not belonging to the
group from round r to round r + Dk+1. Moreover, every group starts phase k + 1 by round r + Dk+1 and
cannot start executing line 13 before round r +Dk+1 + 2T(EXPLO(N)). We have two cases to analyse: the
first case is when the first meeting between two groups G1 and G2 occurs in a round of {r+Dk+1, . . . , r+
Dk+1 + 2T(EXPLO(N))} and the second case is when it does not.
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Let us start with the first case. WhenG1 andG2 meet, they then wait at leastDk+2 > Dk+1+3T(EXPLO(N))
rounds (cf. line 16). This means that groups G1 and G2 wait in each round of the set {r + Dk+1 +
2T(EXPLO(N)), . . . , r + Dk+1 + Dk+2}. Moreover, in view of Claim 3.3, every group which has not yet
encountered another group, starts executing line 13 in a round of {r + Dk+1 + 2T(EXPLO(N)), . . . , r +
2Dk+1 + 2T(EXPLO(N))}. Hence, every group which has not yet encountered another group, visits the
whole graph between rounds r + Dk+1 + 2T(EXPLO(N)) and r + 2Dk+1 + 3T(EXPLO(N)) i.e., while G1

and G2 wait, and thus, unless it meets another group before, it encounters G1 and G2. By line 16, we
can state that when any two groups meet, they then have to wait until they see together Dk+2 consecutive
rounds without any variation of CurCard since its latest change. This implies that the execution of a waiting
period of Dk+2 rounds without any variation of CurCard is jointly completed in a round of {r + Dk+1 +
Dk+2, . . . , r + Dk+2 + 2Dk+1 + 3T(EXPLO(N))} by any two groups that have met during the interval
{r + Dk+1, . . . , r + 2Dk+1 + 3T(EXPLO(N))} (every group meets another one in this interval). Thus, by
line 34, any two groups that have met during the interval {r+Dk+1, . . . , r+2Dk+1 +3T(EXPLO(N))} start
together phase k + 2 in a round of {r +Dk+1 + 2Dk+2, . . . , r + 2Dk+2 + 2Dk+1 + 3T(EXPLO(N))}. This
proves property P3(k + 1).

To prove property P2(k + 1), it is enough to consider any agent X that is at the node w occupied by an
agent A 6= X in round tA,k+2 and to prove that tA,k+2 = tX,k+2. If X and A belong to the same group
G at the beginning of phase k + 1, we immediately have tA,k+2 = tX,k+2. Thus, assume that the groups
to which A and X belong when they start phase k + 1 are different. Since every agent starts phase k + 2
in a round of {r +Dk+1 + 2Dk+2, . . . , r + 2Dk+2 + 2Dk+1 + 3T(EXPLO(N))} (cf. the above paragraph),
we know that |tA,k+2 − tX,k+2| < Dk+2. This means that agent X cannot be at node w in round tA,k+2

after a move of phase k + 2, due to the fact that in phase k + 2 the first move is preceded by a waiting
period of at least Dk+2 rounds. Hence agent X , as well as agent A, have been at node w since it evaluated
the condition of line 15 in phase k + 1: whether for A or X , this evaluation occurs at the latest in round
r+2Dk+1 +3T(EXPLO(N)). As a result, the group of agentX and the group of agentAmeet at node w in a
round of the interval {r+Dk+1, . . . , r+ 2Dk+1 + 3T(EXPLO(N))}. We proved in the above paragraph that
such a meeting between two groups in this interval implies that the agents of the two groups start together
phase k + 2. Hence tA,k+2 = tX,k+2, which proves property P2(k + 1).

Let us now consider the case where no group meets another one in a round of {r +Dk+1, . . . , r +Dk+1 +
2T(EXPLO(N))}. This implies that when the effective part of procedure EXPLO(N) of line 11 in phase
k + 1 is completed by G(u,r), every agent has at least started the effective part of procedure EXPLO(N)
of line 11 in phase k + 1 (otherwise using Claim 3.3 we can get a contradiction with the fact that no
group meets another one during the interval {r + Dk+1, . . . , r + Dk+1 + 2T(EXPLO(N))}). This means
that the delay between the starting times of phase k + 1 by any two agents is at most T(EXPLO(N))

2 . It
follows that the first round in which the condition of line 15 evaluates to true in the execution of phase
k + 1 (which also corresponds to a round in which two groups G1 and G2 meet) is equal to r + x with
Dk+1 + 2T(EXPLO(N)) + 1 ≤ x ≤ Dk+1 + 7T(EXPLO(N))

2 . In view of the delay between the starting times
of phase k + 1 by any two agents which is at most T(EXPLO(N))

2 and of the definition of round r + x, we
know that in each round of {r + Dk+1 + 2T(EXPLO(N)) + 1, . . . , r + x}, each agent either executes an
instruction of line 12 or 13, or has just started executing the waiting period of line 16, or waits by processing
the first waiting period of T(EXPLO(N)) rounds in function Communicate. We also know that the agents
that are executing function Communicate in some round of {r + Dk+1 + 2T(EXPLO(N)) + 1, . . . , r + x}
cannot have executed line 16 in phase k + 1, or otherwise we get a contradiction with the definition of
round r + x. Hence, since the last T(EXPLO(N)) rounds of line 10, line 11, and line 12 consist of the same
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instructions as line 12, line 13, and either the first T(EXPLO(N)) rounds of line 16 or the first waiting period
of T(EXPLO(N)) rounds in function Communicate, respectively, the groups G1 and G2 that are at the same
node w in round r + x, are also at node w in round r + x − 2T(EXPLO(N)). The condition of line 15 then
evaluates to true in round r + x − 2T(EXPLO(N)) in the execution of phase k + 1 by every agent of G1 or
G2. We then get a contradiction with the definition of round r + x.

As a result, in the situation where there exists at least one execution of phase k + 1 by some agent in which
the condition of line 15 evaluates to true, we know that properties P3(k+ 1) and P2(k+ 1) are satisfied. Let
us now consider the complementary situation assuming that property Γ(k + 1) is satisfied, namely: there
exists at least one execution of phase k+1 by some agent in which the condition of line 30 evaluates to true,
and the condition of line 15 evaluates to false in the execution of phase k + 1 by every agent.

By Lemma 3.2 and Claim 3.3, we know that the maximum delay in phase k + 1 between the rounds in
which there is an execution of function Communicate that is completed is at most T(EXPLO(N))

2 rounds. We
also know that in each group G(v,t) the execution of function Communicate is completed by the agents
of G(v,t) in the same round at node v, and thus the agents of G(v,t) start together the next instruction of
phase k + 1 from node v. Note that in the round when the execution of Communicate is completed by
the agents of G(v,t), call it z, all the agents that are at node v belong to G(v,t). Indeed, if this were not the

case, in view of the aforementioned delay of T(EXPLO(N))
2 rounds and the fact that the end of the execution

of function Communicate by each group in phase k + 1 is directly preceded and followed by waiting
periods of at least T(EXPLO(N)) rounds, we would have the following: all the agents that are at node v
in round z, are also at node v in round z − 5(k + 1)T(EXPLO(N)) − 3T(EXPLO(N))

2 in which the agents of
G(v,t) start the second half of the waiting period of length T(EXPLO(N)) at line 12. This would contradict
the assumption that the condition of line 15 evaluates to false in the execution of phase k + 1 by every
agent. Let r′ = r + Dk+1 + (5(k + 1) + 3)T(EXPLO(N)): round r′ is the one in which the execution of
function Communicate in phase k + 1 is completed by the agents of G(u,r) at node u. In view of the above
explanations, we know that no group meets another one from round r′ to round r′+T(EXPLO(N)). Moreover,
every group starts executing the second begin-end block of phase k + 1 by round r′ + T(EXPLO(N)) and
cannot have started executing line 28 before round r′+Dk+1 + 2T(EXPLO(N)). From there on, the proof is
similar to that for the first situation. However, for completeness, we state it in detail.

Let us first assume that a meeting between two groups occurs in some round of {r′+T(EXPLO(N)), . . . , r′+
Dk+1 + 2T(EXPLO(N))}, and denote by G1 and G2 the two groups involved in the first meeting in this
interval. When G1 and G2 meet, they then wait at least Dk+2 > Dk+1 + 3T(EXPLO(N)) rounds (cf.
line 31). This means that groups G1 and G2 wait in each round of {r′ + Dk+1 + 2T(EXPLO(N)), . . . , r′ +
Dk+2 +T(EXPLO(N))}. Moreover, every group which has not yet encountered another one, starts executing
line 28 in a round of {r′+Dk+1 + 2T(EXPLO(N)), . . . , r′+Dk+1 + 5T(EXPLO(N))

2 }, in view of the maximum
delay of T(EXPLO(N))

2 rounds in phase k + 1 between the rounds in which there is an execution of function
Communicate that is completed. Hence, every group which has not yet encountered another one, executes
the effective part of line 28 and thus visits the whole graph between rounds r′ + Dk+1 + 2T(EXPLO(N))
and r′ +Dk+1 + 3T(EXPLO(N)) i.e., while G1 and G2 wait and thus, unless it meets another group before,
it encounters G1 and G2. By line 31, we can state that when any two groups meet, they then have to wait
until they see together Dk+2 consecutive rounds without any variation of CurCard since its latest change.
This implies that the execution of a waiting period of length Dk+2 without any variation of CurCard is
jointly completed in a round of {r′ +Dk+2 + T(EXPLO(N)), . . . , r′ +Dk+1 +Dk+2 + 3T(EXPLO(N))} by
any two groups that have met during the interval {r′ + T(EXPLO(N)), . . . , r′ + Dk+1 + 3T(EXPLO(N))}
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(every group meets another one in this interval). Thus, by line 34, any two groups that have met during
the interval {r′ + T(EXPLO(N)), . . . , r′ +Dk+1 + 3T(EXPLO(N))} start together phase k + 2 in a round of
{r+Dk+1 +2Dk+2 +(5(k+1)+4)T(EXPLO(N)), . . . , r+2Dk+1 +2Dk+2 +(5(k+1)+6)T(EXPLO(N))}.
This proves property P3(k + 1).

To prove property P2(k+1), it is enough to consider any agentX that is at the node w occupied by an agent
A 6= X in round tA,k+2 and to prove that tA,k+2 = tX,k+2. If X and A belong to the same group G at the
beginning of phase k + 1, we immediately have tA,k+2 = tX,k+2. Thus, assume that the groups to which A
and X belong when they start phase k + 1 are different. Since every agent starts phase k + 2 in a round of
{r+Dk+1 +2Dk+2 +(5(k+1)+4)T(EXPLO(N)), . . . , r+2Dk+1 +2Dk+2 +(5(k+1)+6)T(EXPLO(N))}
(cf. the above paragraph), we know that |tA,k+2 − tX,k+2| < Dk+2. This means that agent X cannot be at
node w in round tA,k+2 after a move of phase k + 2, due to the fact that in phase k + 2 the first move is
preceded by a waiting period of at least Dk+2 rounds. Hence agent X , as well as agent A, has been at node
w since it evaluated the condition of line 30 in phase k + 1: whether for A or X , this evaluation occurs at
the latest in round r′ +Dk+1 + 3T(EXPLO(N)). As a result, the group of agent X and the group of agent A
meet at node w in a round of the interval {r′+T(EXPLO(N)), . . . , r′+Dk+1 +3T(EXPLO(N))}. We proved
in the above paragraph that such a meeting between two groups in this interval implies that the agents of the
two groups start together phase k + 2. Hence tA,k+2 = tX,k+2, which proves property P2(k + 1).

Consider the case where no group meets another one in a round of {r′ + T(EXPLO(N)), . . . , r′ + Dk+1 +
2T(EXPLO(N))}. In this case, the first round in which the condition of line 30 evaluates to true in the
execution of phase k + 1 by some agent is at least r′ + Dk+1 + 2T(EXPLO(N)) + 1. The first round in
which the condition of line 30 evaluates to true in the execution of phase k + 1 by some agent is also at
most r′+Dk+1 + 7T(EXPLO(N))

2 in view of the maximum delay of T(EXPLO(N))
2 rounds in phase k+ 1 between

the rounds in which there is an execution of function Communicate that is completed. Consequently, the
first round in which the condition of line 30 evaluates to true in the execution of phase k + 1 by some
agent (which also corresponds to a round in which two groups G1 and G2 meet) is equal to r′ + x with
Dk+1 + 2T(EXPLO(N)) + 1 ≤ x ≤ Dk+1 + 7T(EXPLO(N))

2 . In view of the aforementioned delay and of the
definition of round r′+x, we know that in each round of {r′+Dk+1 +2T(EXPLO(N))+1, . . . , r′+x}, each
agent either executes an instruction of line 27 or 28, or has just started the waiting period period of line 31,
or waits by processing the first T(EXPLO(N)) rounds of the waiting period at line 34. We also know that the
agents that are processing line 34 in some round of {r′+Dk+1+2T(EXPLO(N))+1, . . . , r′+x} cannot have
executed line 31 in phase k+1, or otherwise we get a contradiction with the definition of round r′+x. Hence,
since the last T(EXPLO(N)) rounds of line 10, line 11, and line 12 consist of the same instructions as line 27,
line 28, and the first T(EXPLO(N)) rounds of either line 31 or line 34, respectively, the groupsG1 andG2 that
are at the same node w in round r′+x, are also at node w in round r′+x−Dk+1− 5(k+ 2)T(EXPLO(N)).
The condition of line 15 then evaluates to true in round r′ + x − Dk+1 − 5(k + 2)T(EXPLO(N)) in the
execution of phase k + 1 by every agent of G1 or G2, which is a contradiction.

To summarize, we proved that properties P2(k + 1) and P3(k + 1) always hold, which concludes the proof
of this claim. ?

According to Claims 3.3, 3.4 and 3.5, we know that properties P1(k+ 1) and P2(k+ 1) hold. We also know
that at least one property among P3(k + 1), P4(k + 1) and P5(k + 1) holds. This concludes the inductive
proof of the lemma. �
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Theorem 3.1 Algorithm GatherKnownUpperBound solves the gathering problem and the leader election
problem, and has a time complexity that is polynomial in the known upper bound N on the size of the
network and in the length ` of the smallest label among the agents.

Proof. Suppose that an agent, call it A, declares that gathering is achieved in some round τ when pro-
cessing some phase i and suppose, without loss of generality, i is the smallest integer for which this oc-
curs. According to Algorithm 3, the execution of GatherKnownUpperBound is completed by agent A in
round τ , and the agent will not start phase i + 1. Hence, in view of the minimality of i, property P4(i)
of Lemma 3.3 holds. It follows that the gathering problem and the leader election problem are solved in
round τ in which the execution of GatherKnownUpperBound by each agent is completed. It also follows
that τ = tF,i + Di+1 + 2Di + (5i + 6)T(EXPLO(N)) where F is the earliest agent (or one of the ear-
liest agents) to start phase i. By properties P3(k) and P5(k) of Lemma 3.3, agent F cannot have spent
more than 4Dk+1 + (5k + 6)T(EXPLO(N)) rounds executing any phase k < i. By property P1(0) of
Lemma 3.3, |tF,0 − tF ′,0| < D0 where F ′ is the earliest agent (or one of the earliest agents) to start exe-
cuting GatherKnownUpperBound and thus to start executing phase 0. Therefore, if i ≤ blogNc+ 2`+ 2,
then |τ − tF ′,0| ≤ (blogNc+ 2`+ 4)(4DblogNc+2`+3 + (5(blogNc+ 2`+ 2) + 6)T(EXPLO(N))), which
is polynomial in N and `.

As a result, to conclude the proof, it is enough to show that τ exists and i ≤ blogNc+ 2`+ 2. Suppose by
contradiction, that it is not the case. By Lemma 3.3, every agent ends up executing phase blogNc+ 2`+ 3,
and thus |ΦblogNc+2`+3| ≥ 1. Still by Lemma 3.3, we know that |ΦblogNc+2`+3| ≤

|Φ2`+2|
2blogNc+1 . However,

|Φ2`+2| ≤ N and 2blogNc+1 > N . Hence, 1 ≤ |ΦblogNc+2`+3| < 1, which is a contradiction and proves the
theorem. �

4 Unknown upper bound on the size of the graph

This section is dedicated to the presentation and the analysis of our algorithm GatherUnknownUpperBound

that allows the agents to solve gathering without direct means of communication in the case where they are
not initially given any upper bound on the graph size.

4.1 Intuition

A preliminary question that may come to mind when considering this harsher scenario, is how to guarantee
gathering even if in each round an agent had the capacity to exchange all information available to it with the
other agents sharing its node. Actually, this can be done by implementing a general mechanism explained
below that stems from the following simple observation. If the agents were woken up at the same time by
the adversary and were initially given the description of the initial configuration φ (i.e., the complete map of
the underlying graph, with all port numbers, in which a node v is labeled L iff v is the starting node of the
agent labeled L), then the problem could be solved by applying a simple rule: upon its wake-up, each agent
moves, using the map, towards the node containing the smallest label, and then declares that gathering is
over when all agents are in that node.

In an attempt to recreate similar favorable conditions to those given in the above observation, a general
mechanism to solve gathering with communication has been described in [10]: as it will be useful for our
purpose, let us briefly explain how it works at a high level. Let Ω = (φ1, φ2, φ3, · · · ) be a fixed enumeration
of the (recursively enumerable) set of all initial configurations. An agent proceeds in consecutive phases
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i = 1, 2, 3, · · · , where in each phase i, an agent tries to achieve gathering by making a hypothesis that
the initial configuration φ is φi. This assumption will be called hypothesis i. When making hypothesis
i, the agent first executes EXPLO(ni) where ni is the supposed graph size (in the hope of waking up the
remaining dormant agents, if any), and then, if its label belongs to φi, tries to go to the node that supposedly
corresponds to the starting node vi of the agent having the smallest label in φi. Once an agent reaches a
node that supposedly corresponds to vi, it waits some amount of time sufficient to allow the other agents to
join it if the hypothesis i is good (i.e., correct). Note that in the case where the hypothesis i is not good,
some agents may notice it more or less rapidly, for instance if φi does not contain their label or if the path
they have to follow to reach vi simply does not exist in the real network. Hence, the process of a phase i
we have described so far can lead to one of the following three situations: (1) the hypothesis i is good and
all agents think rightly that gathering is over, (2) the hypothesis i is not good and all agents know it, or (3)
the hypothesis i is not good but some agents do not know it because for some of them everything appears to
have gone very well (in particular they are at the node supposedly corresponding to vi with agents having the
labels they should have w.r.t φi). The third situation may especially occur if the number of supposed agents
or the supposed size of the graph in φi is lower than it actually is. At this point, an “optimistic” agent may
think that it is in the first situation, while really it is in the third. This is why each time a phase is completed,
the optimistic agents, if any, execute a checking protocol based on a simulation of the exploration protocol
EST, in which the role of the token is played by some of them. If after having executed the checking protocol,
the optimistic agents notice they have constructed a map of the graph corresponding to that of φi and they
have not encountered agents thinking that hypothesis i is wrong (before switching to the next phase, these
agents stay idle enough time in order to be detected by possible optimistic agents), they can be sure to have
accomplished gathering. Otherwise, the agents that were optimistic join the camp of the agents knowing
that hypothesis i is wrong, and after a certain time, each agent goes back to its initial node in order to start
phase i+ 1.

The high level idea of our algorithm consists in emulating this general mechanism in a context in which the
agents are devoid of direct means of communication. However, this turns out to be much easier said than
done. Indeed, to settle properly such an emulation, we have to face numerous challenges. For instance, how
can an agent become optimistic about a supposed configuration φi, if it cannot see the labels of the agents
sharing its node? Or, how can an agent recognize its token played by some agents during an execution of the
checking protocol? In the next subsection, we bring algorithmic solutions to solve these problems. However,
one particular problem was really more important than the others, in the sense that its resolution appeared as
a sine qua non condition to solve most of the other problems raised by our emulation. The problem is this:
in order to emulate the mechanism outlined above in a correct way, an agent has to avoid confusing another
agent acting under the same hypothesis as itself, with an agent acting under a different hypothesis. While
this is not at all an issue when an agent can exchange arbitrary messages with the other agents sharing its
current node (indeed, it is then enough to ignore the agents that indicate processing a different hypothesis),
this becomes a real difficulty in our context. To tackle it, we put in place two fundamental schemes.

The first scheme consists in slowing down every agent more and more as it progresses through successive
hypotheses, so that an agent processing a hypothesis h avoids being mislead by an agent processing a
hypothesis h′ > h. Actually, using various strategies of moves such as, for example, some “dancing”
protocols (that consist in leaving and entering the same node in carefully chosen rounds), and by interleaving,
between each step of every hypothesis h > 1, waiting periods lasting the time of processing the hypotheses
1 to h − 1 in the worst case, every agent can detect an agent that processes a hypothesis larger than its
own current hypothesis. However, this turns out to be ineffective to protect an agent from being confused by
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agents processing smaller hypotheses. This is why we introduce a second scheme that divides the processing
of each hypothesis into two parts: the main part corresponding, strictly speaking, to the emulation of the
general mechanism with, in particular, the previously mentioned slowdowns and dances, that is preceded
by a preprocessing part, the heart of the second scheme, and which relies on the notions of kernel and ball
defined below.

A kernelK(u, h) is the set of all nodes that may be visited by an agent processing the main part of hypothesis
h, starting from a node u. In our solution, the set K(u, h) does not depend on the label of the executing
agent: in fact, the label can influence the way the nodes of K(u, h) are visited, but not the set of visited
nodes. Given a kernel K, its ball is the set of all its critical nodes. A node v is said to be critical for a kernel
K if v belongs to K, or if an agent, when initially located at node v, may visit a node of K before processing
hypothesis h, either during a preprocessing part or during a main part of some hypothesis h′ < h. These
notions are used within the second scheme, in the following way. An agent executing the preprocessing part
of a hypothesis h performs the following actions, without paying attention to other agents: first, it visits all
nodes of the ball of K(u, h), where u is the node it occupies at the beginning of the preprocessing and of
the main part of hypothesis h, then it goes back to u, and finally it waits the maximum time required for
an agent, which would have just been woken up, to begin the execution of hypothesis h (in our solution
the time to reach hypothesis h is bounded by some function depending only on the supposed graph sizes of
the previous hypotheses). By doing so, we have the guarantee that an agent a executing the main part of a
hypothesis h, the kernel of which is K, cannot encounter any agent executing the preprocessing part or the
main part of a previous hypothesis. Indeed, otherwise this would imply that an agent, initially located at a
node belonging to the ball of K, has been woken up after the traversal by agent a of the ball of K, which
would be a contradiction. Note that, visiting all nodes of the ball of K(u, h) can be made by following
all the (not necessary simple) paths of length d1 + d2 from node u, where d1 (resp. d2) is the maximum
distance between two nodes visited during the main part of hypothesis h (resp. during the processing of the
hypotheses 1 to h − 1). Also note that the executing agent will abort the traversal of the ball of K(u, h)
as soon as it occupies a node having a degree at least equal to the graph size of φh. This precaution does
not cause any problem because if such an event occurs the agent has the guarantee that φh 6= φ, and before
starting phase h + 1, it no longer has to worry about agents processing hypotheses different from its own.
This is nonetheless crucial as we need the agents to know in advance the worst-case time to process any
given hypothesis (to settle consistently some of the aforementioned waiting periods).

To get all of this to work, we must not forget to link the schemes to each other: in particular, the slowdowns
of the first scheme have to be also added between the steps of the preprocessing parts, and every ball traversal
of the second scheme has to take into account the dancing protocols of each main part resulting from the
first scheme.

In order to illustrate the importance of the joint application of the two presented schemes, let us close our
intuitive explanations by considering one of the problems, mentioned earlier, encountered in putting in place
our emulation: that of an exploration, during which an agent plays the role of an explorer while the others
play the role of a token, performed to check whether a supposed hypothesis is good or not. Actually, our
solution is designed so that for each hypothesis h, such explorations can be triggered by at most one group
Gh of agents located at the same node uh, those thinking that hypothesis h is good: the role of explorer is
assigned in turn to all agents of Gh using the order over the labels that are in φh. When an agent becomes
explorer, it executes protocol EST using as a token the other agents ofGh, which then stay idle at node uh. As
soon as the execution of EST is completed or as soon as the explorer notices that the map under construction
of the network does not match that of φh, it goes back to its token to let the other agents, which have not
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yet done so, execute EST and reach the same conclusion about the validity of hypothesis h. The key thing
for an explorer is to perform a “clean” exploration i.e., not to confuse the group of agents representing its
token with another group, as otherwise it might reach a wrong conclusion. Such a confusion can be avoided
by requiring the agents of Gh to perform twice together a traversal of all the nodes located at distance at
most d + 1 from node uh before starting the simulations of EST, where d is the maximal distance that may
separate an explorer from its token during a simulation of EST from uh. If some agents are encountered
during one of these two collective traversals, which can be easily detected through a rise of cardinality, then
all the agents ofGh have the guarantee that φh is not good and they do not even need to proceed further with
the simulations of EST. On the other hand, if no other agent is encountered during any of these traversals,
then in view of the two schemes, we have the guarantee that each simulation of EST by an agent of Gh will
be clean. Indeed, the second scheme ensures that an explorer cannot meet an agent processing a hypothesis
h′ < h. Moreover, an explorer cannot meet an agent processing a hypothesis h′ > h because the first
scheme ensures that such an agent is too slow to reach or to be already in the zone of the nodes at distance at
most d from uh (in which the successive simulations of EST are done) without having been detected during
one of the previous two traversals. Of course, one might still argue that an explorer could be bothered by
agents that also test hypothesis h but that do not belong to Gh. However, this kind of situation will never
occur. In fact, the agents that do not belong to Gh, will quickly notice that the hypothesis h is not good,
when processing the main part of hypothesis h, and thus by adding judicious waiting periods as we did in
our algorithm, we will be able to prove they will be detected by all agents of Gh during one of their two
collective traversals.

4.2 Algorithm

In order to give a clear presentation of our solution, we first need to introduce some notation and definitions.

In the sequel, we consider an arbitrarily fixed enumeration Ω = (φ1, φ2, φ3, . . .) of all initial configurations
φi represented as a graph of size at least 2 with all port numbers, in which there are at least 2 labeled nodes:
a node v is labeled L iff we assume that v is the initial node of an agent labeled L. For every positive
integer h, the values nh and kh respectively denote the number of nodes and the number of labeled nodes in
configuration φh. We also denote by mh the smallest integer such that for all i ∈ {1, . . . , h}, ni ≤ mh.

Gathering in our model, in the case where the agents are not initially given any upper bound on the graph
size, can be done using Algorithm GatherUnknownUpperBound described in Algorithm 5. This protocol
mainly consists of successive executions of the function Hypothesis(h) whose pseudocode is given in
Algorithm 6. Roughly speaking, when executing Hypothesis(h), an agent tries to solve gathering by
assuming that configuration φh was the real initial configuration φ. We will show that if there is a round r
when this function returns true during the execution by an agent of GatherUnknownUpperBound, then the
gathering is achieved and declared as such by all agents in round r: the variable leader (resp. size) of each
agent is, by then, equal to the smallest agent’s label (resp. the size of the graph). We will also show that
function Hypothesis returns true when the integer h given as input is such that φh = φ.

To draw a parallel with the intuitive explanations given in Section 4.1, lines 3 and 4 of Algorithm 6 corre-
spond to the preprocessing part of a hypothesis (i.e., the second scheme to protect an agent from confusion
by agents processing previous hypotheses) while the lines 5 to 23 correspond to the main part of a hypothe-
sis. For every positive integer h, the values Sh and Th used in Algorithm 6 are defined mutually recursively
as follows:
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Algorithm 5 Algorithm GatherUnknownUpperBound

1: begin
2: h← 0
3: repeat
4: h← h+ 1
5: b← Hypothesis(h)
6: until b = true

7: leader ← the smallest node’s label in φh
8: size ← the graph size in φh
9: declare the gathering is achieved

10: end

{
Sh = T(BallTraversal(h)) +

∑h−1
i=1 Ti

Th = 8m
2m5

h
h (3Sh + 2T(BallTraversal(h)))

The value T(BallTraversal(h)) used in the above formulas is defined below. We will show that Sh (resp.
Th) is an upper bound on the time to execute Hypothesis(1) to Hypothesis(h − 1) plus the function
BallTraversal(h) at the beginning of Hypothesis(h) (resp. an upper bound on the time to execute
Hypothesis(h)).

Algorithm 6 Algorithm Hypothesis(h)
1: begin
2: /* Beginning of the first part of the function */
3: if BallTraversal(h) then
4: wait Sh rounds
5: if MoveToCentralNode(h) then
6: if StarCheck(h) then
7: if EnsureCleanExploration(h) then
8: if GraphSizeCheck(h) then
9: return true

10: end if
11: end if
12: end if
13: end if
14: end if
15: /* Beginning of the second part of the function */
16: let e be the sequence of ports by which the agent entered during the first part (in the order of entrance); i← |e|
17: while i ≥ 1 do
18: wait 7m2m5

h
h rounds

19: take port e[i]
20: i← i− 1
21: end while
22: wait until having spent at least Th rounds in the current execution of the function
23: return false

24: end

As the name suggests, the ball traversal of the preprocessing part is based on the execution of function
BallTraversal(h) detailed in Algorithm 7: this function returns false iff during its traversal the agent
visits a node having a degree at least equal to the graph size of φh. The lines 13 and 21 of Algorithm 7
correspond to the slowdowns of our first scheme. For ease of presentation, we explained in the intuition
section that we could insert, between all steps of every hypothesis, waiting periods lasting enough time in

26



order to help detect agents processing higher hypotheses. However, as it is the case here, we do not need so
many extra waiting periods. Actually, the only other function where such slowdows are used for the same

purpose is Hypothesis(h) (cf. line 18 Algorithm 6). The value T(BallTraversal(h)) = 64hm
7hm5

h
h is

an upper bound on the execution time of BallTraversal(h).

Algorithm 7 Algorithm BallTraversal(h)
1: begin
2: for each path x of length 4hm5

h from the set {0, . . . , nh − 2} do
3: b← true

4: e← ε
5: i← 1
6: while b = true and i ≤ 4hm5

h do
7: if the degree of the current node is at least nh then
8: return false

9: end if
10: if there is no port x[i] at the current node then
11: b← false

12: else
13: wait 7m2m5

h
h rounds

14: take port x[i]
15: e[i]← the port through which the agent has just entered the current node
16: i← i+ 1
17: end if
18: end while
19: while i > 1 do
20: i← i− 1

21: wait 7m2m5
h

h rounds
22: take port e[i]
23: end while
24: end for
25: return true

26: end

We also explained in the intuition section that the main part of hypothesis h begins with a move to the node
that supposedly corresponds to the node vh of φh having the smallest label. This move is executed via the
function MoveToCentralNode(h) of Algorithm 8: in the sequel, given any positive integer h, node vh will
be called the central node of configuration φh. In Algorithm 8, given a node’s label L of configuration φh,
pathh(L) is a function that returns a sequence p corresponding to the lexicographically smallest shortest
path to follow in φh in order to reach the central node of φh from the node containing label L. If an
agent labeled L succeeds to follow entirely pathh(L) and notices it is with kh − 1 other agents after some
prescribed period of time, its call to function MoveToCentralNode(h) will return true, otherwise it will
return false.

When MoveToCentralNode(h) returns true, the next step for the agent is to check whether it is exclusively
with agents having succeeded their move to the central node of φh (indeed, the agent could for example
be with agents processing higher hypotheses). This is the main purpose of function StarCheck(h) (cf.
Algorithm 9) that is one of the components of the first scheme described earlier. In particular, when function
StarCheck(h) returns true, the agent has the guarantee that it is in a group Gh in which each agent has a
label that is equal to a node’s label in φh. The function rankh(L) used in the pseudocode of StarCheck(h),
and also in another one below, returns the number of nodes having a label smaller than L in configuration
φh.
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Algorithm 8 Algorithm MoveToCentralNode(h)
1: begin
2: L← the label of the executing agent
3: if there is a node labeled L in φh then
4: p← pathh(L)
5: for i← 1 to |p| do
6: if there is no port p[i] at the current node then
7: return false

8: end if
9: exit by port p[i]

10: end for
11: j ← 0
12: while CurCard 6= kh and j < Sh + nh do
13: wait
14: j ← j + 1
15: end while
16: if CurCard = kh then
17: wait Sh + nh rounds
18: if CurCard = kh then
19: return true

20: end if
21: end if
22: end if
23: return false

24: end

At the beginning of the execution of line 7 in Algorithm 6, the gathering may be done. We will show it
is the case if φh = φ. By chance, it could be also the case if φh 6= φ. However, at this point an agent
cannot decide if the gathering is done or not. To enable such a decision, we make use of the functions
EnsureCleanExploration(h) and GraphSizeCheck(h) described respectively in Algorithms 10 and 11.
Function GraphSizeCheck(h) mainly relies on function EST+(nh) that derives from procedure EST intro-
duced in the preliminaries section. Note that the execution of EST requires the existence of a genuine token
in the network, which is not the case in our context: in EST+(nh) this issue is simply overcome by using
some agents to play the role of a token. More precisely, function EST+(nh) consists of two consecutive
parts. The first part is a simulation of EST in which the executing agent exploring the graph considers it
is with its token in the rounds and only in the rounds in which CurCard > 1. The first part is completed
as soon as the simulation is completed or as soon as the execution of the first part by the agent has lasted
T(EST(nh)) rounds. In the second part, the agent backtracks by traversing in the reverse order the edges
that have been traversed during the first part. At the end of the backtrack, the function returns true if the
simulation of EST has been completed in time during the first part and if the graph size learned by the agent
is exactly nh, otherwise the function returns false.

In the proof of correctness of Algorithm GatherUnknownUpperBound, we will show that during each ex-
ecution of function EST+ from a node uh, the executing agent encounters another agent if and only if it is
at node uh: as mentioned in the intuition section, we then speak of clean exploration. This property comes
from the fact that the call to GraphSizeCheck(h) in line 8 of Algorithm 6 is made only if the call to func-
tion EnsureCleanExploration(h) in line 7 has returned true. If function EnsureCleanExploration(h)
returns false, all agents of Gh know that there are one or more agents that do not belong to Gh. On the other
hand, if function EnsureCleanExploration(h) returns true, the agents of Gh do not know whether there
are one or more agents that do not belong to Gh, but all their simulations of EST in GraphSizeCheck(h)
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Algorithm 9 Algorithm StarCheck(h)
1: begin
2: L← the label of the executing agent
3: d← the degree of the current node
4: b← true

5: for t← 1 to 2 do
6: for i← 0 to kh − 1 do
7: if (i = rankh(L) and (t = 1 or (t = 2 and b = true))) then
8: for j ← 0 to d− 1 do
9: take port j

10: e← the port through which the agent has just entered the current node
11: if t = 1 and CurCard 6= 1 then
12: b← false

13: end if
14: take port e
15: if CurCard 6= kh then
16: b← false

17: end if
18: end for
19: else
20: for j ← 1 to 2d do
21: wait
22: if (j mod 2 = 1 and CurCard 6= kh − 1) or (j mod 2 = 0 and CurCard 6= kh) then
23: b← false

24: end if
25: end for
26: end if
27: end for
28: end for
29: return b
30: end

Algorithm 10 Algorithm EnsureCleanExploration(h)
1: begin
2: for t← 1 to 2 do
3: for each path x of length n5

h + 1 from the set {0, . . . , nh − 2} do
4: b← true; i← 1
5: while (b = true and i ≤ n5

h + 1) do
6: if there is no port x[i] at the current node then
7: b← false

8: else
9: take port x[i]

10: if CurCard 6= kh then
11: return false

12: end if
13: i← i+ 1
14: end if
15: end while
16: traverse in the reverse order the i− 1 edges that have been traversed during the previous execution of the while loop
17: end for
18: end for
19: return true

20: end
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will be clean. Hence, if EnsureCleanExploration(h) returns true, all that an agent needs to conclude
is to check whether the graph size of φh is equal to the size of the real network or not (checking whether
the map of φh is the map of the real network is not necessary). When function GraphSizeCheck(h) is
executed by the agents of Gh in Algorithm GatherUnknownUpperBound, the function returns true to all of
them if n = nh, and false to all of them otherwise. When the latter case occurs, each agent of Gh knows
that φh 6= φ and will start Hypothesis(h + 1). If the former case occurs, φh may or may not be φ. How-
ever, whether φh = φ or not, we will show that each agent of Gh is guaranteed that during the execution
of EnsureCleanExploration(h) it visited the whole graph and, since EnsureCleanExploration(h)
returned true, there are no other agents than those of Gh, and thus the gathering is achieved.

Algorithm 11 Algorithm GraphSizeCheck(h)
1: begin
2: L← the label of the executing agent
3: for i← 1 to kh do
4: if i = rankh(L) + 1 then
5: b← EST+(nh)
6: end if
7: wait until having spent exactly 2iT(EST(nh)) rounds in the current execution of this algorithm
8: end for
9: return b

10: end

4.3 Correctness

All the results given in this subsection are stated assuming that the algorithm that is executed by an agent
when it wakes up is GatherUnknownUpperBound (cf. Algorithm 5).

We start with two basic propositions that follow directly from the formulation of Algorithms 7 to 11.
In the first proposition, we use the notation F(x). Given a positive integer x, F(x) is the set of the
four routines that may be executed with input parameter x during a call to Hypothesis(x) within Al-
gorithm GatherUnknownUpperBound except BallTraversal(x).

Proposition 4.1 Let x be a positive integer and let F be a routine in F(x) ∪ {BallTraversal(x)} that is
executed by an agent A from a node v. We have the following properties.

1. If F is BallTraversal(x), StarCheck(x) or EnsureCleanExploration(x), then during the ex-
ecution of F , agent A always remains at distance at most 4xm5

x, at most 1, or at most n5
x + 1 from

node v, respectively. If, in addition to being one of those three routines, F returns true, then agent
A is back at node v when F is completed.

2. If F is MoveToCentralNode(x), then during the execution of F , agent A always remains at distance
at most nx − 1 from node v.

3. If F is GraphSizeCheck(x), then during the execution of F , agent A always remains at distance at
most n5

x from node v. Moreover, agent A is back at node v when F is completed.

Proposition 4.2 Let x be a positive integer, and letA be an agent which calls function GraphSizeCheck(x).
The execution by agent A of GraphSizeCheck(x) lasts exactly 2kxT(EST(nx)) rounds.
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Note that in view of Algorithms 5 and 6, for a given positive integer x, agent A cannot call Hypothesis(x)
or start executing line 4 of Algorithm 6 during its execution of Hypothesis(x) more than once. In the
rest of this subsection, given an agent A we will denote by vA its initial node and by tA the round at
which it wakes up. Moreover, we will denote by sA,x (resp. wA,x) the round tA +

∑x−1
i=1 Ti (resp. sA,x +

T(BallTraversal(x))).

The following lemmas are related to the rounds at which the agents start their different calls to function
Hypothesis, and provide some properties about the beginning of any execution of this function. In par-
ticular, for every positive integer x, they aim at proving an upper bound on the time required to execute
Hypothesis(x), and some synchronization property in the form of an upper bound on the delay between
the rounds at which every pair of agents start executing Hypothesis(x). These two goals are achieved by
Lemmas 4.5 and 4.6, respectively.

Lemma 4.1 Let A be an agent and let x be a positive integer. If agent A calls function Hypothesis(x),
then it does so at node vA.

Proof. This proof is made by induction on x.

First consider the base case x = 1. Function Hypothesis(1) is called exactly once, at the beginning of the
execution of GatherUnknownUpperBound, before any move instruction. Hence, agent A starts executing
Hypothesis(1) at node vA.

Assume that there exists a positive integer y such that agent A starts executing Hypothesis(y) at node vA.
We aim at showing that, if agent A starts executing Hypothesis(y+1), then it does so at node vA. Assume
that agent A indeed starts executing Hypothesis(y + 1). It does so only once and only if Hypothesis(y)
returns false (refer to Algorithm 5). In view of lines 16 to 21 of Algorithm 6 and the induction hypothesis,
when Hypothesis(y) returns false, agentA is back at node vA. Since there is no wait or move instruction
between the end of Hypothesis(y) and the beginning of Hypothesis(y + 1), node vA is the node from
which agent A starts Hypothesis(y + 1). This concludes the inductive proof of this lemma. �

The following lemma is a rather technical one exhibiting the properties of function BallTraversal. As
explained in Section 4.1, this function is used in particular to upper bound the durations of other routines
such as StarCheck, in the proof of Lemma 4.4. It is also crucial to establish the synchronization property
of Lemma 4.6, and the statement of the properties provided by the second scheme in Lemma 4.7.

Lemma 4.2 Let x be a positive integer. Let A be an agent that calls BallTraversal(x). The execution
by agent A of BallTraversal(x) returns true if and only if the degree of every node at distance at most
4xm5

x from node vA is at most nx− 1. Moreover, if the execution of BallTraversal(x) by agent A returns
true, then during this execution, agent A visits every node at distance at most 4xm5

x from node vA.

Proof. In view of Lemma 4.1, the execution by agentA of BallTraversal(x) starts at node vA. In view of
lines 19 to 23 of Algorithm 7, at the beginning of each iteration of the for loop of Algorithm 7, agent A is at
node vA. Each iteration of this loop consists of considering a path of length 4xm5

x whose elements belong to
{0, . . . , nx−2} and following it. Finding a node with degree at least nx leads function BallTraversal(x)
to return false, and this is the single event which makes this function return false. Since the execution
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by agent A returns true, for each path π followed during one of the for loop iterations, agent A visits all
nodes of N (π, vA) and each of them has degree at most nx − 1. Finally, in view of line 2 of Algorithm 7,
for each path of length 4xm5

x whose elements belong to {0, . . . , nx − 2}, there is one iteration of the for
loop which processes it. All paths of length 4xm5

x from node vA are followed, which completes the proof.
�

The three following lemmas state upper bounds on the number of rounds required to execute some of our
routines. The two first ones are related to functions called by Hypothesis(x) (BallTraversal(x), and
some routines of F(x)) while the third one concerns Hypothesis(x) itself. The second lemma is par-
ticularly important as, at a high level, it provides the duration of the waiting periods necessary to set up
the first scheme presented in Section 4.1. The three functions whose duration this lemma upper bounds
(StarCheck, EnsureCleanExploration, and GraphSizeCheck) are the ones during the execution of
which an agent must not be misled by agents executing other hypotheses: they are the sensitive part of
function Hypothesis.

Lemma 4.3 Let x be a positive integer. Executing BallTraversal(x) requires at most T(BallTraversal(x)) =

64xm
7xm5

x
x rounds.

Proof. Function BallTraversal(x) consists of processing (nx − 1)4xm5
x distinct paths. The process of

each of these paths requires at most 8xm5
x(1 + 7m

2m5
x

x ) rounds. Thus, the number of rounds needed by the
execution of BallTraversal(x) is at most 8xm5

xn
4xm5

x
x (1 + 7m

2m5
x

x ). This is at most 64xm
(4x+2)m5

x+5
x ≤

64xm
7xm5

x
x rounds (which is referred to as T(BallTraversal(x)) in Section 4.2). The lemma is proved. �

Lemma 4.4 Let x be a positive integer. During every execution of Hypothesis(x), the total duration of
the execution of lines 6 to 8 of Algorithm 6 (i.e., routines StarCheck(x), EnsureCleanExploration(x),
and GraphSizeCheck(x)) is at most 7n

2n5
x

x rounds.

Proof. Executing function StarCheck(x) (refer to Algorithm 9) takes exactly 4dkx rounds, where d is the
degree of the node v in which the execution starts. In view of Algorithm 6, every execution of function
StarCheck(x) is preceded by executions of routines BallTraversal(x) and MoveToCentralNode(x).
In view of Proposition 4.1 and Lemma 4.1, node v is at distance at most nx − 1 from node vA. In view of
Lemma 4.2, this means that its degree is at most nx−1. Hence, the number of rounds taken by the execution
of StarCheck(x) is at most 4nx(nx − 1).

Function EnsureCleanExploration(x) (refer to Algorithm 10) consists of processing 2(nx − 1)n
5
x+1

paths. The process of each of these paths requires at most 2(n5
x + 1) edge traversals. Since nx ≥ 2, the

number of rounds required by the execution of this function is thus at most 4n
n5
x+6
x .

In view of Proposition 4.2, every execution of function GraphSizeCheck(x) requires at most 2n6
x rounds.

Hence, the total duration of the executions of the three functions is at most 4n
n5
x+6
x + 2n6

x + 4nx(nx − 1).
Since nx ≥ 2, 4nx(nx − 1) ≤ n6

x. This implies that 4n
n5
x+6
x + 2n6

x + 4nx(nx − 1) ≤ 4n
n5
x+6
x + 3n6

x which
is at most 7n

n5
x+6
x and thus at most 7n

2n5
x

x , since nx ≥ 2. �
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Lemma 4.5 Let x be a positive integer. Let A be an agent. If A calls Hypothesis(x), then it does so (resp.
starts executing line 4 of Algorithm 6 during its execution of Hypothesis(x)) in round sA,x (resp. in round
wA,x at the latest). If agent A has not declared that the gathering is achieved by round sA,x + 1 (resp.
wA,x + 1), then in round sA,x (resp. wA,x), it starts executing Hypothesis(x) (resp. has started executing
line 4 of Algorithm 6 during its execution of Hypothesis(x)).

Proof. First note that if agent A starts executing Hypothesis(x) at a round r, then in view of Lemma 4.3,
it starts executing line 4 of Algorithm 6 during its execution of Hypothesis(x), at the latest in round r +
T(BallTraversal(x)). Thus, to prove the lemma, it is enough to show that if agentA calls Hypothesis(x),
then it does so in round sA,x, and that if agent A has not declared that the gathering is achieved by round
sA,x + 1, then in round sA,x it starts executing Hypothesis(x).

This proof is by induction on x. First consider the base case x = 1. In view of Algorithm 5, agent A starts
executing Hypothesis(1) in round tA = sA,1 when it wakes up, and in which round it cannot declare that
the gathering is achieved. This completes the analysis of the case when x = 1.

We have two parts of the induction step. Assuming that there exists a positive integer y such that if agent A
calls Hypothesis(y), then it does so in round sA,y, we aim at showing that if agentA calls Hypothesis(y+
1), then it does so in round sA,y+1. Moreover, assuming that there exists a positive integer y such that if
agent A has not declared that the gathering is achieved by round sA,y + 1, then in round sA,y it starts
executing Hypothesis(y), we aim at showing that if agentA has not declared that the gathering is achieved
by round sA,y+1 + 1, then in round sA,y+1 it starts executing Hypothesis(y + 1).

Let us first show that if agent A starts executing Hypothesis(y), then it uses a time of at most 3Sy +
2T(BallTraversal(y)) rounds executing the first part of Hypothesis(y) (lines 3 to 14 of Algorithm 6).
Every execution of function MoveToCentralNode(y) consists, in the worst case, of performing ny−1 edge
traversals and waiting twice Sy+ny rounds. Hence, in view of Lemmas 4.3 and 4.4, and taking into account

line 4 of Algorithm 6, agentA spends at most 3Sy+3ny+7n
2n5
y

y +T(BallTraversal(y)) rounds executing
the first part of Hypothesis(y). This is at most 3Sy + 2T(BallTraversal(y)) rounds.

In view of the induction hypotheses, this implies that if the execution of Hypothesis(y) by agent A re-
turns true, then it does so (and thus agent A declares that the gathering is achieved) in round sA,y + 3Sy +
2T(BallTraversal(y)) at the latest. If this happens, then agentA does not start executing Hypothesis(y+
1), and has declared that the gathering is achieved by round sA,y+1 + 1.

We now assume that agent A calls Hypothesis(y + 1) or that it has not declared that the gathering is
achieved by round sA,y+1+1. In view of the previous paragraph, the execution by agentA of Hypothesis(y)
cannot return true. Note that since sA,y+1 − sA,y = Ty, showing that if agent A starts executing
Hypothesis(y), then it spends exactly Ty rounds executing this routine is enough to complete the proof
of the lemma.

At the end of the second part of Hypothesis(y), before returning false, agent A waits until having spent
at least Ty rounds executing Hypothesis(y) (refer to line 22 of Algorithm 6). Unless the round in which the
execution by agent A of lines 1 to 21 of Hypothesis(y) is completed is strictly later than round sA,y + Ty,
the execution by agent A of Hypothesis(y) is completed in round sA,y + Ty.

Since agent A spends at most 3Sy + 2T(BallTraversal(y)) rounds in the execution of the first part of
Hypothesis(y), the execution of lines 16 to 21 during the second part of Hypothesis(y) requires at most
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(1 + 7m
2m5

y
y )(3Sy + 2T(BallTraversal(y))). Hence the execution of Hypothesis(y) by agent A takes

exactly Ty rounds, which concludes the proof of the lemma. �

The next lemma states a synchronization property in the form of an upper bound on the delay between the
rounds in which every pair of agents start executing Hypothesis(x), for every positive integer x.

Lemma 4.6 Let x be a positive integer. LetA andB be two agents. Assume that agentA calls Hypothesis(x).
If there exists a path π of length at most 4xm5

x from node vA to node vB and each node at distance at most
4xm5

x from node vA has degree at most nx − 1, then round sB,x is at most sA,x + Sx and round wB,x is at
most wA,x + Sx.

Proof. In view of Lemma 4.5 and Algorithm 6, in round sA,x, agentA starts executing BallTraversal(x).
In view of Lemma 4.2, during this execution A visits every node at distance at most 4xm5

x from node vA,
which includes node vB . For this reason, agent B is woken up at the latest when the execution by agent A
of BallTraversal(x) is completed. In other words, the round tB in which agent B is woken up, is at most
wA,x.

Round sB,x is equal to tB +
∑x−1

y=1(Ty) ≤ wA,x+
∑x−1

y=1(Ty), which is equal to sA,x+Sx. Moreover, round
wB,x is equal to tB +

∑x−1
y=1(Ty)+T(BallTraversal(x)) ≤ wA,x+

∑x−1
y=1(Ty)+T(BallTraversal(x)),

which is equal to wA,x + Sx. This concludes the proof. �

The next lemma states the properties concerning the second scheme presented in Section 4.1. This lemma is
subsequently used in the proofs of Lemmas 4.8 and 4.9 to show that the agents executing other hypotheses
can be identified by dancing protocols such as StarCheck and EnsureCleanExploration and thus do not
mislead the agents executing GraphSizeCheck.

Lemma 4.7 Let x be a positive integer. Let A and B be two agents. Let r1 ≤ r2 be two rounds int which
agent A executes move instructions belonging to F(x) \ {MoveToCentralNode(x)}. Let v be a node and
let rA be a round belonging to {r1, . . . , r2 + 1} such that agent A is at node v in round rA. For every round
rB of {r1, . . . , r2}, if agent B executes a move instruction iB in round rB , and is at node v in round rB or
in round rB + 1, then instruction iB belongs:

• either to Hypothesis(y) with y ≥ x but to none of the routines of F(y).

• or to a waiting period of MoveToCentralNode(x) (lines 13 or 17 of Algorithm 8).

• or to a routine of F(x) \ {MoveToCentralNode(x)}.

Proof. Let y be the positive integer such that instruction iB belongs to Hypothesis(y). Denote by i1 and
i2 the move instructions executed by agent A in rounds r1 and r2 respectively. Also denote by iA the move
instruction executed by agent A either in round rA if rA ≤ r2, or in round r2 otherwise. Since instruction i1
belongs to a routine of F(x)\{MoveToCentralNode(x)}, in round r1 agentA has completed the execution
of line 17 of Algorithm 8, and thus has spent more than Sx rounds in its execution of Hypothesis(x). In
view of Lemma 4.5, this means that round r1 is larger than sA,x + Sx.

This proof relies on the following technical claim.
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Claim 4.1 Let v be a node and C (resp. D) be an agent which executes a move instruction iC (resp. iD) of
Hypothesis(p) (resp. Hypothesis(q)), with p ≥ q, in a round rC (resp. rD). Assume that agent C (resp.
D) is at node v in at least one round of {rC , rC + 1} (resp. {rD, rD + 1}). Also assume that instruction iC
belongs to a routine F of F(p), and either p > q or instruction iD also belongs to a routine of F(p). The
distance between nodes vC and vD is at most 4pm5

p and every node at distance at most 4pm5
p from node vC

has degree at most np − 1.

Proof of the claim. In view of Algorithm 6, function BallTraversal(p) and every routine of F(p) whose
execution has been completed by agent C before it starts function F , has returned true. In view of
Lemma 4.2, the degree of every node at distance at most 4pm5

p from node vC is at most np − 1. As a
result, it remains to show that node vD is at distance at most 4pm5

p from node vC .

In view of Proposition 4.1, once its execution of BallTraversal(p) is completed, agent C is back at node
vC , and in rounds rC and rC + 1, it is at distance at most np + n5

p from node vC (this corresponds to the
case in which MoveToCentralNode(p) brings it to some node w at distance np − 1 from node vC , and
EnsureCleanExploration(x) leads it at distance n5

p + 1 from node w).

Still in view of Proposition 4.1, if p 6= q then in rounds rD and rD + 1, agent D is at distance at most
4qm5

q from node vD, and if instruction iD belongs to a routine of F(p), then in rounds rD and rD + 1, it
is at distance at most np + n5

p from vD. In the first case, the distance between nodes vC and vD is at most
np + n5

p + 4qm5
q with p > q i.e., at most 4pm5

p, while in the second case, it is at most 2(np + n5
p) which is

also at most 4pm5
p. Hence, node vD is at distance at most 4pm5

p from node vC , which concludes the proof
of this claim. ?

First assume for the sake of contradiction that y < x. In view of Algorithm 6, instruction iA belongs to a
routine of F(x) \ {MoveToCentralNode(x)}. In view of Claim 4.1, the distance between nodes vA and vB
is at most 4xm5

x and every node at most at this distance from node vA has degree at most nx− 1. In view of
Lemma 4.6, this means that round sB,x is at most sA,x + Sx. Hence, we know that sB,x ≤ sA,x + Sx < r1.
Since agent B executes instruction iB in round rB ≥ r1, it has not declared that the gathering is achieved
by round sB,x + 1 and thus, in view of Lemma 4.5, starts executing Hypothesis(x) in round sB,x. This
contradicts the assumption that in round rB which is strictly larger than sB,x, agent B executes instruction
iB which belongs to Hypothesis(y) with x > y. This contradiction proves y ≥ x.

If instruction iB belongs toF(y), then since y ≥ x and instruction iA belongs toF(x), in view of Claim 4.1,
the distance between nodes vA and vB is at most 4ym5

y and every node at most at this distance from node
vB has degree at most ny − 1. Otherwise, y ≥ x and instruction iB belongs to none of the routines of F(y),
which corresponds to the first bullet point in the statement of the lemma.

Hence, we may assume that the distance between nodes vA and vB is at most 4ym5
y and every node at

most at this distance from node vB has degree at most ny − 1. In view of Lemma 4.6, round sA,y is at
most sB,y + Sy. Either y > x or y = x. If y > x, then since agent A executes a move instruction of
Hypothesis(x) in round r2, in view of Lemma 4.5, we know that r2 < sA,y ≤ sB,y + Sy. Still in view
of Lemma 4.5, this means that in round rB ≤ r2, agent B has performed at most Sy move instructions
during its execution of Hypothesis(y). In view of the waiting period at line 4 of Algorithm 6, instruction
iB belongs either to the latter line or to BallTraversal(y). This case corresponds to the first bullet point
in the statement of the lemma.

Attention can be thus restricted to the case when y = x. In this case, it is enough to show that if instruction
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iB belongs to MoveToCentralNode(x), then it does not consist of taking some port. Since agent A calls
MoveToCentralNode(x), Lemma 4.2 implies that the degree of every node at distance at most 4xm5

x from
node vA is at most nx − 1. In view of Lemma 4.6, since the distance between nodes vA and vB is at most
4xm5

x, round wB,x is at most wA,x + Sx. In view of Algorithm 6, agents A and B spend the same number
of rounds executing line 4 of Hypothesis(x). Then, agent A spends at least Sx + nx rounds executing
MoveToCentralNode(x) (line 17 of Algorithm 8), and agent B spends at most nx − 1 rounds moving
in MoveToCentralNode(x) before reaching the waiting periods of lines 13 and 17. Hence, in view of
Lemma 4.5, the last round in which agent B executes a move instruction that consists of taking some port
and belongs to MoveToCentralNode(x) is at mostwB,x+Sx+nx−1 which is at mostwA,x+2Sx+nx−1
and thus at most r1 − 1. This proves that if the move instruction iB executed in round rB ≥ r1 belongs to
MoveToCentralNode(x), then it does not consist of taking some port, which concludes the proof. �

Let Lx be the set of labels of agents in configuration φx. In view of Algorithm 8 and in particular of its
line 3, we have the following proposition used in the proofs of the next lemmas. It reflects the fact that the
agents whose label does not belong to Lx “quickly notice” that hypothesis x is not good, which allows us to
restrict attention to the agents whose labels belong to Lx which may not have noticed it yet when they start
executing StarCheck(x).

Proposition 4.3 Let x be a positive integer and letA be an agent. Assume thatA executes line 13 or line 17
of Algorithm 8 during its execution of MoveToCentralNode(x). Then its label belongs to Lx.

The next lemma is the most involved one. Assuming that an agent A calls EnsureCleanExploration(x),
its proof consists in showing that the dancing protocol performed in routine StarCheck(x) is not misled
by the agents executing other hypotheses. Roughly speaking, Lemma 4.8 ensures that when an agent A
starts executing EnsureCleanExploration(x), it belongs to a group of synchronized agents that “think”
configuration φx could be good. The proof of this lemma is particularly involved because of the subtlety of
the dances used by function StarCheck(x), compared, e.g., to those of EnsureCleanExploration(x).

Lemma 4.8 Let x be a positive integer. Let A be an agent which calls EnsureCleanExploration(x) in a
round t at a node v. There is an agent with label l which calls EnsureCleanExploration(x) in round t at
node v if and only if l ∈ Lx.

Proof. In view of Proposition 4.1 and Algorithms 6 and 9, agent A calls StarCheck(x) at node v in
round t − 4dkx, where d is the degree of v. For every agent which executes StarCheck(x), in view
of Proposition 4.3 and Algorithm 6, its label belongs to Lx. To complete the proof of the lemma, it is thus
enough to show that for every l ∈ Lx, the agent with label l starts executing EnsureCleanExploration(x)
in round t at node v. This is verified if kx = 1. Thus, we assume that kx ≥ 2.

First assume that t is the earliest round in which an agent calls EnsureCleanExploration(x). In this case,
we need the following notions of checking instruction and rank. Given an agent with label l ∈ Lx, its rank
is the number of nodes in configuration φx with a label strictly smaller than l. A checking instruction is a
move instruction executed in a round at least t − 4dkx and at most t − 1 consisting either in leaving or in
entering node v. Denote by z the rank of agent A. In view of Algorithm 9, in round t−4dkx+ 2dz, agent A
starts executing lines 8 to 18 of Algorithm 9. Moreover, the execution of these lines is completed in round
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t − 4dkx + 2d(z + 1). This fact is used by the following claims to show increasingly stronger properties
related to the checking instructions, until proving that the lemma is verified when t is the earliest round in
which an agent calls EnsureCleanExploration(x).

Claim 4.2 For every o ∈ {0, . . . , 4dkx− 1}, there is a checking instruction executed at round t− 4dkx + o
that consists in leaving (resp. entering) node v if o is even (resp. odd).

Proof of the claim. Since agent A starts executing lines 8 to 18 of Algorithm 9 at node v in round t −
4dkx + 2dz and this execution is completed in round t − 4dkx + 2d(z + 1), the claim is verified for every
o ∈ {2dz, . . . , 2d(z+1)−1}. Moreover, agentA never assigns false to its variable b during its execution
of StarCheck(x).

For every p ∈ {0, . . . , 2kx − 1} \ {z}, agent A starts executing lines 20 to 25 of Algorithm 9 in round
t − 4dkx + 2dp. For every 0 < q ≤ d, in round t − 4dkx + 2dp + 2q (resp. t − 4dkx + 2dp + 2q − 1),
there are kx (resp. kx− 1) agents at node v. Moreover, in view of line 18 of Algorithm 8, in round t− 4dkx,
there are kx agents at node v. Furthermore, in view of line 15 of Algorithm 9, there are kx agents at node v
in round t− 4dkx + 2d(z + 1).

Hence, for every o ∈ {0, . . . , 2dz} ∪ {2d(z + 1), . . . , 4dkx}, if o is even (resp. odd), then in round t −
4dkx + o, there are kx (resp. kx − 1) agents at node v. This means that, for every o ∈ {0, . . . , 2dz − 1} ∪
{2d(z + 1), . . . , 4dkx − 1}, if o is even (resp. odd), then in round t − 4dkx + o, at least one checking
instruction consisting in leaving (resp. entering) node v is executed. This proves the claim. ?

In view of Claim 4.2, there are at least 4dkx checking instructions. This is a key property in this proof. We
are going to show that most move instructions of our algorithm cannot be checking instructions, and thus
that unless the lemma is verified, there cannot be 4dkx of them.

Since agent A executes move instructions belonging to StarCheck(x) both in round t − 4dkx and in
round t − 1, and is at node v in round t − 4dkx, we can use Lemma 4.7 to restrict the set of move in-
structions in which each checking instruction can be. Note that checking instructions consist in taking
some port and thus do not belong to waiting periods. Moreover, since the earliest round in which an
agent calls EnsureCleanExploration(x) is t, the checking instructions can belong neither to function
EnsureCleanExploration(x) nor to function GraphSizeCheck(x). Hence, for every checking instruc-
tion i, either there exists y ≥ x such that instruction i belongs to Hypothesis(y) but to none of the routines
of F(y), or instruction i belongs to StarCheck(x).

In the first case, instruction i is executed either in line 19 of Algorithm 6, or in line 14 of Algorithm 7,
or in line 22 of Algorithm 7. Whichever the case, before and after this edge traversal, the agent executing
instruction i waits at least 7m

2m5
x

x rounds.

For this reason, a checking instruction i for which there exists a positive integer y ≥ x such that instruction
i belongs to Hypothesis(y) but to none of the routines of F(y) is called a slow checking instruction, while
a checking instruction belonging to StarCheck(x) is called a fast checking instruction. Moreover, a round
r is called a leaving round (resp. an entering round) if and only if there exists an even (resp. odd) integer o
belonging to {0, . . . , 4dkx − 1} such that r = t− 4dkx + o. Lastly, an agent B is said to satisfy round r if
and only if either r is a leaving round and in round r agent B executes a checking instruction consisting in
leaving node v, or r is an entering round and in round r agent B executes a checking instruction consisting
in entering node v.
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Claim 4.3 No slow checking instruction consisting in leaving (resp. entering) node v can be executed in a
round strictly smaller than round t− 4dkx + 2dz (resp. at least round t− 4dkx + 2d(z + 1)).

Proof of the claim. Assume for the sake of contradiction that the claim does not hold. This means that
there exists an agent B, and either a round r1 < t− 4dkx + 2dz in which agent B executes a slow checking
instruction i1 consisting in leaving node v, or a round r2 ≥ t− 4dkx + 2d(z+ 1) in which agent B executes
a slow checking instruction i2 consisting in entering node v. The proof is similar for both cases.

There is a neighbor u of node v, such that either agent B is at node v from round t− 4dkx to round r1 (both
included) and at node u from round r1 + 1 to round t (both included), or agent B is at node u from round
t− 4dkx to round r2 (both included) and at node v from round r2 + 1 to round t (both included). Whichever
the case, agent B is at node u from round r1 + 1 to round r2 i.e., at least from round t − 4dkx + 2dz to
round t− 4dkx + 2d(z + 1).

During its execution of lines 8 to 18 of Algorithm 9 from round t−4dkx+2dz to round t−4dkx+2d(z+1),
agent A visits every neighbor of node v including u, notices a cardinality different from 1 at node u and as-
signs false to its variable b, which contradicts the fact that it starts executing EnsureCleanExploration(x)
in round t and thus completes the proof of the claim. ?

In view of Claims 4.2 and 4.3, for every o ∈ {0, . . . , 4dkx−1}, if o < 2dz and o is even (resp. o ≥ 2d(z+1)
and o is odd), there is at least one checking instruction consisting in leaving (resp. entering) node v but no
slow checking instruction which is executed in round t− 4dkx + o. For every o ∈ {0, . . . , 4dkx− 1}, round
t − 4dkx + o is called a fast-only leaving (resp. fast-only entering) round if and only if o < 2dz and o is
even (resp. o ≥ 2d(z + 1) and o is odd).

Thanks to the existence of fast-only rounds (which can only be satisfied by agents executing StarCheck(x)),
the next claim proves some properties concerning the agents executing StarCheck(x). Its statement uses
the notion of slice. For every positive integer p at most 2kx, the p-th slice is the set of rounds {t − 4dkx +
2d(p− 1), . . . , t− 4dkx + 2dp− 1}.

Claim 4.4 For every positive integer p ≤ 2kx, there is one agent C, such that all fast-only rounds of the
p-th slice are satisfied by agent C and only by it. Moreover, for every agent B 6= A whose label belongs
to Lx, there exist two positive integers p1 and p2 both at most 2kx, such that agent B is the only agent to
satisfy the fast-only rounds of the p1-th slice and the p2-th slice.

Proof of the claim. For every positive integer p ≤ 2kx, if p 6= z+ 1, then there are d fast-only rounds in the
p-th slice. If p < z+ 1 (resp. p > z+ 1), these are fast-only leaving (resp. entering) rounds. Thus, there are
2kx − 1 slices with d fast-only rounds, and one slice, the (z + 1)-th, during which agent A executes lines 8
to 18 of Algorithm 9, and no round of which is fast-only.

There are only kx agents whose labels belong to Lx. Each of them executes at most twice lines 8 to 18 of
Algorithm 9. Moreover, executing these lines once permits to satisfy at most d fast-only rounds. Hence, the
maximum number of fast-only rounds which can be satisfied is d+2d(kx−1) = d(2kx−1) i.e., the number
of fast-only rounds. This implies that satisfying all fast-only rounds requires the three following facts. (1)
Each agent whose label belongs to Lx executes lines 8 to 18 of Algorithm 9 twice during its execution of
StarCheck(x). (2) Each execution of lines 8 to 18 of Algorithm 9 by an agent whose label belongs to Lx
during its execution of StarCheck(x) (except the first one by agent A) satisfies d fast-only rounds. (3) No
fast-only round is satisfied by two agents.
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Consider the earliest fast-only round. There is an agent whose label belongs to Lx which satisfies it by
executing lines 8 to 18 of Algorithm 9 during its execution of StarCheck(x). The execution of these lines
satisfies all d earliest fast-only rounds i.e.,all d fast-only rounds of one slice which is the first one if z 6= 0 and
the second one otherwise. Then, similarly, for every positive integer p ≤ 2kx, if p 6= z+ 1, there is an agent
whose label belongs to Lx which satisfies the d fast-only rounds of the p-th slice by executing lines 8 to 18
of Algorithm 9 during its execution of StarCheck(x). Moreover, as explained in the previous paragraph,
every agent whose label belongs to Lx executes these lines twice during its execution of StarCheck(x) and
each fast-only round is satisfied by only one agent. This concludes the proof of the claim. ?

We need two other claims. The second one makes use of the properties related to fast-only rounds (es-
pecially those from the previous claim) to prove that all agents whose label belongs to Lx start executing
StarCheck(x) at node v in round t − 4dkx. To prove this second claim, and build on it to show that the
lemma is verified when t is the earliest round in which an agent calls EnsureCleanExploration(x), we
require the following claim.

Claim 4.5 Let B be an agent which starts executing StarCheck(x) at node v in a round r. If round r is at
most t− 4dkx, then it is equal to t− 4dkx and the execution by agent B of StarCheck(x) returns true.

Proof of the claim. In view of Claim 4.4, agent B executes lines 8 to 18 of Algorithm 9 twice and for each
execution of these lines by agent B, there is one slice whose d fast-only rounds it satisfies. The earliest
fast-only round is round t − 4dkx. In view of Lemma 4.8, this implies that agent B cannot start executing
StarCheck(x) before round t− 4dkx and thus that it does so in this round.

Assume for the sake of contradiction that agent B assigns false to its variable b in round r2. In view of
Algorithm 9, in round r1 when the second execution of these lines starts, the value of the variable b of agent
B is still true which implies r1 < r2.

Since agents A and B both start executing StarCheck(x) in round t − 4dkx at node v, in view of Algo-
rithm 9, for every non-negative even integer o ≤ 4dkx − 1, both agents A and B are at node v and assign
false to their variable b in round t−4dkx+ o if and only if there are not kx agents at node v in this round.
If there exists a non-negative even integer o at most 4dkx − 1 such that r2 = t − 4dkx + o, then agent A
also assigns false to its variable b in round t, which contradicts the assumption that it never does. Hence,
there is no non-negative even integer o ≤ 4dkx − 1 such that r2 = t− 4dkx + o.

Let w be the rank of agent B (the rank of agent A is z). For every positive integer p ≤ 2kx different from
(w + 1), (z + 1), (w + kx + 1), and (z + kx + 1), and for every positive even integer q ≤ 2d, round r2 is
different from the q-th round of the p-th slice i.e., from round t− 4dkx + 2d(p− 1) + q− 1. Indeed, in this
round, agents A and B are at node v and assign false to their variable b if and only if there are not kx − 1
agents at node v in this round.

Round r2 cannot belong to the (w + 1)-th or (z + 1)-th slices since their rounds are smaller than t − 2dkx
which is at most r2. Moreover, for every positive even integer q ≤ 2d, agent B does not assign false to
its variable b in the q-th round of the (w + kx + 1)-th slice i.e., in round t− 2dkx + 2dw + q − 1, when it
executes lines 11 to 14 of Algorithm 9 while the value of its variable t is 2.

Hence, there exists a positive even integer q ≤ 2d such that round r2 is the q-th round of the (z+ kx + 1)-th
slice i.e., round t− 2dkx + 2dz+ q− 1. In this round, agent A executes lines 11 to 14 of Algorithm 9 while
agent B executes lines 22 to 24 and line 21. While agent A is at a neighbor of node v, agent B is at node v
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and there are not kx − 1 agents at node v. Since in round r2 − 1, there are kx agents at node v and agent A
leaves this node in this round, other agents than A and B either leave or enter node v in round r2 − 1.

Note that round r2− 1 (resp. r2) is a leaving (resp. entering) round. In view of Claim 4.3, no slow checking
instruction consisting in entering node v can be executed in round r2 − 1. In view of Claim 4.4, no other
agent than A can execute a fast checking instruction consisting in leaving (resp. entering) node v in round
r2 − 1 (resp. r2). Moreover, if an agent executed a fast checking instruction consisting in entering node v
in round r2 − 1, then all its checking instructions consisting in leaving (resp. entering) node v would be
executed in an entering (resp. a leaving) round and it would not satisfy any round, which would contradict
Claim 4.4.

Hence, in round r2 − 1, an agent C executes a slow checking instruction consisting in leaving node v.
From round r2, it waits at least 7m

2m5
x

x rounds and thus it is not at node v in round r2 + 1. However,
in this round, agent A is back at node v and notices kx agents at this node. This means that there is an
agent D 6= A which executes a checking instruction iD consisting in entering node v in round r2. In view
of Claim 4.3, instruction iD cannot be slow. But, if this instruction is fast, then agent D executes a fast
checking instruction consisting in leaving node v either in round r2 − 1 or in round r2 + 1, like agent A,
which contradicts Claim 4.4. This shows that round r2 cannot exist. The claim is proved. ?

Claim 4.6 For every non-negative integer p < kx, the agent with rank p starts executing StarCheck(x) in
round t− 4dkx at node v.

Proof of the claim. Let p be any positive integer at most 2kx and different from z + 1. Consider the p-th
slice. Let B be the agent which satisfies the fast-only rounds of the p-th slice, in view of Claim 4.4.

Let us first show that agent B starts executing StarCheck(x) at node v. To this end, we assume for the sake
of contradiction that agent B starts executing StarCheck(x) at a neighbor u of node v. First suppose that
d ≥ 2. In view of Algorithm 9, agent B performs two edge traversals between node u and node v and thus
two fast checking instructions per execution of lines 8 to 18, in two consecutive rounds. This contradicts
Claim 4.4, in view of which with only one execution of these lines, agent B has to satisfy the d fast-only
rounds of the p-th slice, which are not consecutive (between every pair of fast-only rounds, there is at least
one round which is not fast-only).

Hence, suppose that d = 1. Thus, node u is the only neighbor of node v. The agents whose label belongs
to Lx start executing StarCheck(x) either at node v or at node u. In view of Claim 4.4, for every positive
integer q ≤ 2kx, there is one agent such that all fast-only rounds of the q-th slice are satisfied by this agent
and only by it.

In view of Algorithm 9, every agent C which starts executing StarCheck(x) at node v spends 2d(kx − 1)
rounds i.e., kx − 1 slices waiting between the two slices whose fast-only rounds it satisfies. Hence, if agent
C satisfies the fast-only rounds of the q-th slice, where q is a positive integer at most kx (resp. at least kx+1
and at most 2kx), then it also satisfies the fast-only rounds of the (q + kx)-th slice (resp. the (q − kx)-th
slice).

Let e be the degree of the neighbor u of node v. Similarly as for the agents which start executing StarCheck(x)
at node v, every agent D that starts executing StarCheck(x) at node u spends 2e(kx − 1) rounds i.e.,
e(kx−1) slices, waiting between the two slices whose fast-only rounds it satisfies. This implies that if agent
D satisfies the fast-only rounds of the q-th slice, where q is a positive integer at most kx(2 − e) (resp. at
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least ekx + 1 and at most 2kx), then it also satisfies the fast-only rounds of the (q + ekx)-th slice (resp. the
(q − ekx)-th slice). This is for instance the case of agent B. However, the only value of degree e for which
this is possible is 1, which means that nodes u and v have the same degree: 1. Otherwise, an agent which
starts executing StarCheck(x) at node u spends too many rounds between two executions of lines 8 to 18
of Algorithm 9 to satisfy the fast-only rounds of two distinct slices.

Consequently, there are only two nodes in the graph: u and v. Moreover, there are two agents in the graph:
A and B. Agent A satisfies not only the fast-only rounds but all rounds of the (z+ 1)-th and (z+kx + 1)-th
slices and does not satisfy any round of the p-th and (p + kx)-th (resp. (p − kx)-th) slices if p ≤ kx (resp.
p > kx). Agent B must satisfy all rounds of these two slices, which means that for each of these slices, it
has to execute a checking instruction consisting in leaving node v and then a checking instruction consisting
in entering it. However, during its executions of lines 8 to 18 of Algorithm 9 from node u, it first enters
v and then leaves it. It cannot satisfy all rounds of the p-th and (p + kx)-th (resp. (p − kx)-th) slices if
p ≤ kx (resp. p > kx). This contradicts Claim 4.2 and completes the proof that agent B starts executing
StarCheck(x) at node v.

Let us now show that agent B starts executing StarCheck(x) in round t− 4dkx. In view of Claim 4.5, the
execution of StarCheck(x) by agent B cannot start in a round strictly smaller than t− 4dkx. This implies
that agent B starts executing StarCheck(x) at the earliest in round t− 4dkx.

The rest of this proof is made by induction on the index of the slices. In view of Algorithm 9, since the
agent which satisfies the fast-only rounds of the first slice leaves (resp. enters) node v in round t − 4dkx
(resp. t − 4dkx + 1), it does so while executing line 9 (resp. line 14) of Algorithm 9, and thus in view of
line 7, its rank is 0, and it starts executing StarCheck(x) in round t− 4dkx. Let us now assume there exists
a non-negative integer q < kx such that the agent with rank q starts executing function StarCheck(x) in
round t− 4dkx at node v and satisfies the fast-only rounds of the (q + 1)-th slice. Note that all agents with
rank at most q spend 2d(kx − 1) rounds i.e., kx − 1 slices waiting between the two slices whose fast-only
rounds they satisfy and thus that, if q+1 < kx, then they cannot satisfy the fast-only rounds of the (q+2)-th
slice. This implies that, if q + 1 < kx, then the agent which satisfies the fast-only rounds of the (q + 2)-th
slice must have rank q + 1 and start executing function StarCheck(x) in round t− 4dkx. Hence, for every
non-negative integer o < kx, the agent with rank o starts executing StarCheck(x) in round t−4dkx at node
v and satisfies the fast-only rounds of the (o+ 1)-th and (o+ kx + 1)-th slices. This completes the proof of
the claim. ?

In view of Claim 4.6, every agent B whose label belongs to Lx starts executing StarCheck(x) in round
t − 4dkx at node v. In view of Proposition 4.1, agent B completes this execution in round t at node v. In
view of Claim 4.5, the execution by agent B of StarCheck(x) returns true. This completes the proof of
the lemma when round t is the earliest one in which an agent calls EnsureCleanExploration(x).

Now assume that round t is not the earliest one in which an agent calls EnsureCleanExploration(x).
As explained at the very beginning of this proof, in view of Proposition 4.3, agent A that calls rou-
tine EnsureCleanExploration(x) in round t has a label belonging to Lx. Let r < t be the earliest
round in which an agent calls EnsureCleanExploration(x). The part of this proof related to the case
when t is the earliest round applies to round r. This means that there is an agent with label l that calls
EnsureCleanExploration(x) in round r at node v if and only if l ∈ Lx. This contradicts the fact that
agent A, whose label belongs to Lx calls EnsureCleanExploration(x) in round t > r, and completes the
proof. �
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The following lemmas focus on routine EnsureCleanExploration. It is the second dancing protocol. It
is executed after StarCheck to ensure a clean exploration by GraphSizeCheck. The next lemma is the
most technical one left. The other remaining lemmas mostly consist in showing that this one can be applied.
Since all agents whose labels belong to Lx start a common execution of EnsureCleanExploration, in
view of Lemma 4.8, the next lemma roughly states that this routine allows them to detect agents whose label
does not belong to Lx and which would disturb the execution of GraphSizeCheck.

Lemma 4.9 Let x be a positive integer. Let A and B be two agents. Assume that agent A starts executing
EnsureCleanExploration(x) at node v in round r1. Assume that in round r2, agent A executes a move
instruction belonging either to EnsureCleanExploration(x) or to GraphSizeCheck(x), and that no
agent declares that the gathering is achieved before round r2 + 1. Also assume that there exists a node u at
distance at most n5

x from node v that agents A and B visit in rounds belonging to {r1, . . . , r2 + 1}. If the
label of agent B does not belong to Lx, then the execution by agent A of EnsureCleanExploration(x)
returns false.

Proof. In view of Lemma 4.7, for every move instruction iB executed by agentB in a round of {r1, . . . , r2},
either there exists y ≥ x such that instruction iB belongs to Hypothesis(y) but to none of the routines of
F(y), or instruction iB belongs to a waiting period of MoveToCentralNode(x), or instruction iB belongs
to a routine of F(x) \ {MoveToCentralNode(x)}. Since the label of agent B does not belong to Lx, in
view of Proposition 4.3, agent B neither starts executing the waiting periods of MoveToCentralNode(x)
nor the routines of F(x) \ {MoveToCentralNode(x)}. Thus, for every move instruction iB executed by
agent B in a round of {r1, . . . , r2}, there exists y ≥ x such that instruction iB belongs to Hypothesis(y)
but to none of the routines of F(y).

In view of Algorithms 6 and 7, every edge traversal performed while executing Hypothesis(y) but none
of the routines of F(y) (either line 19 of Algorithm 6, or line 14 of Algorithm 7, or line 22 of Algorithm 7)

is preceded and followed by a waiting period of at least 7m
2m5

y
y ≥ 7n

2n5
x

x rounds. In view of Lemma 4.4,
7n

2n5
x

x upper bounds the number of rounds required by any agent to execute lines 6 to 8 of Algorithm 6
(i.e., routines StarCheck(x), EnsureCleanExploration(x), and GraphSizeCheck(x)). Hence, between
rounds r1 and r2 agent B performs at most one edge traversal.

There are at most two nodes in which agent B can be in every round of {r1, . . . , r2}. Among these at most
two nodes, one is u, and if there is a second one, call it w, then it is a neighbor of node u. In view of
Proposition 4.1, the distance between nodes v and vA is at most nx − 1. In view of Lemma 4.2, the degree
of every node at distance at most 4xm5

x from vA is at most nx − 1. This implies the following. There is a
path π of length n5

x + 1 such that N (π, v) contains nodes u and w. Moreover, all nodes of N (π, v) are at
distance at most 4xm5

x from node vA. The degree of nodes v and u, like every node of N (π, v), is at most
nx − 1.

Assume for the sake of contradiction that the execution by agent A of EnsureCleanExploration(x)
returns true. Consider Algorithm 10, executed from node v by all kx agents whose labels belong to Lx,
starting in round r1. In view of line 16, at the beginning of each iteration of the for loop of line 3, agent A is
at node v. Each iteration of this loop consists in considering a path of length n5

x + 1 whose elements belong
to {0, . . . , nx−2} and following it. Since the execution by agentA of EnsureCleanExploration(x) does
not return false, it is not interrupted, and among all the paths enumerated, there is the path π. In view of
line 2, during their common execution of EnsureCleanExploration(x) which is not interrupted before
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returning true, all kx agents whose labels belong to Lx follow path π from node v twice. Since agent
B performs at most one edge traversal between u and w in the meantime, there is a round in which all kx
agents whose labels belong to Lx execute line 10 while at the same node (either u or w) as agent B. In this
round, the execution of EnsureCleanExploration(x) by each of the kx agents whose labels belong to Lx
(to which agent A belongs) returns false. This is a contradiction and concludes the proof. �

The intuitive notion of “clean” exploration presented in Section 4.1 comes into the picture with the fol-
lowing lemma. This notion is formally defined below. Let x be a positive integer, and let A be an agent
that calls GraphSizeCheck(x) at a node v in some round. In view of Algorithm 11, during its execu-
tion of GraphSizeCheck(x), agent A executes EST+(nx) from node v. Denote by t2 and t3 the rounds
in which the execution by agent A of EST+(nx) is started and completed, respectively. The execution of
GraphSizeCheck(x) by agent A is said to be clean if for every round t2 ≤ t ≤ t3, agent A is at node v in
round t if and only if there is at least one other agent at this node in round t.

Lemma 4.10 Let x be a positive integer. Let A be an agent which calls GraphSizeCheck(x) in a round t.
If no agent declares that the gathering is achieved before round t+ 2kxT(EST+(nx)), then the execution of
GraphSizeCheck(x) by agent A is clean.

Proof. In view of Lemma 4.8, there is a node v and a round t1 such that for each label l ∈ Lx the execution
of StarCheck(x) by the agent with label l is completed at node v in round t1. In other words, agentA starts
executing EnsureCleanExploration(x) at node v in round t1, like the kx − 1 other agents whose labels
belong to Lx. Moreover, since no instruction of Algorithm 10 results in different behaviors depending on
the executing agent, in every round in which at least one agent executes EnsureCleanExploration(x),
all kx agents whose labels belong to Lx are at the same node and execute the same instructions, until round
t2 in which the execution by each of them of this function returns true. Then, in view of Proposition 4.2,
the execution of GraphSizeCheck(x) by each of the kx agents whose labels belong to Lx is completed in
round t2 + 2kxT(EST+(nx)) at node v. In view of Algorithm 11, the kx agents whose labels belong to Lx
take turns in executing EST+(nx) while the kx − 1 others wait at node v. Since kx − 1 ≥ 1, when agent A
is executing EST+(nx) and is at node v, there is at least one other agent at this node.

Assume for the sake of contradiction that there exists a round t2 ≤ r ≤ t2 + 2kxT(EST+(nx)) in which an
agent B occupies the same node u 6= v as agent A. In view of Proposition 4.1, the distance between nodes
u and v is at most n5

x. In view of Algorithm 11, during the execution of GraphSizeCheck(x) that all kx
agents whose labels belong to Lx start in round t2 at node v, they take turns in executing EST+(nx) while
the kx − 1 other agents wait at node v. Hence, in round r, when agent A is at node u 6= v, all kx − 1 other
agents whose label belongs to Lx are at node v. This means that the label of agent B does not belong to
Lx. Moreover, no agent declares that the gathering is achieved before round t2 + 2kxT(EST+(nx). Thus,
we can apply Lemma 4.9, which contradicts the assumption that agent A calls GraphSizeCheck(x). This
concludes the proof. �

The two following lemmas state important high-level properties of our algorithm: its safety and liveness.

Lemma 4.11 Assume that an agent A ends up declaring that the gathering is achieved at a node v in a
round t. Every agent declares that the gathering is achieved at node v in round t. Moreover, in round t,
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every agent assigns to its variable leader (resp. size) the value of the smallest label of an agent (resp. the
size of the graph).

Proof. First assume that t is the earliest round in which an agent declares that the gathering is achieved.

In view of Lemma 4.8, there is a node v and a round t1 such that for each label l ∈ Lx the execution by
the agent with label l of StarCheck(x) is completed at node v in round t1. In other words, agent A starts
executing EnsureCleanExploration(x) at node v in round t1, like the kx − 1 other agents whose labels
belong to Lx. Moreover, since no instruction of Algorithm 10 results in different behaviors depending on
the executing agent, in every round in which at least one agent executes EnsureCleanExploration(x), all
kx agents whose labels belong to Lx are at the same node and execute the same instructions, until round t2
in which the execution by each of them of this function returns true. Then, in view of Proposition 4.2, the
execution of GraphSizeCheck(x) by each of the kx agents whose labels belong to Lx is completed in round
t = t2 + 2kxT(EST+(nx)) at node v. In view of Lemma 4.10, all these executions of GraphSizeCheck(x)
are clean. In view of the description of procedure EST+ in Section 4.2, agent A declares that the gathering is
achieved because the size n of the graph is equal to nx, which means that all kx agents whose labels belong
to Lx also declare that the gathering is achieved in round t at node v.

Note that since nx = n, in view of line 8 of Algorithm 5, in round t, every agent whose label belongs to Lx
assigns to its variable size the size of the graph. Moreover, if there is no agent whose label does not belong
to Lx, then in view of line 7 of Algorithm 5, in round t, every agent whose label belongs to Lx assigns to
its variable leader the smallest label of an agent. Hence, if there is no agent whose label does not belong to
Lx and t is the earliest round in which an agent declares that the gathering is achieved, then the lemma is
verified.

Still assuming that t is the earliest round in which an agent declares that the gathering is achieved, let us
now assume that there exists an agent B whose label does not belong to Lx. Denote by u the node (possibly
different from v) at which agent B is in round t.

Let π be a shortest path from node v to node u. Since nx is the size of the graph, all elements of π belong to
{0, . . . , nx−2} and the length of π is at most nx−1. There exists a path ζ of length n5

x+1 whose elements
belong to {0, . . . , nx − 2} which is prefixed by π. In view of line 16 of Algorithm 10, at the beginning of
each iteration of the for loop of line 3 of Algorithm 10, agent A is at node v. Each iteration of this loop
consists of considering a path of length n5

x + 1 whose elements belong to {0, . . . , nx − 2} and following it.
During the execution of EnsureCleanExploration(x) by agent A, there is an iteration of the for loop of
line 3, during which the value of variable x is ζ, and thus during which agent A follows π from node v, and
visits node u, in some round rA.

Note that agent A starts executing EnsureCleanExploration(x) at node v in round t1, and executes a
move instruction belonging to GraphSizeCheck(x) in round t − 1. Also note that agents A and B visit
node u in rounds of {t1, . . . , t} and the label of agent B does not belong to Lx. In view of this and of the
fact that t is the earliest round in which an agent declares that the gathering is achieved, it follows from
Lemma 4.9 that agent A does not call GraphSizeCheck(x), which is a contradiction and concludes the
analysis in the case when t is the earliest round in which an agent declares that the gathering is achieved.

Now assume that round t is not the earliest one in which an agent declares that the gathering is achieved.
Let r < t be the earliest round in which an agent declares that the gathering is achieved. The part of this
proof related to the case when t is the earliest round applies to round r. This means that all agents declare
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that the gathering is achieved in round r. This contradicts the fact that agent A declares that the gathering is
achieved in round t > r, and completes the proof. �

Lemma 4.12 There is an agent that ends up declaring that the gathering is achieved.

Proof. For the sake of contradiction, assume that no agent declares that the gathering is achieved. Let x be
a positive integer such that φx is the real initial configuration φ. In particular, nx = n, Lx is the set of all
the labels of the agents in the graph, and there is a single node ux such that for every l in Lx, pathx(l) is a
shortest path from the initial node of the agent with label l to ux. Let F be the earliest agent (or one of the
earliest agents) to wake-up and lF be its label. Since it never declares that the gathering is achieved, in view
of Lemma 4.5, agent F calls Hypothesis(x) in round sF,x. Moreover, still in view of Lemma 4.5, every
agent A 6= F , starts executing Hypothesis(x) in round sA,x which is at least sF,x.

In view of Algorithm 6, in order to show that agent F ends up declaring that the gathering is achieved, it is
enough to show that the fact that φx is the initial configuration implies that the calls ofF to BallTraversal(x),
MoveToCentralNode(x), StarCheck(x), EnsureCleanExploration(x), and GraphSizeCheck(x) all
return true.

In view of Lemma 4.2 and Algorithm 7, the execution by every agent of function BallTraversal(x)
would return false only if, while executing it, the agent visited a node with degree at least nx, which
cannot happen in a graph of nx = n nodes.

In view of Algorithm 8, the execution by every agent A of function MoveToCentralNode(x) would return
false only if either there were no node in φx with label lA or pathx(lA) were not a valid path in the graph.
However, since φx is the initial configuration, neither of these conditions is satisfied.

To prove that the call of agent F to StarCheck(x) returns true, we need the following claim.

Claim 4.7 There exists a round r in which all agents start executing StarCheck(x) at node ux.

Proof of the claim. In view of Lemmas 4.5 and 4.6, during their execution of Hypothesis(x), all agents
start executing line 4 of Algorithm 6 in round wF,x + Sx at the latest. Then, they spend Sx rounds ex-
ecuting line 4 of Algorithm 6, and start executing MoveToCentralNode(x) in a round r1 of {wF,x +
Sx, . . . , wF,x + 2Sx}. This means that when an agent starts executing MoveToCentralNode(x), the other
agents have finished executing BallTraversal(x), and are either waiting or also starting the execution of
MoveToCentralNode(x).

In view of Lemma 4.1 and Proposition 4.1, every agentA is at node v when its execution of BallTraversal(x)
is completed and when it starts executing MoveToCentralNode(x). Then, all agents spend at most nx − 1
rounds moving, and since φx is the initial configuration, there is a round r3 of {wF,x+Sx, . . . , sF,x+2Sx+
nx − 1} in which they are all at node ux.

Note that since every agent A follows a shortest path from its initial node vA to node ux, there is no round
in which it is at node ux and executes line 9 of Algorithm 8. In other words, there is no round r1 ≤ r < r3

in which there are kx agents at node ux. Hence, the earliest agents to reach node ux do not complete the
execution of lines 12 to 15 before round r3. More precisely, let r2 be the earliest round in which an agent
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executes line 12. In each round r2 ≤ r < r3, there are fewer than kx agents at node v. Round r2 belongs to
{wF,x + Sx, . . . , sF,x + 2Sx + nx − 1}, which means that r3 − r2 ≤ Sx + nx.

Hence, all agents start executing line 17 in round r3. Then, in round r3 + Sx + nx, they all complete the
execution of this line and start executing StarCheck(x) in the same round at node ux. This concludes the
proof of this claim. ?

In view of Algorithm 9, the agents take turns in visiting the neighbors of node ux while the kx − 1 other
agents are waiting. During its visits of the neighbors of node ux, each agent alternatively leaves node v
and enters it back. In the rounds after leaving node v, each agent is alone at its node and does not notice
a cardinality different from 1 while the kx − 1 other agents are at node v and do not notice a cardinality
different from kx − 1. In the next round, the agent whose turn it is to visit the neighbors is back at node v
and no agent notices a cardinality different from kx. More precisely, if we denote by r1 the round in which
all agents start executing StarCheck(x) and by d the degree of node ux, then for every non-negative even
integer (resp. non-negative odd integer) o ≤ 4dkx, in round r1 + o, there are kx agents at node ux checking
whether there are kx agents at their current node (resp. kx − 1 agents at node ux checking whether there
are kx − 1 agents at their current node, and one agent at a neighbor of node ux possibly checking whether
there is 1 agent at its current node). Hence, no execution of StarCheck(x) returns false. All agents start
executing EnsureCleanExploration(x) in round r1 + 4dkx at node ux.

In view of Algorithm 11, in each round of their execution of EnsureCleanExploration(x), all agents
execute the same instructions at the same node. Their execution of this function returns false if and only
if there is a round in which there are not kx agents at their current node, which does not occur since they
stay together all along the execution.

Finally, all agents start executing GraphSizeCheck(x) in the same round r2 at the same node. In view of
Proposition 4.1, this node is node ux where they started executing StarCheck(x). In view of Algorithm 11,
all agents take turns in executing EST+(nx) while the kx − 1 other agents wait. In view of Lemma 4.10, the
execution of GraphSizeCheck(x) by each of them is clean. In view of the description of procedure EST+

in Section 4.2, the execution by every agent of GraphSizeCheck(x) returns true because the size n of the
graph is equal to nx. In view of Proposition 4.2, it does so in round r2 + 2kxT(EST+(nx)). This concludes
the proof of the lemma. �

From Lemmas 4.11 and 4.12, we get the following theorem.

Theorem 4.1 Algorithm GatherUnknownUpperBound solves the gathering and leader election problems.
Moreover, at the end of its execution of GatherUnknownUpperBound, each agent knows the size of the
graph.

5 Consequences for the gossiping problem

In the previous sections, we have shown that the lack of direct means of communication does not preclude the
gathering and leader election. In what follows, we show that the lack of direct means of communication also
does not preclude communication itself, because it turns out that the feasibility of the gathering problem
implies the feasibility of the gossiping problem. In the gossiping problem, each agent has a message to
transmit that is a binary string (not necessarily different from other messages), and the goal for all agents is
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to learn all messages. Without loss of generality, we assume that each message M is equal to code(M ′),
for some binary string M ′. The reason why we make such an assumption is given below.

Algorithm 12 gives the pseudocode of procedure Gossip that permits to solve the gossiping problem pro-
vided the following two conditions are satisfied: (1) all agents know a common upperbound N on the
graph size, and (2) all agents start executing the procedure in the same round and from the same node.
Note that these conditions can be reached starting from any initial configuration, if the agents first apply
GatherKnownUpperBound (resp. GatherUnknownUpperBound), according to Theorem 3.1 (resp. Theo-
rem 4.1).

Algorithm 12 Algorithm Gossip

1: begin
2: let M be the message to be transmitted
3: a← CurCard; i← 0; j ← 2; b← true; S ← ∅
4: while i 6= a do
5: (m, k)← Communicate(j,M, b)
6: if m is suffixed by 01 then
7: S ← S ∪ {(m, k)}; i← i+ k; j ← 2
8: if there is a couple (M, ∗) ∈ S then
9: b← false

10: end if
11: else
12: j ← j + 2
13: end if
14: end while
15: end

When executing procedure Gossip, each agent handles three variables: S, i and b. The variable S is used
to store couples (m, k) where m is a message that has been received by the agent and k is a positive integer
corresponding to the number of agents for whichm is the message. Those couples are learned via successive
calls to function Communicate. The variable i is meant to store the number of agents whose message has
been received, while the variable b is a boolean whose purpose is to indicate whether the message of the
executing agent has been transmitted to the members of the team or not (b is initialized to true, and then
it is assigned the value false when the message of the agent has been transmitted). The procedure is
completed when variable i becomes equal to the total number of agents. As it is explained below, this event
means that each agent has transmitted its message.

To be more specific, assume that all the agents know a common upper bound N on the graph size and start
executing procedure Gossip in some round t at some node v. At the beginning of the execution of every
agent we have S = ∅, b = true and i = 0. Denote by σ (resp. kσ) the lexicographically smallest message
among the shortest messages to be transmitted (resp. the number of agents for which σ is the message to
be transmitted). By the while loop of Algorithm 12 and Lemma 3.1 (which can be applied because each
message is an image of a binary string under function code), it follows that for every positive even integer
j ≤ |σ|, the execution of function Communicate(j,MA, b) by each agent A (where MA is the message of

even length of agent A) is started (resp. completed) at node v in round t +
∑s= j

2
s=1 10(s − 1)T(EXPLO(N))

(resp. in round t+
∑s= j

2
s=1 10sT(EXPLO(N))). Its return value is (σ, kσ) if |σ| = j, and it is a couple whose

first element contains no bit 0, otherwise. Hence, upon completion of round t+
∑s=

|σ|
2

s=1 10sT(EXPLO(N)),
every agent is at node v and for each agent we have: S = {(σ, kσ)}, i = kσ, and b = false (resp. true) if

47



the message of the agent is σ (resp. is not σ). At this point, if i = kσ is equal to the number of agents in the
team, all agents know that all the messages have been transmitted (in fact, all agents had the same message)
and stop the execution of procedure Gossip. Otherwise, the agents continue their execution. Denote by σ′

(resp. kσ′) the lexicographically smallest message among the shortest messages different from σ (resp. the
number of agents for which σ′ is the message to be transmitted). Using similar arguments as above, we can

show that upon completion of round t+
∑s=

|σ|
2

s=1 10sT(EXPLO(N))+
∑s=

|σ′|
2

s=1 10sT(EXPLO(N)), every agent
is at node v and ifor each agent we have: S = {(σ, kσ), (σ′, kσ′)}, i = kσ + kσ′ , and b = false (resp.
true) if the message of the agent is σ or σ′ (resp. is neither σ nor σ′). At this point, if i = kσ + kσ′ is
equal to the number of agents in the team, all agents know that all the messages have been transmitted and
stop the execution of procedure Gossip. Otherwise, the agents still continue their execution.

By induction on the number of messages to be transmitted, we can show that there exists a time T that is
polynomial in N and in the length of the largest message, such that the execution of procedure Gossip by
each agent is completed in round t+ T : by then, for each agent, the set S is such that (m, k) ∈ S iff k > 0
and there are exactly k agents for which m is the message to be transmitted.

Hence from Theorem 3.1 and Theorem 4.1, we get the following result about Algorithm GossipKnownUpperbound

and Algorithm GossipUnknownUpperBound: the former (resp. latter) algorithm simply consists in applying
Algorithm GatherKnownUpperBound (resp. Algorithm GatherUnknownUpperBound) and then applying
Algorithm Gossip.

Theorem 5.1 Assuming that the agents initially know a common upper bound N on the graph size (resp.
initially do not know any upper bound on the graph size), Algorithm GossipKnownUpperbound (resp.
Algorithm GossipUnknownUpperBound ) solves the gossiping problem. Moreover, the time complexity of
Algorithm GossipKnownUpperbound is polynomial in the known upper bound N , in the length ` of the
smallest label among the agents and in the length of the largest message to be transmitted.

6 Conclusion

We designed deterministic algorithms for fundamental problems, such as gathering, leader election and
gossiping in the synchronous scenario, under a model much weaker than the traditional one, in which the
ability to talk among co-located agents is replaced by the mere information of how many agents are currently
co-located with a given agent. It is clear that this assumption cannot be entirely removed: if agents do not
know anything about the number of co-located agents, even a team of two agents would never be aware that
they met.

Our algorithm assuming the knowledge of an upper bound N on the size of the network has complexity
polynomial in N , in the length of the smallest label and, in case of gossiping, in the length of the largest
message. We did not try to actually optimize this complexity: this is a long-standing open problem even in
the traditional model, and even for only two agents.

The purpose of our algorithm working without any a priori knowledge about the network is to show feasi-
bility of gathering under this harsher scenario. The algorithm, which emulates a solution with direct means
of communication in the scenario where agents are deprived of it, has time complexity exponential in the
size of the network and in the labels of agents. The natural open problem yielded by our results is whether
deterministic gathering, leader election and gossiping can be performed without any a priori knowledge, in
time polynomial in the size of the network, in the length of the smallest label and, in case of gossiping, in
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the length of the largest message. Note that, at first glance, one might think that we could easily get such
a complexity here by simply choosing to emulate a more efficient algorithm. However, some of the tools
that we designed to enable such an emulation are heavily exponential themselves: using them with a more
efficient but more technical algorithm (putting aside the question of whether such a change would be even
feasible), would lead to an additional burden without improving the complexity to cross the polynomial bor-
der. A first step towards a polynomial solution of gathering and gossiping without direct communication and
without any a priori knowledge would be to add the possibility of randomization, and design a randomized
algorithm for these tasks working in polynomial time with high probability.

In this paper we considered the synchronous scenario. In the asynchronous scenario, gathering, leader
election and gossiping were solved in [25], using the traditional assumption that co-located agents can talk.
It would be interesting to investigate if this assumption could be similarly weakened in the asynchronous
case. This is not clear, as then agents can meet also inside edges (if meeting is allowed only at nodes
and agents crossing each other in an edge do not notice it, asynchronous gathering is impossible). Would
knowing how many agents are in every such meeting point be enough to solve the above problems, when
any chatter is forbidden? Clearly, the solution presented in this paper could not be used, as it heavily relies
on waiting times that cannot be controlled in the asynchronous scenario.
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