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Abstract 15 

Macroalgae are considered as major primary producers in coastal environments, acting as a 16 

global carbon sink. This abundant biomass contains up to 50% of storage or cell wall 17 

polysaccharides, which therefore represent a reservoir of organic matter for potential algal 18 

consumers. Tracking of natural isotopic abundance (δ
13

C vs. δ
15

N) in macroalgae-colonized 19 

habitats such as kelp forests and rocky shores previously evidenced the importance of the 20 

algal resource to support local and adjacent trophic webs mostly via the microbial detrital 21 

pathway. However, such bulk isotopic measures of natural abundances cannot inform 22 

precisely on the microbial actors and processes at play for the degradation of selected algal 23 

compounds. To overcome these limitations, we developed a stable isotope labelling procedure 24 

for cultures of the brown alga Laminaria digitata and tested its ability to yield labelled 25 

polysaccharides. Sporophytes of L. digitata were grown in controlled conditions for three 26 

months in seawater regularly amended with 
13

C-labelled sodium bicarbonate. Elemental 27 

analysis – isotope ratio mass spectrometry of algal specimens showed a significant 28 
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enrichment after 10 days of treatment, reaching a maximum of At%
13

C = 3.5321% after 80 29 

days. Sequential polysaccharide extraction from this labelled algal biomass allowed retrieving 30 

both alginate and fucose-containing sulphated polysaccharide fractions with high isotopic 31 

enrichment (At%
13

C = 3.6279% and 3.5868%, respectively). This labelling protocol opens the 32 

way for future studies combining coastal ecosystems trophic interactions and microbial 33 

activities towards macroalgal biomass degradation.  34 

Keywords: (5 to 10) 35 

Stable isotope enrichment, alginate, fucose-containing sulphated polysaccharides (FCSPs), 36 

macroalgae, degradation, microbial pathway 37 

  38 



Introduction 39 

The total biomass of macroalgae on Earth is estimated at 280 million tons (Carpenter & 40 

Liss, 2000), covering an area of ca. 3.5 million km
2
 for a net primary production of up to 41 

1,500 TgC.year
-1

 (Krause-Jensen & Duarte, 2016). Macroalgae are thus considered as major 42 

primary producers in coastal areas, acting as a carbon sink and playing a crucial role in 43 

biodiversity and in global carbon flows (Dayton, 1985). The algal chemical composition 44 

differs drastically from that of plants and animals. It consists primarily of complex cell wall 45 

and storage polysaccharides (more than 50% of the dry weight), with additional lipids, 46 

proteins, pigments and phlorotannins (Deniaud-Bouët et al., 2014). In particular, macroalgae 47 

synthesize unique polysaccharides that are absent from other organisms and specific to each 48 

phylum, e.g sulfated agars and carrageenans in red algae, alginate and sulfated fucans in 49 

brown algae, and ulvan in green algae (Popper et al., 2011). This specific composition of the 50 

algal biomass can influence the processes mediating its trophic use. 51 

In marine environments, the availability of organic matter derived from macrophytes for 52 

consumers depends on trophic mediation by associated microorganisms (Adin & Riera, 2003; 53 

Crosby, Newell, & Langdon, 1990; Langdon & Newell, 1990). Several studies highlighted 54 

that bacteria growing on marine phanerogam detritus can facilitate the transfer of carbon to 55 

consumers (Benner, Lay, K’nees, & Hodson, 1988; Tenore, 1977). Laboratory experiments 56 

showed that 6-60% of oyster C requirements could be met by utilization of detrital complexes 57 

comprising senescing tissues and associated bacteria (Crosby et al., 1990; Langdon & Newell, 58 

1990). Previous studies have pointed out that only about 10% of the net macroalgal 59 

production is consumed directly by grazers (Mann, 1982; Pomeroy, 1980). This low direct 60 

grazing pressure on living macroalgal tissues is mostly due to the presence of recalcitrant 61 

components including lignocellulosic compounds, and polyphenols like phlorotannins in 62 

brown algae (Buchsbaum, Valiela, Swain, Dzierzeski, & Allen, 1991; Duggins & Eckman, 63 



1997). On the other hand, about 90% of the net macroalgal production enter detritus food 64 

chains mostly via microbial degradation (Mann, 1982; Pomeroy, 1980). The pool of detritus 65 

derived from macroalgae can be predominant within the total suspended particulate organic 66 

matter and represents a readily available food source for many consumers inhabiting kelp 67 

forests or nearby areas (Duggins & Eckman, 1997; Kaehler, Pakhomov, Kalin, & Davis, 68 

2006). This microbial reinjection of macroalgal biomass into marine food webs plays a 69 

quantitative role of prime importance, especially during winter when the phytoplankton 70 

production can be very low (Bustamante & Branch, 1996; Duggins, Simenstad, & Estes, 71 

1989).  72 

   73 

Stable isotopes have been successfully used to trace transformations of organic matter 74 

during trophic flows and discriminate among various primary producers as food sources in 75 

consumers' diets (Bustamante & Branch, 1996). Indeed, the isotopic composition of a 76 

consumer depends on the diet isotopic composition, and the isotopic fractionation during food 77 

processing. Many natural isotopic signatures have been determined for macroalgae during the 78 

last decades (Mercado, de los Santos, Lucas Pérez-Lloréns, & Vergara, 2009; Pinnegar & 79 

Polunin, 2000; Schaal, Riera, & Leroux, 2010) indicating a wide range of δ
13

C values. In 80 

general, average δ
13

C are more 
13

C-enriched in Chlorophyta, intermediate in Phaeophyta and 81 

lowest in Rhodophyta (Maberly, Raven, & Johnston, 1992; Marconi, Giordano, & Raven, 82 

2011; Mercado et al., 2009). In a kelp forest in western Brittany (France),δ13
C were more 83 

negative for red algae (-38.0 to -15.5‰) compared to brown algae (- 24.9 to -13.5‰) (Leclerc 84 

et al., 2013). Significant differences among species in δ13
C and/or δ15

N were also observed 85 

for living macroalgae or strandline algal species (Adin & Riera, 2003; Dauby, 1989). The δ86 

13
C of marine macroalgae depends largely on their ability to use HCO3

-
 rather than dissolved 87 

CO2 as carbon source (reviewed in (Raven et al., 2002)). Macroalgae displaying very low δ88 



13
C likely use dissolved CO2 as their main source of inorganic carbon, while δ13

C close to -89 

10‰ corresponds to a preferential fixation of HCO3- during primary production. Other factors 90 

influencing δ13
C of marine macroalgae include the photosynthesis rates and the molecular 91 

composition of algal tissues. These distinct natural isotopic values can be used to assess the 92 

contribution of different macroalgal species as food sources for associated consumers. 93 

Analyses of stable isotope signatures in kelp forest trophic webs have evidenced the relevance 94 

of detrital material as a major food source for the associated benthic communities (Fredriksen, 95 

2003). For example, in a kelp forest dominated by Laminaria digitata, filter-feeders derived 96 

35% to 50% of their diet from macroalgae-derived detritus (Schaal et al., 2010). Overall, 97 

approaches based on natural stable isotopes confirmed the importance of the microbial detrital 98 

pathway to re-inject macroalgal primary production into marine food webs. However, such 99 

bulk isotopic measurements of natural abundances cannot inform precisely on the specific 100 

contribution of selected algal molecules and on the microbial processes involved in their 101 

degradation. A thorough knowledge of these bacterial processes is essential because they 102 

directly condition the fate of macroalgal organic matter in marine ecosystems.  103 

A powerful approach to overcome these limitations is to use isotopic enrichment 104 

experiments. Experiments based on isotopically labelled biomass have allowed to test specific 105 

hypotheses on the fate of distinct food sources and to quantify the trophic fluxes in a variety 106 

of marine ecosystems. Stable isotopes enrichments were carried out to selectively label 107 

various food sources such as benthic diatoms or bacteria and to determine their relative 108 

contribution to the diet of macroinvertebrates (Herman, Middelburg, Widdows, Lucas, & 109 

Heip, 2000; Middelburg et al., 2000). Similarly, the specific uptake of microalgae-derived 110 

carbon by the Polychaeta Lanice conchilega or the Echinodermata Echinocardium cordatum 111 

was quantified through in situ experiments using 
13

C-labelled diatoms (Kamp & Witte, 2005). 112 

In addition, differential labelling experiments allowed to assess the preferential uptake of 
15

N-113 



labelled bacteria or 
13

C-labelled diatoms by pelagic larvae and foraminiferans (Leroy et al., 114 

2012; Moodley et al., 2000; Pascal, Dupuy, Richard, & Niquil, 2008). So far, stable isotope 115 

enrichment studies in marine food webs almost exclusively focused on trophic transfers 116 

within planktonic communities or between microorganisms (e.g. microalgae, bacteria) and 117 

benthic grazers. By contrast, such approaches are currently lagging behind for macroalgae. 118 

Few studies have implemented stable isotope labelling techniques on adult specimens of the 119 

red algae Gracilaria spp. and Solieria chordalis to assess their fate in benthic systems 120 

(Hardison, Canuel, Anderson, & Veuger, 2010; Legrand, Martin, Leroux, & Riera, 2018). 121 

However, they used the labelled tissues as bulk biomass and did not investigate the allocation 122 

of 
13

C to specific algal compounds. Some high molecular weight compounds such as cell wall 123 

structural polysaccharides can have slower turnover time compared to soluble molecules (e.g. 124 

osmolytes, carbon storage compounds) (Brinkhuis, 1977; Macler, 1986) and thus require 125 

active growth and longer incubation times to incorporate significant amounts of stable 126 

isotopes. Given their high proportion in macroalgal tissues, it appears essential to ensure 127 

sufficient labelling of cell wall polysaccharides to fully decipher the fate of macroalgal 128 

biomass in marine food webs. In the present study, we developed an adapted protocol to 129 

enrich actively growing macroalgae in 
13

C and obtain isotopically labelled cell wall 130 

polysaccharide fractions. 131 

 132 

 133 

Material and Methods 134 

Materials 135 

Natural seawater for algal cultures was collected in opaque containers from the Astan site 136 

(GPS coordinates 48°46'40", -2°56'15") offshore Roscoff (France), filtered on a 100 µm 137 



cartridge and autoclaved before use. 
13

C-enriched sodium bicarbonate NaH
13

CO3 (99% 
13

C) 138 

was purchased from Eurisotop (Saarbrücken, Germany). Unless otherwise stated, all other 139 

chemicals were from Sigma-Aldrich.  140 

Algal culture procedures 141 

Laminaria digitata life cycle consists of microscopic haploid gametophyte phase, alternating 142 

with macroscopic diploid sporophytes. In this study, all experiments were done on the 143 

macroscopic diploid individuals. To obtain young laboratory-grown sporophytes, mature L. 144 

digitata sporophytes showing sorus reproductive tissues were harvested at the "Roches Duon" 145 

site (GPS coordinates 48°43'32", -3°55'20"). Spores were released from sorus pieces in 146 

seawater for 3 h at 18°C with an irradiance of 20 µmol.s
-1

.m
-2

 and further kept at 13°C at an 147 

irradiance of 5 µmol.s
-1

.m
-2

 to allow the development of gametophytes and random crosses. 148 

The developing young L. digitata sporophytes (ca. 5 mm) were cultured in flasks containing 149 

10 L of autoclaved seawater enriched with 1.5 ml of modified Provasoli solution (92 mM 150 

H3BO3, 1.5 mM FeCl3, 4.9 mM MnSO4, 0.4 mM ZnSO4, 0.09 mM CoSO4, 27 mM EDTA, 9 151 

mM (NH4)2Fe(SO4)2, 824.6 mM NaNO3, 46.3 mM C3H7Na206P, 0.001 mM cyanocobalamine, 152 

0.3 mM thiamine, 0.004 mM biotine, 413 mM Tris) (Starr & Zeikus, 1993), with continuous 153 

bubbling of 0.2 µm-filtered air in a culture cabinet at 13°C illuminated with daylight-type 154 

fluorescent lamps at an irradiance of 20 µmol.s
-1

.m
-2

 for 12 hours per day. Two separate 155 

batches were prepared (
12

C-control and 
13

C-enriched) and were regularly amended with 1 g.L
-156 

1
 solutions of either NaHCO3 with natural isotopic composition (98.9 

12
C%) or labelled 157 

NaHCO3 (99 
13

C%) previously sterilized on 0.2 µm filters. To favour the growth of larger 158 

sporophytes, each batch was subdivided in separate 10L-flasks after 42 and 66 days of 159 

cultures. Culture media were renewed biweekly during the first month and weekly afterwards. 160 

At each medium renewal, sporophytes were visually examined to eliminate individuals 161 

showing signs of necrosis or microbial contamination. All manipulations were performed 162 



under a sterile laminar flow hood with ethanol-sterilized instruments. At each sampling time 163 

(0, 10, 18, 28, 35, 52, 66, 95 days), three sporophytes were sampled from each batch and 164 

frozen at -20°C for isotopic analysis. After 95 days of cultures, the total algal biomass was 165 

collected on a strainer and excess water was removed by spinning for 1 min in a salad tosser. 166 

Algae were weighed to estimate the fresh mass, dried at 40°C in a ventilated oven for 2 days 167 

and stored at room temperature until polysaccharide extraction.   168 

Polysaccharide extraction 169 

Cell wall polysaccharides were retrieved sequentially using a modified chemical extraction 170 

(Deniaud-Bouët et al., 2014; Hogsett & Quatrano, 1975; Vauchel, Kaas, Arhaliass, Baron, & 171 

Legrand, 2008). Dried algae were pulverized in a MM200 mixer mill (Retsch) at 30 Hz for 90 172 

seconds. Seven to ten grams of algal powder were homogenized in 300 mL of 70% ethanol 173 

and filtered on a 100 µm nylon mesh placed on a G3 glass filter funnel. The powder was 174 

repeatedly rinsed with sequential baths (250 mL, 10 min each) in 70% ethanol (3 L total), 175 

80% ethanol (3 L total), 96% ethanol (3 L total), methanol / chloroform 50:50 (v/v, 2 L total) 176 

and acetone (0.5 L total) until colourless and finally dried overnight in a ventilated oven at 177 

40°C to yield alcohol-insoluble residues (AIR). AIRs were resuspended in 0.5 L of 2% (w/v) 178 

aqueous CaCl2 and mixed for 4 h at 80°C, followed by centrifugation for 15 min at 10000 179 

rpm to separate the calcium-soluble supernatant that contains fucose-containing sulphated 180 

polysaccharides (FCSP) from the calcium-insoluble pellet containing alginate. The calcium-181 

insoluble fraction was resuspended in 0.5 L of 4% (w/v) aqueous Na2CO3 for 2 h at 80°C 182 

followed by centrifugation for 15 min at 10000 rpm. The supernatant was adjusted to pH 2 183 

with slow addition of 10 mL H2SO4 to eliminate carbonates and precipitate alginic acid, 184 

which was retrieved by pressing in a 100 µm nylon mesh. The precipitate was dissolved in 185 

200 mL distilled water and neutralized with NaOH. FCSPs and alginate were retrieved from 186 

their respective fraction by precipitating with 6 vol. of 96% ethanol. For recovery, alginate 187 



was pressed on a 100 µm nylon mesh and FCSPs were centrifuged for 20 min at 9000 rpm. 188 

Both fractions were lyophilized for long-term storage.  189 

Isotopic analysis 190 

Triplicate algal samples were dried at 50°C for two days in a ventilated oven, pulverized 191 

using a mortar and pestle and inserted in tin capsules (1-2 mg per sample). Carbon isotopic 192 

ratios were measured on an elemental analyser (Flash EA1112, ThermoScientific) coupled to 193 

an isotope ratio mass spectrometer (IRMS Delta plus, ThermoScientific) via a gas interface 194 

(Conflo III, ThermoScientific). To measure carbon quantities, expressed in micrograms, a 195 

calibration was performed for each run with a certified standard compound (acetanilide, 196 

Sylab), a correction for linearity using casein (Sylab) and a two-point linear normalisation 197 

(Coplen et al., 2006; Paul, Skrzypek, & Fórizs, 2007) using the international standards IAEA-198 

600 and IAEA-CH6. Data were expressed in the standard δ notation in ‰ according to the 199 

following equation: 200 

       
                    

          
        , where R = 

13
C / 

12
C. 201 

These abundances were calculated in relation to the certified reference materials Vienna Pee 202 

Dee Belemnite-limestone (V-PDB), with Rreference = 0.0112372. The V-PDB was achieved 203 

using in-house casein standards, calibrated against IAEA-600 and IAEA-CH6 reference 204 

materials. The standard deviation of repeated measurements of δ
13

C of nBS-19 was 0.10 ‰ 205 

versus V-PDB. 206 

13
C atom percent were calculated as follows: 207 

At%
13

C = 
       

         
       208 

 209 



13
C uptake was calculated in two different ways. Cumulative 

13
C uptakes (cUp

13
C) were 210 

calculated for each time point (t) by comparing algae from 
13

C-enriched batch to algae from 211 

control batch at the same time point, as follows: 212 

          
                                 

   
         

The first term of the equation represents the 
13

C atom excess, where At%
13

Clabelled,t and 213 

At%
13

Ccontrol,t are the 
13

C atom percent values at time t calculated for algae from batches 214 

amended with labelled or natural NaHCO3, respectively. Cconc is the carbon concentration in 215 

dry algal biomass measured by the elemental analyser. 216 

In addition, time-resolved 
13

C uptakes (tUp
13

C) were calculated for each time point (t) by 217 

comparing algae from 
13

C-enriched batch at time t to algae from the same batch at time t-1 218 

and expressed as daily uptake, as follows: 219 

          
                                  

   
           

 

     
 

The first term of the equation represents the 
13

C atom excess compared to previous time, 220 

where At%
13

Clabeled,t and At%
13

Clabeled,t-1 are the 
13

C atom percent values at time t and t-1, 221 

respectively. Cconc is the carbon concentration in dry algal biomass measured by the elemental 222 

analyser, and ndays is the number of days between sampling times t and t-1. 223 

The percentage of 
13

C from sodium bicarbonate incorporated into algal biomass was 224 

calculated for the final time point as follows: 225 

13
Cincorp% = 

          
         

                
 , where Mtot is the total dry algal biomass harvested at the end of 226 

the cultivation period,  cUp
13

Ctfinal is the cumulative 
13

C uptake after 95 days of culture, and 227 



13
Cbicarb is the total amount of carbon from sodium bicarbonate added during the cultivation 228 

period. 229 

 230 

Results 231 

The protocol developed to obtain stable isotope-labelled brown algal biomass is summarized 232 

in Figure 1. Labelling of cultured L. digitata sporophytes was tested using periodic additions 233 

of 
13

C-labelled sodium bicarbonate into seawater, over a 3-months period. In parallel, a 234 

control batch of sporophytes from the same fecundation event was prepared with addition of 235 

natural abundance sodium bicarbonate. 236 

[Insert Figure 1 here]  237 

In total, each batch was amended with 7.2 g of sodium bicarbonate, corresponding to 1.1 g of 238 

carbon. Sporophytes grew from 5 mm to ca. 5-10 cm in length in 3 months, yielding 123 g 239 

and 95 g wet biomass in the 
12

C-control and 
13

C-enriched batch, respectively. The water 240 

content estimated from the dry biomass was 85%. The 
13

C isotopic composition and 
13

C 241 

uptake of algal specimens collected at different time points are reported in Figure 2. 242 

[insert Figure 2 here] 243 

At the beginning of the culture, juvenile sporophytes showed a δ
13

C of -0.50 ± 2.96 ‰. 244 

Typical values obtained from wild adult populations of L. digitata in the vicinity of Roscoff 245 

range from δ
13

C = -17‰ to -12‰ (Schaal, Riera, & Leroux, 2009; Schaal et al., 2010). The 246 

higher 
13

C-enrichment shown here might reflect differences due to the age of the algal tissues 247 

or the specific conditions of cultivation in the laboratory (e.g. amendments with Provasoli 248 

solution, air bubbling, etc.). In the control batch, stable isotope compositions remained stable 249 

over the 3 months cultivation period (Figure 2A), ranging from At%
13

C  = 1.0855 to 1.1416, 250 



with an overall average of At%
13

C = 1.1116 ± 0.0201 (n=27). By contrast, we observed a 251 

rapid enrichment of algal biomass in the 
13

C-enriched batch (Figure 2), already showing 252 

At%
13

C = 1.9735 ± 0.0987  after 10 days of culture. The 
13

C content kept increasing until 80 253 

days of culture, when it reached a plateau. The final isotopic composition of labelled algae 254 

after 95 days was At%
13

C = 3.3381 ± 0.3490% (Figure 2A). Cumulative 
13

C uptakes were 255 

calculated at each time point (Figure 2B), and showed a final value of 5.59 mg 
13

C.g
-1

 dry 256 

algal biomass after 95 days of culture. When extrapolated to the total dry mass of 
13

C-257 

enriched sporophytes harvested at the end of the experiment (14.14 g), this corresponds to an 258 

incorporation of 7.26 ± 1.76% of 
13

C atoms from sodium bicarbonate into algal biomass. 259 

Furthermore, we calculated daily 
13

C uptakes between each sampling time point (Figure 2B). 260 

This showed that most of the enrichment occurred during the first 40 days, before the plateau. 261 

Daily uptakes became close to zero after 80 days of culture.  262 

A sequential chemical extraction was used to purify cell wall polysaccharides from control 263 

and 
13

C-enriched sporophytes (Figure 3) obtained after 95 days. 264 

[insert Figure 3 here] 265 

Alginate was retrieved as the calcium-insoluble fraction of alcohol-insoluble residues whereas 266 

the calcium-soluble fraction contained FCSPs, with final yields of ca. 20% and 7.5% of the 267 

dry weight, respectively (Table 1). 268 

[insert Table 1 here] 269 

Isotopic analysis revealed strongly significant enrichment of polysaccharide fractions 270 

extracted from 
13

C-enriched algal biomass compared to controls (Table 2). Alginate and 271 

FCSPs showed stable isotope content of At%
13

C = 3.6279 ± 0.0009 % and 3.5868 ± 0.0064 272 

%, respectively, corresponding to 
13

C uptakes of 7.02 ± 0.07 and 7.07 ± 0.03 mg 
13

C.g
-1

 dry 273 

polysaccharide, respectively. This shows that carbon from sodium bicarbonate was allocated 274 



to cell wall synthesis. In particular, 26% and 9% of 
13

C incorporated into algal biomass was 275 

allocated to alginate and FCSPs, respectively.  276 

 [insert Table 2 here] 277 

 278 

Discussion 279 

Several studies have shown that it is possible to selectively label different food sources 280 

and follow their fate within food chains. The 
13

C-enriched labelling can be focused on a 281 

source of organic matter considered in its entirety (e.g., whole macroalgae). Experiments 282 

based on the 
13

C-labelled red macroalga Gracilaria spp (9 At%
13

C) under decomposition in 283 

sediments revealed transfers of isotopic label to bacterial biomass through the 
13

C enrichment 284 

of specific bacterial amino acids or fatty acids (Hardison et al., 2010). Recently, a dual stable 285 

isotope labelling experiment was performed on adult specimens of the red alga Solieria 286 

chordalis using both H
13

CO3
-
 and 

15
NH4 additions to investigate the uptake of whole algal 287 

tissues by the sea urchin Psammechinus miliaris under different temperature regimes 288 

(Legrand et al., 2018). However, stable isotope labelling studies considering macroalgae as a 289 

bulk biomass do not inform on (1) the labelling of different molecular fractions of the algae, 290 

(2) quantitative transfers of specific algal compounds to different consumers and, (3) the 291 

specialization of consumers towards the degradation of specific compounds. When 292 

considering the trophic fate of algal constituents, cell wall polysaccharides are of particular 293 

interest since they can represent up to 45% of the dry weight (Mabeau & Kloareg, 1987), are 294 

chemically distinct from those found in other primary producers (Popper et al., 2011), 295 

constitute one of the first physical barrier to be attacked by consumers and are generally 296 

recognized as more recalcitrant than other small (e.g. simple sugars) or high molecular weight 297 

compounds (e.g. proteins). A deeper understanding of the trophic impact of cell wall 298 



polysaccharides and on the microorganisms specialized in their turnover is therefore crucial to 299 

fully understand macroalgal biomass recycling. 300 

 In the present study, stable isotope labelling was performed on actively growing 301 

juvenile brown algae for 3 months, contrasting with the shorter incubation periods (1-2 302 

weeks) previously used on red algae (Hardison et al., 2010; Legrand et al., 2018). This was 303 

required to ensure incorporation of 
13

C-label into cell wall polysaccharides, which can have a 304 

long turnover time compared to smaller compounds (Macler, 1986). Indeed, seminal 305 

incubation studies of brown algae with 
14

CO2 or H
14

CO3
- 

showed that among sugar 306 

constituents, alginate has a slow rate of radioactive carbon incorporation, whereas mannitol is 307 

the most rapidly and strongly labelled (Bidwell, 1958; Hellebust & Haug, 1972; Yamaguchi, 308 

Ikawa, & Nisizawa, 1966). Isotopic 
13

C enrichments obtained on brown algae in the present 309 

study are consistent with levels previously observed on sources characterized by high 310 

polysaccharide contents. Recent labelling experiments were performed on fresh leaves of 311 

terrestrial source (i.e. alders) with an isotopic 
13

C enrichment of about 2.5 At%
13

C to assess 312 

their assimilation by isopods in groundwater (Francois et al., 2016). A mean 
15

N labelling of 313 

the seagrass Posidonia oceanica around 4.5 At%
15

N was also obtained for a quantitative 314 

experimental study (Lepoint, Millet, Dauby, Gobert, & Bouquegneau, 2002). Our detailed 315 

time course of 
13

C-incorporation showed that the extent of labelling reached a plateau at the 316 

end of the 3-months period and that most of the 
13

C uptake occurred within 40 days. This 317 

suggests that longer incubations in the present experimental setup may not yield a greater 318 

incorporation. If even higher 
13

C enrichments are needed for specific applications, additional 319 

ventilation with 
13

CO2 could be tested.    320 

The present results appear very promising for future experimental studies related to 321 

the fate and trophic transfers of macroalgal biomass in general and of cell wall 322 

polysaccharides in particular. The protocol developed here for the kelp L. digitata can be 323 



applied to other species of brown, red or green algae for which laboratory cultivation is 324 

available. Therefore, the present method complements the toolbox for quantitative trophic 325 

ecology approaches to trace 
13

C-labelled macroalgal biomass within complex pelagic or 326 

benthic communities of marine ecosystems. Furthermore, this study is to our knowledge the 327 

first to report the purification of 
13

C-labelled cell wall polysaccharide fractions containing 328 

alginate and FCSPs. Macroalgae are generally considered as a unique pure source in trophic 329 

models, although they in fact comprise diverse molecular compounds potentially at the base 330 

of different food chains due to their specific utilization by micro- and macro-organisms in 331 

aquatic ecosystems. By giving access to specific 
13

C-labelled polysaccharide fractions, the 332 

present protocol will help improving the definition of these distinct trophic niches and paves 333 

the way for detailed investigations of the diversity and functional processes of uncultured 334 

specialized microorganisms responsible for the reinjection of algal polysaccharides into 335 

trophic chains via the detrital pathway. To this end, various stable-isotope-enabled microbial 336 

ecology techniques are available, such as Stable Isotope Probing (SIP) combined to high-337 

throughput sequencing (Dumont & Murrell, 2005), Raman single-cell microspectroscopy 338 

(Wagner, 2009) or nano-scale chemical imaging by secondary ion mass spectrometry 339 

(nanoSIMS) (Musat, Foster, Vagner, Adam, & Kuypers, 2012). Such studies using 
13

C-340 

labelled polysaccharides as substrates would allow linking specific members of natural 341 

microbial communities to their function as degraders of the macroalgal biomass in situ, 342 

greatly enhancing our current knowledge on the carbon cycle in marine regions.      343 
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Tables 517 

Table 1: Yields of cell wall polysaccharide extraction from L. digitata cultured sporophytes 518 

from the 
12

C-control and 
13

C-enriched batch. FCSP: fucose-containing sulphated 519 

polysaccharides 520 

 
12

C-control 
13

C-enriched 

Starting dry biomass 10 g 7.5 g 

Alcohol-insoluble residues
a
 5.73 g (57.3%) 4.41 g (58.8%) 

Alginate
a
 1.92 g (19.2%) 1.57 g (20.9%) 

FCSP
a
 0.83 g (8.3%) 0.53 g (7.1%) 

a
 Values in brackets are yields based on starting dry biomass 

 521 

 522 

Table 2: Stable isotope ratios of polysaccharide fractions extracted from 
12

C-control and 
13

C-523 

enriched L. digitata sporophytes. Values are mean ± standard deviation of technical 524 

triplicates. 525 

Sample 
At%

13
C 

Alginate FCSP 
12

C-control 1.1337 ± 0.0004 1.1454 ± 0.0008 
13

C-enriched 3.6279 ± 0.0009 3.5868 ± 0.0064 

 526 

 527 

Figure legends 528 

Figure 1: A. Schematic overview of the algal cultivation protocol for stable isotope labelling. 529 

B. Photograph of the experimental setup for cultivation of L. digitata sporophytes. 530 

Figure 2: A. 
13

C atom percent of algal specimens collected at different time points in the 531 

control (blue) and 
13

C-enriched culture batches. Values are mean ± standard deviation (n=3). 532 

B. Uptake in 
13

C calculated for algae in the 
13

C-enriched culture batch, calculated either in a 533 



cumulative way compared to algae from control batch (black, left axis) or as a daily uptake 534 

calculated for each time point compared to previous time point (white, right axis). 535 

Figure 3: Schematic overview of the polysaccharide extraction process. EtOH, ethanol. 536 

MeOH, methanol. FCSP, fucose-containing sulphated polysaccharides. 537 

 538 


