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Abstract

Recent advances in L-band passive microwave remote sensing provide an unprecedented opportunity
to monitor soil moisture at ~40 km spatial resolution around the globe. Nevertheless, retrieval of the
accurate high spatial resolution soil moisture maps that are required to satisfy hydro-meteorological and
agricultural applications remains a challenge. Currently, a variety of downscaling, otherwise known as
disaggregation, techniques have been proposed as the solution to disaggregate the coarse passive mi-
crowave soil moisture into high-to-medium resolutions. These techniques take advantage of the strengths
of both the passive microwave observations of soil moisture having low spatial resolution and the spatially
detailed information on land surface features that either influence or represent soil moisture variability.
However, such techniques have typically been developed and tested individually under differing weather
and climate conditions, meaning that there is no clear guidance on which technique performs the best.
Consequently, this paper presents a quantitative assessment of the existing radar-, optical-, radiometer-,
and oversampling-based downscaling techniques using a singular extensive data set collected specifically
for that purpose, being the Soil Moisture Active Passive Experiment (SMAPEx)-4 and -5 airborne field
campaigns, and the OzNet in situ stations, to determine the relative strengths and weaknesses of their
performances. The oversampling-based soil moisture product best captured the temporal and spatial
variability of the reference soil moisture overall, though the radar-based products had a better temporal
agreement with airborne soil moisture during the short SMAPEx-4 period. Moreover, the difference
between temporal analysis of products against in situ and airborne soil moisture reference data sets
pointed to the fact that relying on in situ measurements alone is not appropriate for validation of

spatially enhanced soil moisture maps.

Keywords: Downscaling, Disaggregation, Inter-comparison, High resolution, Soil moisture, SMAP,

SMOS, SMAPEx
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1 Introduction

Soil moisture influences land-atmosphere interaction via fluxes of energy and water, and thus
impacts weather and climate conditions (Seneviratne et al., 2010), hydrology (Corradini, 2014;
Koster et al., 2004, 2010) and agricultural production (Bolten et al., 2010). The ability to pro-
vide reliable, spatially distributed and temporally consistent measurements of soil moisture will
therefore be of great benefit. Key to providing such information economically across the globe
has been the development of L-band passive microwave remote sensing technology (Entekhabi
et al., 2010; Kerr et al., 2016). The passive L-band microwave approach is widely accepted as
the optimum technology for soil moisture estimation (Entekhabi et al., 2010).

There are currently two L-band passive microwave satellite missions dedicated to monitoring
the near surface soil moisture every 2 to 3 days: i) the European Space Agency (ESA) Soil
Moisture and Ocean Salinity (SMOS), launched in November 2009 as the first ever dedicated
satellite for soil moisture mapping, and ii) the National Aeronautics and Space Administration
(NASA) Soil Moisture Active Passive (SMAP), launched in January 2015 as the first ever
satellite to combine a radar and radiometer to produce an enhanced resolution soil moisture
product. Together, the SMOS and SMAP missions have provided a continuity of dedicated
satellite soil moisture observations globally since 2010 (Kerr et al., 2016).

Soil moisture estimates at the native resolution of both the SMOS and SMAP radiome-
ters are at a coarse scale of approximately 40 km (but provided on 25 km and 36 km grid
spacing, respectively), which is not sufficient to meet the spatial resolution requirements of
hydro-meteorological, agricultural and carbon cycle applications (e.g. Entekhabi et al., 2010;
Molero et al., 2016). However, the inclusion of an L-band radar on SMAP was to provide spatial
scale improvement of the radiometric observations by combining with the L-band radiometer
observations (Entekhabi et al., 2010; O’Neill et al., 2010). The sensitivity of radar backscatter

to soil moisture dynamics and the geophysical properties of the soil surface was expected to
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contribute to improvement of the retrievals’ accuracy and disaggregation of radiometric soil
moisture estimates (Chauhan, 1997; Petropoulos et al., 2015). However, loss of coincident radar
imaging in July 2015, due to a hardware anomaly, meant that an alternative downscaling ap-
proach had to be sought. Moreover, there is no radar sensor aboard SMOS. Consequently,
alternative downscaling techniques have been applied to the two soil moisture missions, with
the aim to accurately and efficiently increase the resolution of SMOS and SMAP passive L-band
soil moisture (and/or brightness temperature).

Reviews of techniques for downscaling passive microwave data for high resolution soil mois-
ture mapping have been recently published by Sabaghy et al. (2018) and Peng et al. (2017).
Downscaling methods exploit both the accuracy of the passive L-band microwave observations
and the high resolution spatial variability of the ancillary data. Accordingly, downscaling tech-
niques include, but are not limited to radar-, optical-, radiometer-, and oversampling-based
methods.

The radar-based downscaling techniques (Akbar and Moghaddam, 2015; Bindlish et al.,
2008; Das et al., 2011, 2014; Piles et al., 2009; Zhan et al., 2006) are based on radar-radiometer
combination algorithms which enhance the spatial detail of coarse radiometric soil moisture
using the spatially varied information on land surface features provided by radar. The extent of
correlation between backscatter and soil moisture, and sensitivity of backscatter to soil moisture
changes determine the success of radar-based downscaling techniques in estimating the variation
of soil moisture in space (Wu et al., 2014).

The basic concept behind the optical-based downscaling techniques (e.g. Fang et al., 2013;
Merlin et al., 2006, 2008a,b, 2012, 2013; Piles et al., 2011, 2012, 2013) is the feature space
between vegetation index and surface temperature in the shape of a triangle/trapezoid (e.g.
Carlson et al., 1994; Gillies and Carlson, 1995) which indicates wet and dry conditions at its
edges. This feature space adjusts the sensitivity of land surface temperature to soil moisture as

a function of vegetation cover density and canopy type.
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The radiometer-based downscaling technique (e.g. Gevaert et al., 2015; Santi, 2010) uses
radiometric emissions at higher frequency (Ka-band, 26 to 40 GHz) to provide information
about spatial variability of the surface when there is no rainfall event (Gevaert et al., 2015).
The advantage of the radiometer- (over the optical-) based approach lies in the capacity of
radiometer imagery to deliver ancillary data under all-weather conditions and being less affected
by the soil surface condition. However, the radiometer-based technique is not able to improve
the resolution of soil moisture content to the same extent as the optical-based techniques due
to the coarser resolution of that data, as the resolution of downscaled products is dictated by
that of the ancillary data used for the downscaling.

The oversampling-based method (Chan et al., 2018; Chaubell, 2016) applies an interpolation
technique which rescales the brightness temperature values to 30 km and posted onto a 9 km
grid. Consequently, it creates the most optimal brightness temperature by aggregating bright-
ness temperature values that are centred near a particular radius with a relatively short length of
intervals. For the methods that downscale the brightness temperature (e.g. oversampling- and
radiometer-based techniques), soil moisture retrieval is then conducted on the higher resolution
brightness temperature using the same passive microwave soil moisture retrieval algorithm as
for the coarse observations.

A diversity of downscaling approaches exist, typically developed and tested under differing
weather and climate conditions. However, until now there has been no rigorous test to as-
sess which downscaling methodology yields the best overall soil moisture estimation at higher
resolution over a specific location and climate condition, which can only be achieved by com-
paring the approaches on a common data set. Therefore, this paper presents a comprehensive
inter-comparison of the various downscaling techniques against each other and reference data
to determine the relative strengths and weaknesses of their performance. This is the first
comprehensive assessment of the complete range of different radar-, optical-, radiometer-, and

oversampling-based downscaled soil moisture products which are readily available using the
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same set of evaluation data, in order to take a step towards multi-sensor high resolution soil
moisture retrieval for typical Australian landscapes. The performance of downscaled products
was also benchmarked against the radiometer-only retrievals of SMAP and SMOS.

This paper has focused on analysing the performance of downscaled soil moisture products
for a typical Australian landscape and climate. However, deep insight into the performance of
downscaled soil moisture products requires similar inter-comparisons be undertaken for different
climate conditions and landscapes around the world. Consequently, the curators of such data
sets (eg. Soil Moisture Active Passive Validation EXperiment (SMAPVEX)) are encouraged to

conduct similar soil moisture inter-comparisons over their sites.

2 Study area and reference data sets

The Yanco agricultural area in New South Wales, Australia, was chosen to conduct this research.
Yanco has a lansdscape and climate that is representative of much of southeast Australia. The
climate is classified as semi-arid based on the Koppen-Geiger climate classification system. An
average annual amount of about 400 mm precipitation falls in the Yanco area throughout the
year, and its’ minimum and maximum average annual temperature is equal to 11°C and 24°C,
respectively (Bureau of Meterology, 2018). The Yanco area is located on a flat plain in the
Murrumbidgee River catchment and contains a network of soil moisture and rainfall monitoring
stations as part of OzNet (Smith et al., 2012). The locations of OzNet stations installed in the
Yanco region are shown as black dots in Figure 1. Moreover, the soil moisture measurements
utilized for evaluation in this study are those over the 0-5 cm depth of soil, which is widely
accepted as being the monitoring depth of L-band passive microwave soil moisture and their
downscaled soil moisture products. These data are available from http://www.oznet.org.au.
The temporal pattern of soil moisture is consistent with the occurrence of precipitation events
with wetting and drying cycles for the 1st April to 1st November 2015 study period as shown in

Figure 2. The study area is relatively flat, with a variety of land use, soil and vegetation types,
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thus making Yanco an appropriate site for evaluation of downscaling algorithm performance.

Over the Yanco region, the Soil Moisture Active Passive Experiment (SMAPEx)-4 and -5
airborne campaigns were designed to cover an area of about 71km x 89 km (145.98°-146.75°E
longitude and 34.22° - 35.03°S latitude, see Figure 1) for the purpose of calibration and validation
of SMAP soil moisture products. These experiments were carried out during the Australian
autumn (SMAPEx-4, from the 1st to 22nd May 2015 when crops were in the early growth stage
or under cultivation) and spring (SMAPEx-5, from 7th to 27th September 2015 when crops
were in the maturity stage). During SMAPEx-4 and -5 airborne field campaigns, airborne L-
band passive microwave brightness temperature were collected using the Polarimetric L-band
Multi-beam Radiometer (PLMR) instrument concurrent with the SMAP and SMOS satellite
overpasses. The PLMR radiometer, having similar characteristics to that of the SMAP and
SMOS missions, provided brightness temperature at both vertical and horizontal polarization
with 1 km resolution, and thus soil moisture for an equivalent depth to that from SMAP
and SMOS. It collected dual-polarized brightness temperature measurements with six-beams at
across-track incidence angles of +7°, +£21.5°, and +38.5°, which were then angle normalized to
+38.5° using the approach of Ye et al. (2015) before retrieval of the soil moisture. These airborne
observations were supported by ground sampling activities that were conducted concurrent to
flight acquisitions, to provide information about vegetation (biomass, vegetation water content,
leaf area index, etc.) and surface roughness, which were used for the soil moisture retrieval.
The Hydraprobe Data Acquisition System (HDAS) - a dielectric probe - was also used to
measure top 5 cm intensive in situ soil moisture data at 250 m grid spacing coincident with
airborne sampling. The intensive HDAS soil moisture measurements were collected to evaluate
the performance of airborne PLMR soil moisture retrievals.

The PLMR radiometric brightness temperature observations were used to derive a reference
airborne soil moisture data set. This retrieval process included application of the L-band Mi-

crowave Emission of the Biosphere (L-MEB, Wigneron et al., 2007) radiative transfer model
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to PLMR brightness temperature (Ye et al., in review). The vegetation water content used
by the L-MEB model for soil moisture retrieval was estimated using the relationships devel-
oped by Gao et al. (2015), which convert the derived Normalized Difference Vegetation Index
(NDVI, Rouse et al., 1974) from daily 250 m MODerate resolution Imaging Spectroradiome-
ter (MODIS) reflectance products (MOD09GQ) to vegetation water content. Utilized surface
roughness and vegetation parameters were obtained from Panciera et al. (2008, 2009) and in-
formation about land surface types were collected from the studies conducted by Grant et al.
(2008) and Wigneron et al. (2007). In order to estimate effective soil temperature, the average
of soil temperature measurements at 2.5 and 40 cm depth were calculated using measurements
from the six temporary monitoring stations over the Yanco area.

In order to quantify the accuracy of the reference airborne PLMR, soil moisture maps and
their propagation into the evaluation statistics for the downscaled soil moisture, the airborne
PLMR soil moisture retrievals were compared against the HDAS measurements over all intense
soil moisture sampling areas for SMAPEx-4 and -5 airborne field campaigns (Figure 3). The
intensive HDAS soil moisture measurements were averaged to 3 km for the comparison with
the airborne PLMR soil moisture aggregated to 3 km. While overall evaluation of 3 km PLMR
soil moisture pixels are reported in Figure 3, the accuracy assessment was also conducted for
each dominant land surface type with similar results. An overall RMSD of 0.04 m® m™ and
R? of 0.76 was achieved for 3 km SMAPEx-4 and -5 soil moisture data, showing that airborne
soil moisture could be used as a suitable reference for evaluation of downscaled soil moisture
products. The PLMR, soil moisture maps at 1 km were not evaluated in a similar way as there
were only a few HDAS intense soil moisture measurements (<4) available within each 1 km
footprint, yielding the analysis unreliable. In addition, the HDAS measurements within the 1

km scale had a large variability due to the range of moisture condition.
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Figure 1: The study area for (a) SMAPEx-4 and (b) SMAPEx-5 airborne field campaigns con-
ducted in the Yanco region in south east of Australia along with red rectangles which delineate
the coverage of airborne measurements of each campaign, being 71 km x 85 km for SMAPEx-4
and 71 km x 89 km for SMAPEx-5. Blue rectangles show the locations of the intense ground
samplings and black dots are the OzNet in situ monitoring stations. Note: the landuse maps
were created using two Landsat-8 Operational Land Imager (OLI) images at 30 m spatial res-
olution, acquired on the 10th of June and 30th of September 2015, to match the dates of the
SMAPEx-4 and -5 airborne field campaigns.
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3 Downscaling Methods

This study comprehensively evaluated the performance of soil moisture downscaled products
against each other in terms of accuracy and capability to capture the variability of soil moisture
in space and time. The products were derived from a variety of current downscaling techniques,
categorized as either radar-, optical-, radiometer-and oversampling-based techniques. The soil
moisture products evaluated in this study are listed in Table 1 along with the downscaling

techniques and approaches, product definitions, key references, and main downscaling inputs as
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and dashed gray lines show the median and interquartile range of soil moisture measurements,
respectively. The dark blue bars show the mean daily rainfall over the Yanco region.
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applicable. The downscaling techniques were benchmarked against the SMOS and SMAP coarse
passive microwave observations to provide insight about the impact of downscaling approaches
on the accuracy of soil moisture retrievals, and inter-compared over the Yanco region using the
airborne soil moisture maps collected during the SMAPEx-4 and -5 airborne field campaigns,
as well as OzNet in situ measurements for the period between 1 April and 1 November 2015.
The intention of this comparison was to reveal if downscaled soil moisture products surpass
the coarse passive soil moisture estimates in terms of accuracy, and to quantitate the extent of
possible improvement (or deterioration). In this study, the SMAP Level 3 Radiometer Global
Daily soil moisture (version 3) posted on the 36 km EASE-Grid, and the daily global SMOS
Level 3 radiometric soil moisture retrievals, obtained from the 43 km mean spatial scale SMOS
observations posted on the 25 km grid (SMOS operational MIR CLF31A /D version 3.00 ob-
tained from the CATDS website: https://www.catds.fr/Products/Products-access), were

evaluated for this purpose.

Radar-based techniques

The SMAP soil moisture was downscaled from 36 to 9 km using the radar-based downscaling
techniques, including: i) the baseline active/passive method of SMAP (Das et al., 2014) and,
ii) the Multi-Objective Evolutionary Algorithm (MOEA) by Akbar et al. (2016). The baseline
active/passive combination technique is the main procedure used by the SMAP science team
to produce the SMAP Radar/Radiometer soil moisture products at 9 km resolution prior to
the radar failure. This downscaling algorithm was developed to take advantage of the strengths
of passive and active microwave observations, being accurate and high resolution soil moisture
mapping, respectively. The baseline algorithm disaggregated the SMAP radiometric brightness
temperature through combination with SMAP radar backscatter. This procedure, which inher-
ited background knowledge from the work of Piles et al. (2009) and Das et al. (2011), includes:

i) calibrating model parameters from a linear regression analysis of the time series of brightness

10


https://www.catds.fr/Products/Products-access

un{ 9 X W Ly e

dVINS

(9102) poyjowr uorgejodioyut paseq
somjerodwo], poIopi-oWL], NqIO-JeH ypeoueyuy JVINS Surpueosy Yjpm jonpoid wy 6
‘T 99 [Pqney) Meqin-snypeyg  -Surjduwesioa()
1ojewworpey g1T JVINS SUIPUSOSY poouequUy SUIPUSISY
amjerodure) ooe}Ims
puep swmy yStu pue £ep SIAOIN BnPY ATred 4
SOINS
wy T e
IDLA SOINS Surpuedse(] yym jonpoid
Xopu] oIy JeorT SITOIN @3sodwod Ap 7
pareosumop paseq-TD LA
gurjsod pLIS Wy Gg UO S[RASLIISI
9IMNJSIOW [I0S JLIJOWOIPRI ¢ [949T SOINS 4
aInjeroduro) ooeLINS
pue swry y3iu pue Aep SIAOIN BnPY ATre( 4«
(9102 ‘¢102) dVINS  (IDLA) Xepuy uonrpuop
wy T e
‘Te 10 Susd IDLA dVINS Surpuesse( ypm jonpoid amnyerodwa], UOIPRIIZOA
XopuJ ®aly JeaT SIAOIN @1soduwod A®p ¥
pareosumop paseq-TDLA
Surysod prid wy 9¢ uo 2InjsIoW
[10s ATre(] [8qO[D) 919WOIpLRY ¢ [9497T JVINS
syonpoid SOINS
xopul uorejadoa SITOIN dsodwod Lep 9r dUDILVISIA SONS  Surpuedoso(q yim jonpord (UDIVASIa)
sindino (INH) [PPOIN UOTYRAS[H [eNSI( 4 UDILVJSIJ Surpueosa( aguer) o[eds poseq-rondo S
amjerodwo) ooejns puel STAON AR « (e100) SOINS  [®2118108Y ], Puy [eIISAyJ
Surjsod pLI8 WY G UO S[BADLI}DI ‘Te 19 Ul VUDLVISIA SOINS Surpueosy yiym jonpoxd uo poseq uolye3a133esi(
9INJSIOW [10S JLIJOWOIPRI ¢ [9A9T SOINS 4 UDILVJSI SuIpuaosy
onbruyog], UOIM[OSIY
syndu] SuI[eOSUMO(T UIR[N  ©0USISJOY A03] owreu JoNpPoIJ UOIHUYS(] 3oNPOIJ yoeorddy Sureosumo(y
SuredsuMOo(J rerredg

orqeoridde se syndur SUIRISUMOP UTRW PUR ‘SedudIdjol A9y ‘uorjrugep jonpoid oy st papnouy ‘seyoeordde
pue senbruype) SUIRISUMOD oY} 0} SUIPIodde uosLreduwIod-Ioul oY) ul pesn sjonpold SUIeISUMOP 2INISIOW [I0S dY) U0 d[(er) Arewwing : 9[qR],

11



agarv ‘(810z)

aeatssed dVINS

dVINS oAIsseq Surpuedsa(]

V/N V/N V/N sy 9g
Te %9 [IIPN'O Voalssed dVINS dVIAS dalssed SuIpusosy
aqarv ‘(€10g oatssed SOINS SOINS @AIsseq Surpuaosa(]
V/N v (€100) V/N V/N uny ¢g
‘Te 7o 9j3enboer yoarssed SOINS SOINS eAlssed SuIpuaosy
wy O] e aanjerodure)
ssousLq pueq-ey] (ZUSINVY)
(N1dS)
w)SAQ SUTATIOSqQ) [)IeH-19}9UWOoIpRY (¢102) dVINS
INIAS dVINS UOI)R[NPOTN A)ISUaju] poseq-19jouoIpeYy wy 0T
SUIUURDG SARMOIDI[N PROURADY ‘Te 70 119'ADY) yum gonpoid paseq-]NIAS
peseq-1991q4 Surgjoowg
gurysod pu3 wy 9¢ uo aunjeroduro)
ssou3Laq g 1949 JVINS
(VHOI)
(9102) e % Teqy VAOW dVINS  dVINS Usa 1onpoid YHOIN — WILIOS[Y ATRUOTM[OAL]
wy ¢ e 19170soR( IepRl JVINS 4 2A1300[qO-T)MIN
Sunsod pr8 wy 9¢ uo ainjeroduro) W03
(¥102) AVINS ymm poseq-1epey
$SoUYSLIq I9joWOoIpRI JVINS 4 d/vV dVINS aurfeseq oalssed /oAT)or
‘Te 90 se(q jonpoid aAIsseJ/oATI0Y
dVIAS °4L
| 9¢ X Wy Ly e seanjeroduway, dVINS w6
(9102) poyjewr uotyejodeyut
SSouIUBLIg PoIopI)-owL], NqIO-JeH apoouequy JVINS Surpuedsa(J Ypm jonpoid poseq-3urjduresios()
Te 10 [Pqreyd HeqII)-snipryg
joworpey g1 JYINS SUIpueosa(] peouryUy SUTPULISA(]
onbruyog], uwonnosey
syndu] Sur[eosumo(] urejy QouULIRJeY Aoy auwreu 1oNporJ UOIUYa(] 3oNpoid yoeorddy Sureosumo(]
Furpeosumo( reryedg

(penurjuod) T o[qer,

12



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

temperature-radar backscatter pairs at radiometric footprint (36 km), and ii) combination of the
coarse resolution brightness temperature and medium resolution radar backscatter (9 km) using
a linear function, which utilizes the calibrated slope from the predecessor step. Soil moisture
is then estimated by applying the radiative transfer model (single channel algorithm, Jackson,
1993) to the downscaled brightness temperature. These estimates are available at the NASA
National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) website
as SMAP Level 3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 3
(SPL3SMAP, access link: https://nsidc.org/data/SPL3SMAP/versions/3).

The MOEA is a physical-based downscaling technique (Akbar et al., 2016), which implicitly
disaggregates the radiometric soil moisture from the coarse scale of 36 km to the medium scale
of 9 km using a multi-objective optimization approach. This technique is based on the combi-
nation of optimized radar- and radiometer-only soil moisture estimations and is developed to
compromise on the performance of the forward electromagnetic emission and scattering models.
The MOEA technique finds an optimum solution by including evaluation of multiple objective
functions within each iteration. Based on stochastic operators, the MOEA procedure gives more
weight to the most accurate soil moisture retrievals from either radar backscatter or brightness
temperature. The MOEA technique was applied to the SMAP L2 Radiometer Half-Orbit 36
km EASE-Grid Soil Moisture, Version 2 and SMAP L1C Radar Half-Orbit High-Resolution ¢°

Data on 1 km Swath Grid, Version 1 (SPL1CS0) pairs.

Optical-based Techniques

Two types of physically based optical downscaling techniques were applied to the daily global
SMOS Level 3 radiometric soil moisture retrievals, obtained from the 43 km mean spatial scale
SMOS observations posted on the 25 km grid (SMOS operational MIR CLF31A /D, version 3.00
obtained from the Centre Aval de Traitement des Données SMOS (CATDS) website) and SMAP

Level 3 Radiometer Global Daily soil moisture posted on the 36 km EASE-Grid. Disaggregation
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was based on the Physical And Theoretical scale Change (DisPATCh; Merlin et al., 2013) and
the Vegetation Temperature Condition Index (VTCI; Peng et al., 2015, 2016) approaches to
achieve a 1 km spatial resolution.

The DisPATCh uses the Soil Evaporative Efficiency (SEE, i.e. ratio of actual to poten-
tial soil evaporation) derived from the daily MODIS land surface temperature (MOD11A1 and
MYDI11A1 products) and a 16 day composite MODIS vegetation index product (MOD13A2)
at 1 km resolution, as the main soil moisture downscaling component. MODIS land surface
temperature is decoupled in its soil and vegetation components based on a partitioning method
(Moran et al., 1994) with the decoupled surface temperature corrected for the impact of ele-
vation using an ancillary 1 km resolution Digital Elevation Model (DEM) according to Merlin
et al. (2013). The SEE proxy is an appropriate downscaling index because: i) it has a relatively
constant daily characterization for non-cloudy skies (Cragoa and Brutsaert, 1996) and ii) it cor-
responds well with soil moisture changes (Anderson et al., 2007). The DisPATCh technique was
applied to the SMOS ascending and descending soil moisture observations resulting in two Dis-
PATCh products, the morning/ascending DisPATCh (DisPATChA) and afternoon/descending
DisPATCh (DisPATChD).

The VTCI technique uses the high resolution VT'CI as the downscaling factor. The VTCI
is a thermal based proxy which is used as a drought monitoring index (Wang et al., 2001). It is
calculated based on the triangular/trapezoidal feature space constructed from 4 day composite
MODIS Leaf Area Index (LAI, MCD15A3) at 1 km resolution and the daily Aqua MODIS day-

and night-time land surface temperature difference (ALST qay—night, MYD11A1).

Radiometer-based techniques

Downscaled SMAP soil moisture retrievals were also produced at 10 km using the radiometer-
based Smoothing Filter-based Intensity Modulation (SFIM) model used by Gevaert et al. (2015).

The SFIM methodology is based on the multi-sensor image fusion technique designed by (Liu,
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2000). Success of this technique in producing downscaled Landsat Thematic Mapper data to
a higher spatial resolution using the high resolution Satellite Pour I’Observation de la Terre
images, motivated Santi (2010) to employ this technique for the purpose of soil moisture down-
scaling. In the SFIM procedure a weighting factor is used to downscale the 36 km SMAP Level
2 brightness temperature (SPL2SMP) to 10 km. The downscaling factor used here is the ra-
tio between the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR2)
Ka-band brightness temperature for each grid cell at 10 km and the average of Ka-band bright-
ness temperature across the coarse scale of the SMAP brightness temperature observations.
From downscaled SMAP brightness temperature, soil moisture content was estimated through

application of the Land Parameter Retrieval Model (LPRM, Owe et al., 2001, 2008).

Oversampling-based techniques

An oversampling-based technique (Chan et al., 2018; Chaubell, 2016), based on the Backus-
Gilbert interpolation method (Backus and Gilbert, 1970, 1967), was also used to enhance
not only the spatial scale of SMAP brightness temperature but also its accuracy. Soil mois-
ture was then derived by applying a radiative transfer model to the brightness temperature
posted onto a 9 km grid. This technique was applied to the morning/descending (D) and af-
ternoon/ascending (A) SMAP level 1B Radiometer Half-Orbit Time-Ordered brightness Tem-
perature products at 47 km x 36 km, resulting in two series of products: the EnhancedD and
EnhancedA, respectively. Free access to the SMAP enhanced soil moisture products is granted
(https://nsidc.org/data/SPL3SMP_E/versions/2). The Backus-Gilbert is an optimal inter-
polation theory that provides the closest observation to what perhaps would be measured by the
radiometric instrument at the interpolation point (Poe, 1990). To this aim, all the brightness
temperature values that are centred near a particular radius within a relatively short length of
intervals are aggregated to a spatial resolution higher than the resolution and/or footprint of

observations. The extent of improvement of the spatial resolution is determined by the sampling
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density and the overlap in the response functions of the instrument at measurement locations.
Long and Daum (1998) found out that when the sampling pattern is denser there is a better
opportunity for the spatial resolution enhancement of observations. The non-uniformity of over-
lapping measurement is another factor which facilitates better resolution enhancement (Long,

2003).

4 Evaluation methodology

This section describes the evaluation procedure that is summarised in Figure 4. Here down-
scaled products are evaluated against a comprehensive reference data set that includes the
OzNet in situ soil moisture measurements and SMAPEx-4 and -5 airborne PLMR soil mois-
ture maps. The coarse passive SMAP and SMOS soil moisture products were also compared
against the same reference data set providing a baseline scenario. Unlike previous studies (e.g.
Al-Yaari et al., 2019; Chen et al., 2018) which assessed the accuracy of SMAP and SMOS pas-
sive microwave soil moisture products at their coarse scale (posted onto 36 and 25 km spatial
resolution, respectively), this study only assessed the accuracy of the coarse resolution products
in the context of being a reference for assessing the skill of the downscaled products relative to
the uniform field assumption. Accordingly, this assessment was to understand to what extent
the downscaling techniques improved the spatial soil moisture estimates over the simplistic as-
sumption that the soil moisture is a uniform field over coarse resolution pixels. This evaluation
is meant to serve as a quantitative assessment of the improvement in the downscaled products
over the coarse soil moisture products, applied directly at the same spatial resolution as the
comparable downscaled product. Consequently, prior to the evaluation of coarse SMAP and
SMOS soil moisture products, each product was mapped onto a 1 and 9 km grid, with the value
of each coarse pixel assigned to each higher resolution pixel lying within the original pixel.
The evaluation against OzNet measurements was conducted over the period between 1st

April and 1st November 2015, while the time frame of the evaluation against airborne PLMR
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Figure 4: Schematic of the procedure used for evaluation of the downscaled soil moisture re-
trievals against airborne PLMR and OzNet in situ soil moisture measurements.

soil moisture was associated with the temporal extent of the SMAPEx-4 and -5 airborne field
campaigns. The evaluation included a temporal analysis of downscaled products against both
the OzNet and airborne PLMR soil moisture. In the temporal analysis, time series of soil mois-
ture values from each pixel of modelled estimates were compared against corresponding values
from the reference PLMR maps and/or aggregated OzNet measurements to the products pixel
scale. Moreover, the spatial analysis was carried out against the airborne PLMR soil mois-
ture. In the spatial analysis, daily maps of estimates were compared against the corresponding
reference map. From the temporal and spatial match-ups mentioned above, the performance
metrics were calculated, including bias, coefficient of determination (R?), Root Mean Square
Deviation (RMSD), unbiased RMSD (ubRMSD), and slope of the linear regression. In order to
provide readers with more information about the performance of soil moisture products, rela-
tive accuracy of the soil moisture products was calculated and reported in the Appendix. The
relative accuracy parameters were calculated by dividing Bias, RMSD, and ubRMSD values by
the average of reference soil moisture content values through time and space for temporal and

spatial analysis, respectively.
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The optical-based downscaled products were evaluated at two different scales: i) 1 km being
the original scale of the optical-based products, and ii) 9 km being the scale of radar- and
oversampling-based retrievals. For the evaluation at 9 km, the optical-based products herein
DisPATCh and VTCI were upscaled to the SMAP A/P scale of 9 km, using the arithmetic
average. The evaluation at 9 km was conducted to make the comparison system consistent

across downscaled soil moisture products being mainly available at 9 km.

4.1 Evaluation against OzNet in situ soil moisture measurements

To compare downscaled products against OzNet, soil moisture measurements from individual
stations were averaged within the grid cell of each product. However, for the 1 km grid, any
pixel with a coincident OzNet station was considered for comparison. Therefore, 28 and 30
pixels at the 1 km scale of the DisPATCh and VTCI products, respectively, were compared
against the corresponding OzNet stations. For the grid scales larger than 1 km, comparisons
were made across the pixels that had a large number of OzNet stations (more than or equal to
four) within their scale. Figure 5 shows the selected pixels at the medium scales of 9 and 10

km at which downscaled soil moisture products were evaluated.

4.2 Evaluation against SMAPEx-4 and -5 PLMR soil moisture maps

The evaluation of downscaled products against PLMR required pairing of the PLMR soil mois-
ture maps with the nearest available downscaled products to the PLMR flights, when coincident
downscaled data were not available. The nearest available products were selected based on infor-
mation about the rainfall occurrence over the study area and minimal average absolute change
(< 0.02 m® m™3) of OzNet soil moisture measurements between the flight dates and those of
the nearest available products in time. The date of the nearest available observations to PLMR
flights is written on soil moisture thumbnail plots (Figure 6 and 7 provided in the results section)

when data were not coincident. To resolve scale mismatches between soil moisture products
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Figure 5: Schematic of the downscaled soil moisture product grids at (a) 9 km and (b) 10
km. The SMAPEx-4 and -5 flight coverage and location of OzNet stations are highlighted in
magenta rectangles and red dots, respectively. The cyan rectangle shows the common analysis
area for both airborne field campaigns. Green squares show the chosen pixels for analysis of
soil moisture products against OzNet measurements. These pixels contain the largest number
of OzNet stations (more than four); the number of available stations is written in the pixel.

and PLMR soil moisture maps, the original PLMR soil moisture footprints were first processed
onto the same 1 km grid, and then averaged within the grid cell of each 9 or 10 km resolution
product.

The main comparison scenario of downscaled products against airborne PLMR soil mois-
ture was developed to discard the seasonal performance of downscaled products because the
operational application of downscaled soil moisture products should be regardless of climate
conditions (Sabaghy et al., 2018). The analysis herein used the entire downscaled soil moisture
data captured during both the SMAPEx-4 and -5 airborne field campaigns. Moreover, the sea-
sonal performance of downscaled soil moisture products was examined for the Austral autumn
(March-May, using SMAPEx-4 data) and spring (September-November using SMAPEx-5 data)
as a complementary scenario, in order to understand the seasonal performance and uncertainties
of the soil moisture products.

Radar-based soil moisture products were only available for the period between 15 April and
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7 July 2015 when the SMAP radar was still transmitting data. Thus, radar-based products
were evaluated only for the SMAPEx-4 airborne field campaign. The seasonal evaluation of the
performance of other downscaled products was conducted when enough (4 or more) coincident
downscaled soil moisture maps were available. Accordingly, the performance analysis of the
VTCI-based products was not possible for the SMAPEx-4 period as only one SMOS VTCI and
two SMAP VTCI soil moisture maps were captured due to cloud.

In order to address the potential variation in number of different downscaled products avail-
able for comparison, and eliminate the impact on evaluation, only downscaled products collected
on 3, 6, 11, 20 and 22 May 2015 during SMAPEx-4 were evaluated herein. This evaluation
was undertaken for the SMAPEx-4 period only because the radar-, optical-, radiometer-and

oversampling-based products were all available over this period.

5 Results

Time series of downscaled and observed airborne PLMR soil moisture maps during the SMAPEx-
4 and -5 airborne field campaigns are shown in Figure 6 and Figure 7, respectively. These figures
show the performance of the downscaled products in capturing the spatio-temporal variability
of soil moisture. The airborne PLMR soil moisture estimates at 1 km have consistency with the
occurrence of precipitation events, mimicking the dry down cycle observed during SMAPEx-5
and the rainfall interrupted drying spell during the SMAPEx-4 (Figure 2). There is no clear
evidence from Figures 6 and 7 to show that any downscaling process is clearly superior to an-
other for disaggregation of SMAP and/or SMOS, but among the downscaled products available
over the SMAPEx-4 period, DisPATCh and VTCI products - especially at 9 km - revealed the
best visual agreement with the spatial and temporal pattern of airborne PLMR soil moisture
compared to other products. However, a limitation of the optical approach is that it cannot
deliver any soil moisture downscaling under cloudy skies because of the lack of cloud-free optical

imagery, which is the key component or input in the optical downscaling process. This short-
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coming of optical imagery resulted in the reduced availability of the VT CI-based downscaled
soil moisture, which uses the difference of day and night land surface temperature in derivation
of its downscaling index. The lack of access to optical observations, which is more pronounced
for the SMAPEx-5 period, is unlike microwave-based approaches where there are no such gaps
in data. The microwave-techniques are in general capable of soil moisture downscaling under
all-weather conditions. This capability is due to microwave observations being able to pass
through non-raining clouds unaffected. The success of DisPATCh and VTCI products in cap-
turing the soil moisture spatio-temporal variability is followed by the radar-based downscaled
product, namely the SMAP MOEA, which was only available for the SMAPEx-4 period.

The temporal evolution of downscaled soil moisture products at 9 km was also compared
with that of aggregated OzNet measurements to 9 km (Figure 8) showing a significant level of
agreement between them. The majority of downscaled soil moisture values do not match the
median OzNet soil moisture closely, but are in the range of aggregated OzNet measurements.
However, there are also a few days on which downscaled soil moisture estimates laid outside
the OzNet measurement range. Erratic oscillations were observed for the SMOS PassiveD soil
moisture estimates between July to September 2015. These oscillations are reportedly due to
a poor constraint on the Vegetation Optical Depth (VOD) during the retrieval process. This
is specific to the level 3 algorithm used in this analysis (SMOS operational MIR CLF31A/D
product, version 3.00) and does not occur with the level 2 algorithm. Accordingly, a new level
3 retrieval algorithm has recently been developed by the SMOS science team to constrain VOD
during 3-orbit periods and is currently being validated. The accuracy of downscaled soil mois-
ture products is known to be affected by the accuracy of the coarse passive soil moisture from
which downscaled products are derived (Peng et al., 2017; Sabaghy et al., 2018). Accordingly,

3

the soil moisture values larger than 0.55 m® m™ were excluded from the statistical analysis.

However, the SMOS DisPATChD and SMOS VTCI downscaled soil moisture estimates were

shown to rarely reach values larger than 0.5 m® m™ in mid August, similar to SMOS PassiveD
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soil moisture estimates. While the SMAP Passive soil moisture estimates shown in Figure 8
were shown to be less than 0.47 m® m™, the SMAP A/P soil moisture estimate on late June
2015 was shown to be more than 0.5 m® m™. This is explained as follows: if the 36 km SMAP

3. as in this case, it is expected that some downscaled pixels

Passive soil moisture is 0.47 m? m"
at higher spatial resolution will get wetter while some will get drier to compensate and maintain
the same average value as the coarser pixel.

This analysis assessed the accuracy of downscaled soil moisture products regardless of sub-
pixel surface heterogeneity and land cover types across the Yanco region, as downscaling tech-
niques should be applicable for a wide range of surface and vegetation cover conditions if they
are to be applied operationally. However, the dominant vegetation cover at 1 and 9 km spatial

resolution for the SMAPEx-4 and -5 airborne field campaigns are available in Figure A1l of the

Appendix to provide detailed information about vegetation cover over the study area.

5.1 Temporal analysis against OzNet

Temporal analysis of soil moisture products was carried out against pixels containing multiple
OzNet stations. In this analysis, time series of soil moisture values from the chosen pixels were
compared against corresponding values from aggregated OzNet soil moisture measurements. A
summary of accuracy statistics from different downscaled products is presented as a boxplot in
Figure 9, containing the minimum, maximum, median, and interquartile ranges together with

the mean.

Evaluation of products at 1 km

When compared against aggregated OzNet measurements at 1 km (Figure 9-a), the products
were shown to have a poorer performance than the products at 9 km. Such a decrease in the
performance of products at 1 km could be associated with the spatial-scale mismatch, which

is expected to be larger for higher resolution products (van der Velde et al., 2012). Moreover,
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it has previously been noted by Yee et al. (2016) that the evaluation of soil moisture products
against OzNet stations in the Yanco region is indicated a better accuracy for coarser resolutions
whereby multi-stations are aggregated for each pixel footprint.

The SMAP VTCI with mean R? of 0.85 and mean RMSD of 0.07 m® m™ was found to have
the best performance. The R? of DisPATCh products at 1 km were observed to be slightly
lower than that of DisPATch products at 9 km. The same observation was made regarding the
R? of SMAP VTCI at 1 km, which did not change much in comparison with that of SMAP
VTCI at 9 km; the R? for 1 km scaled SMAP VTCI was on average 0.05 less than that of 9 km
SMAP VTCI. Conversely, the R% of SMOS VTCI at 1 km was observed to be roughly the same
as that of SMOS VTCI at 9 km; similar results were obtained for the SMOS PassiveD from
which SMOS VTCI originated. This similarity between the performance of SMOS PassiveD
and SMOS VTCI is consistent with previous results reported in Peng et al. (2015, 2016), which
showed that VTCI-based downscaled products maintained the accuracy of the original coarse
soil moisture products from which they were derived.

Except for SMOS VTCI at 1 km, which slightly underestimated OzNet soil moisture by
-0.004 m® m™ on average, the remaining products overestimated by between 0.012 and 0.046

3

m m'3

on average. Underestimation of VI'CI-based downscaled soil moisture products was also
reported by Peng et al. (2015, 2016). With the exception of SMAP VTCI, no improvement of
statistical parameters was observed for the 1 km downscaled products over the original coarse
passive SMAP and SMOS soil moisture measurements. However, the accuracy of DisPATChD
and SMOS VTCI were shown to be close to that of SMOS PassiveD.

Spatial resolution improvement of downscaled soil moisture products to even higher spatial
scale (such as field scale) is not expected to increase the accuracy. For example, Wu et al.
(2016) applied the active/passive optional (Das et al., 2011), baseline (Das et al., 2014) and
change detection (Piles et al., 2009) retrieval algorithms to the SMAPEx-3 airborne simulation

(Wu et al., 2015) of the SMAP data stream to test the robustness of alternate radar-radiometer
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combination algorithms over a semi-arid region. From these alternate downscaling techniques,
downscaled soil moisture products were retrieved at three different spatial scales including 1,
3, and 9 km. Findings of this study revealed that all of the downscaled products at 9 km had
better performance than the products at 1 and 3 km spatial resolution in terms of RMSD and
spatial resolution improvement, with the downscaled products from 9 to 1 km deteriorating the
statistical metrics.

As suggested by Merlin et al. (2015), the slope of linear regression between downscaled
products and OzNet in situ measurements was also considered as an evaluation metric for
assessment of products at 1 and 9 km. However, the mean slope values of products at 1 km

varied between 1 and 1.3, showing little difference in the performance of products.

Evaluation of products at 9 km

Comparison of products at 9 km resolution (Figure 9-b) shows that the SMAP VTCI soil
moisture product had the best temporal agreement with OzNet measurements, followed by the
SMAP EnhancedD and EnhancedA products. The SMOS VTCI, SMOS PassiveD and Dis-
PATChD had the lowest agreement with the temporal pattern of OzNet soil moisture compared
to other products at 9 km, having an average R? of ~ 0.6. The difference between the perfor-
mance of the SMAP and SMOS VTCI is the result of the difference in the SMAP and SMOS
PassiveD from which the SMAP and SMOS VTCI products were derived. The SMAP VTCI
soil moisture had an overall bias of -0.011 m® m™, which explains the slight underestimation
relative to the ground OzNet measurements. While the SMOS VTCI, DisPATChD and SMAP
VTCI underestimated relative to OzNet measurements, the other products overestimated. For
example, the SMAP MOEA with average bias of 0.057 m® m™ had the most noticeable overes-
timation.

With the exception of SMAP VTCI and the Enhanced products, other downscaled products

at 9 km showed a deterioration in the R? when compared with the coarse original SMAP soil
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Figure 9: Summary of results obtained from temporal analysis of soil moisture products at (a)
1 km and (b) 9 km against OzNet. For 9 km products, only pixels with the largest number
of stations were chosen. Each boxplot displays the distribution of the accuracy statistics of
different downscaled products based on the interquartile range, the maximum and minimum
range, and the statistics median (bar) associated with the mean (dot). d indicates the number
of downscaled products that were used in this analysis and n indicates the number of statistical
parameters that are summarized in this figure.

moisture products. For instance, the R? of SMAP A/P was on average 0.12 less than that of
SMAP PassiveA and PassiveD. Inferiority of SMAP A/P to SMAP Passive products in terms
of temporal correlation with in situ measurements has also been reported by Mishra et al.
(2018), who evaluated SMAP A/P Level 3 soil moisture products using in situ soil moisture
measurements from the Soil Climate Analysis Network (SCAN) stations across the Continental
United States. The temporal correlation between the SMAP SFIM and in situ OzNet soil

moisture measurements also tended to be lower than that of the SMAP Passive soil moisture

products, similar to results reported by Gevaert et al. (2015).
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Among the downscaled products, the SMAP EnahncedA and EnhancedD downscaled prod-
ucts maintained a similar RMSD to the coarse SMAP passive soil moisture products. It is to
be noted that SMAP VTCI was the only downscaled product which outperformed the original
coarse passive SMAP in terms of RMSD, hitting the lowest values of RMSD and ubRMSD.
The DisPATChD could not improve the accuracy of non-downscaled SMOS PassiveD from
which DisPATChD originated. However, the DisPATChD showed a close performance to that
of SMOS PassiveD.

The SMAP EnhancedD with mean R? of 0.81, mean RMSD of 0.061 m? m™ and mean bias
of 0.024 m? m™ was found to have a slightly better performance than the SMAP EnhancedA.
The performance of the Enhanced product was generally consistent with that of the evaluation
by Chan et al. (2018) who assessed the performance of the Enhanced products for the period
April 1, 2015 to October 30, 2016 using in situ data from the SMAP mission core validation
sites including Yanco. Chan et al. (2018) reported on the similarity between the performance of
Enhanced products and that of SMAP passive soil moisture products. Based on their analysis,
the SMAP EnhancedD data attained a mean R? of 0.92 (correlation coefficient /R = 0.96), mean
RMSD of 0.048 m® m™ and mean bias of 0.02 m® m™ with in situ stations over the Yanco re-
gion. Li et al. (2018) evaluated the accuracy of the SMAP EnhancedD against two ground-based
soil moisture and temperature monitoring networks located in the Tibetan Plateau, likewise re-
ported on the reliability of the SMAP EnhancedD products in capturing the temporal variations
of soil moisture. Li et al. (2018) reported small values of ubRMSE (0.055-0.059 m? m) and
high temporal correlation coefficients (0.64-0.88) for Enhanced Products.

Similar to slope analysis for products at 1 km, there was no substantial statistical difference
between the mean slope values for products at 9 km; with the range of mean slope being between
0.9 and 1.4. A slope larger than 1 could be attributed to the difference between the sensing
depth of downscaled products (varying between 0 and 5 cm) and that of in situ measurements

being 0-5 cm.
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An unequal number of soil moisture values were analysed for the different products included
in the temporal analysis against the OzNet stations, due to the availability of product retrievals.
This may raise a concern about the impact of the unequal number of data used in the estimation
of statistical metrics, and thus the findings from the analysis. Consequently, the temporal
analysis was also conducted for a consistent number of data by using only observations on
the same dates (eight days only). This included comparison of SMAP EnhancedD, SMAP
SFIM, SMAP PassiveD, SMOS PassiveD, SMAP VTCI and SMOS VTCI against the OzNet
measurements. Findings from this analysis were consistent with the earlier results. However,
the statistical metrics of the eight days only scenario were deteriorated compared to those
summarized in Figure 9. Still, the SMAP VTCI at both 1 and 9 km were found to have
the best performance. For the comparisons conducted at 1 km, the SMAP PassiveD followed
closely the SMAP VTCI. Results obtained from the analysis of products at 9 km revealed that
the performance of SMAP VTCI was followed by that of the SMAP EnhancedD and SMAP

PassiveD.

General results

In the case of temporal analysis of downscaled products at 9 km against OzNet (Figure 13),
SMAP EnhancedA and EnhancedD products were generally superior to other downscaled prod-
ucts. Both reached the highest temporal correlation with OzNet and had the lowest bias. SMAP
VTCI at 1 km resolution also showed superiority to the remaining downscaled products at 1

km.

5.2 Temporal analysis against airborne PLMR soil moisture
Evaluation of products at 1 km
The temporal analysis of products was also carried out against the entire airborne PLMR soil

moisture maps captured over the SMAPEx-4 and -5 airborne field campaigns. A summary of
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Figure 10: As for Figure 9 but for the comparison against airborne PLMR soil moisture at 1 km
in which analysis was carried out for all the pixels covering the study area. These results are
from different scenarios including: a) the equal number of downscaled products captured during
SMAPEx-4, b) all available products during the SMAPEx-4, and ¢) products captured over the
entire SMAPEx-4 and -5 airborne field campaigns’ period. Here s stands for the dimension of
analysis area arranged in row X column. Note: the performance analysis of the VTCI-based
products was not possible for the SMAPEx-4 period as only one SMOS VTCI and two SMAP
VTCI soil moisture maps were available.
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Figure 11: As for Figure 10 but for the comparison against airborne PLMR soil moisture at 9
km.

product accuracy statistics at 1 and 9 km resolution are presented as boxplots in Figures 10 and

11, respectively. When the same number of downscaled and non-downscaled soil moisture maps
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at 1 km (Figure 10-a) were evaluated, descending SMAP and SMOS coarse passive products
showed superiority in terms of accuracy when contrasted with the downscaled products, having
a mean R? > 0.6 and mean RMSD of ~ 0.09 m® m™>. The SMOS DisPATChD maintained
a similar accuracy to that of SMOS PassiveD, and performed the best among the downscaled
products. Generally, all products underestimated the airborne PLMR soil moisture; with the
underestimation being greater in the SMAP PassiveA and SMOS DisPATChA.

For the comparison against SMAPEx-4 and -5 airborne field campaigns (Figure 10-c¢), SMOS
VTCI at 1 km performed the best with R? of 0.76, RMSD of 0.084 m? m™ and ubRMSD of
0.056 m3 m™, which were better statistical metrics than for the other products. This was
followed by the SMOS DisPATChD and SMAP PassiveD products which performed similarly;
with a mean R? close to 0.4, mean RMSD of about 0.12 m? m™ and mean bias between
0 and -0.05 m® m™. It is to be noted that the maximum R? for both SMOS VTCI and
DisPATChD was equal to 1, while other products could not reach this high level of temporal
agreement with airborne PLMR soil moisture. The slope of the linear regression defined between
downscaled products and PLMR soil moisture maps showed dependency to R%. As anticipated,
the slope values were small (close to zero) for products that had low R2. The slope was mainly
explained by the correlation, knowing that slope equals to (correlation)x (standard deviation of
downscaled products/standard deviation of reference data). Therefore, the standard deviation
of downscaled products was rather similar across all products. Comparison of SMOS VTCI
and SMOS DisPATCh as optical-based products has also been conducted for the SMAPEx-4
and -5 airborne field campaigns, by choosing the same dates. Based on this comparison, the

performance of DisPATCh and VTCI was quite comparable.

Evaluation of products at 9 km

At 9 km resolution for the scenario in which the same number of soil moisture maps were eval-

uated (Figure 11-a), the SMAP EnhansedA and EnhancedD products with average R? of 0.92
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and 0.94, respectively, surpassed the other downscaled soil moisture products in capturing the
temporal evolution of airborne soil moisture estimates, followed by SMAP PassiveD, SFIM and
MOEA. The SMOS PassiveD and SMAP A /P products also showed a good performance with
R? of 0.75 for the first and 0.73 for the later. The SMAP PassiveD without being downscaled
was amongst the best results and yielded an R? of 0.89 and ubRMSD of 0.054 m? m™. Nev-
ertheless, the SMAP EnhancedA was found to have the best agreement with airborne PLMR
soil moisture. The SMAP EnhancedA not only had a high coefficient of determination but
also low RMSD and/or ubRMSD. The DisPATChA at 9 km - retrieved from an optical-based
downscaling technique - had the lowest agreement with airborne PLMR, soil moisture. This is
unlike the DisPATChD which was shown to have a moderate performance with R? of 0.75. The
DisPATChD yielded on average similar performance to the SMOS PassiveD. While it did not
improve nor maintain the accuracy of SMOS PassiveD in terms of RMSD and ubRMSD, it de-
teriorated the R? and bias relative to SMOS PassiveD. Nevertheless, the R? of SMOS PassiveD
was not significantly above that of DisPATChD. These findings are in agreement with those
obtained from evaluation of all available soil moisture products during the SMAPEx-4 (Figure
11-b).

For the comparison against SMAPEx-4 and -5 airborne field campaigns (Figure 11-c), SMOS
VTCI at 9 km performed the best with a mean R? of 0.91, mean bias of -0.04 m? m™, mean
RMSD of 0.061 m® m™, and mean ubRMSD of 0.039 m? m™ followed by SMAP MOEA and
A /P, which were only available for the SMAPEx-4 period. The remaining products, with the ex-
ception of the SMAP VTCI, SMOS DisPATChA and SMAP PassiveA, had similar performance

with mean R? between 0.2 and 0.5 and varying RMSD between 0.1 and 0.13 m?® m™3.

Seasonal performance of products at 1 km

In order to assess the seasonal impact on the performance of products at 1 km, the temporal

analysis of products was also carried out for the SMAPEx-5 airborne field campaign conducted
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in the austral spring. During the SMAPEx-5 with wet soils, the products again underesti-
mated the airborne PLMR soil moisture, being even more severe than for SMAPEx-4. This
underestimation could be the result of standing water in some fields and the denser vegetation
cover in cropping areas during SMAPEx-5. The performance of SMOS DisPATChD, SMAP En-
hancedD, SMAP EnhancedA and SMAP PassiveD during SMAPEx-5 showed a minor difference
over their performance during SMAPEx-4 in terms of R? and ubRMSD. With the exception of
SMOS PassiveD, whereby R? decreased marginally from 0.66 (SMAPEx-4) to 0.57 (SMAPEx-
5), the R? of remaining products during SMAPEx-5 increased by more than 0.5 compared to
that of SMAPEx-4. The SMAP PassiveA products experienced the largest increase (0.68) in
terms of R? and had the lowest agreement with SMAPEx-4 PLMR soil moisture. More ex-
plicit spatial and temporal patterns of soil moisture were observed in the PLMR derived maps
during the SMAPEx-5 than the SMAPEx-4 airborne field campaign, as shown in Figure 6 and
7. Therefore, it was expected that the downscaled products would best capture the explicit
spatial and temporal variability of soil moisture during the SMAPEx-5 airborne field campaign.
Results from the comparison of SMOS VTCI and SMOS DisPATCh on the same dates during
the SMAPEx-5 airborne field campaign revealed a similarity of DisPATCh and VTCI in terms
of performance.

For the comparison against SMAPEx-5 airborne field campaign data, with the exception of
SMOS PassiveD and DisPATChD with R? less than 0.6, the remaining products were found
to have an R? greater than 0.75. The SMOS DisPATChA had a reasonable performance with
an R? of 0.77, a lower bias (-0.033 m® m™) and a lower ubRMSD (0.044 m3 m™) than other
products. This is unlike the SMOS VTCI, SMAP VTCI, SMAP PassiveA, SMAP PassiveD,
and SMOS PassiveA, which with R? > 0.85 could not meet the accuracy requirements in terms
of bias and RMSD. For instance, the SMOS VTCI had the largest bias equal to -0.115 m?® m™

on average and the largest RMSD equal to 0.143 m3 m™ on average.
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Seasonal performance of products at 9 km

The seasonal performance assessment was also carried out for the products at 9 km. Based on
this comparison, with the exception of SMOS PassiveD, SMOS DisPATChA and DisPATChD,
the remaining products were superior with an R? > 0.9. This is not in line with the findings from
the SMAPEx-4 in which SMOS PassiveA, SMOS DisPATChA and SMAP PassiveA had an R?
less than 0.3. Generally, the variation of RMSD, ubRMSD, and bias obtained from evaluation
of 9 km products during the SMAPEx-5 was found to be smaller than that of products at 1 km.
Still, the average of obtained statistical metrics for 9 km products was quite similar to that of
products at 1 km.

Generally, a comparison of the temporal performance of DisPATCh products against air-
borne PLMR soil moisture showed that the accuracy of DisPATCh products was noticeably
affected by that of the SMOS Passive products. While DisPATCh products were not superior
to SMOS Passive products in terms of R?, the DisPATCh products were shown to mimic the
SMOS Passive R%2. For example, the SMOS PassiveA and SMOS PassiveD at 9 km had an
average R? of 0.9 and 0.63, respectively, during the SMAPEx-5, with DisPATChA and Dis-
PATChD showing an average R? of 0.8 and 0.5 for the former and latter. Results herein have
also shown that DisPATCh products had a higher RMSD /ubRMSD than SMOS Passive prod-
ucts during SMAPEx-4, which is opposite to the results obtained for the SMAPEx-5 period.
During SMAPEx-5 the RMSD of DisPATCh products were slightly lower than those of the

SMOS Passive products.

General results

Analysis of downscaled products against airborne PLMR soil moisture maps revealed the supe-
riority of the oversampling-based technique in terms of delivering more frequent and accurate
downscaled products than the radar-, optical- and radiometer-based techniques. The SMAP

Enhanced products not only had better performance and availability, but also showed improve-
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ment over coarse SMAP radiometer only soil moisture products in terms of accuracy and spatial

scale.

Spatial analysis against airborne PLMR soil moisture

Spatial analysis of soil moisture products was carried out against airborne PLMR soil moisture
maps covering the entire study area during the SMAPEx-4 and -5 airborne field campaigns.
This spatial analysis involved evaluation of the daily maps of soil moisture estimates against
the corresponding airborne PLMR maps in the same scenarios as in the temporal analysis. A
summary of the spatial accuracy statistics of products at 1 and 9 km are presented as boxplots

in Figures 12 and 13, respectively.

Evaluation of products at 1 km

When downscaled soil moisture maps at 1 km were evaluated (Figure 12), they showed low
spatial correlation, denoted by R?, with airborne PLMR maps. Such a low spatial correlation
was followed by low linear regression slope. In the spatial analysis, the spatial correlation
was very low for all products, with the slope mainly determined by the standard deviation of
downscaled products in space. Furthermore, they underestimated the variability of the PLMR
soil moisture with the range of average bias between -0.016 and -0.075 m® m™. For the scenarios
including: i) evaluation of the same number of products (Figure 12-a) and ii) evaluation of
products during the SMAPEx-4 (Figure 12-b), the products had a mean R? of less than 0.2 and
the range of mean RMSD between 0.083 and 0.146 m® m™. These results in general are not
much different from those of comparisons against SMAPEx-4 and -5 airborne field campaigns
(Figure 12-c¢). However, results in Figure 12-c showed closer resemblance in the performance of

products compared to Figure 12-a and b.
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Evaluation of products at 9 km

In the case of spatial pattern analysis of products at 9 km (Figure 13), generally, SMAP En-
hancedA and EnhancedD products were superior to other products. Both reached the highest
spatial correlation with airborne PLMR soil moisture and had the lowest bias. Nevertheless,
the SMAP Enhanced products had mean R? less than 0.5 and mean bias larger than 0.04 m?
m™. In addition, the slope of linear regression between SMAP Enhanced products and PLMR
soil moisture was close to 0.1. The slope was mainly determined by the standard deviation of
downscaled products in space, which is expected to be lower for coarser/lower resolutions. The
SMAP A/P showed the highest variability in terms of slope range, and SMAP EnhancedA was
one of the products with the lowest variability. Apart from the Enhanced products, the SFIM

performance was shown to be one of the best during the short SMAPEx-4 period.

Seasonal performance of products at 1 km

Comparison of the performance of products at 1 km during the SMAPEx-5 (austral spring)
against that of products during the SMAPEx-4 (austral autumn) showed that there was no
noticeable seasonal impact on the spatial performance of products. None of the products at
1 km could capture the spatial pattern of PLMR soil moisture with high correlation and low
RMSD. Agreeing with findings from the evaluation of products during the SMAPEx-4 period,
the mean R? of products was generally less than 0.1 and mean RMSD was higher than 0.09 m?
m™ for SMAPEx-5. Regardless of season, there was an underestimation of PLMR soil moisture

by products with a more noticeable error in the SMAPEx-5 period.

Seasonal performance of products at 9 km

In contrast to the seasonal performance of products at 1 km, the seasonal impact on the spatial
performance of products at 9 km was noticeable. Products at 9 km showed slightly better

performance during SMAPEx-4 than during SMAPEx-5 when soils were wet. Comparison of
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Figure 12: Summary of results obtained from spatial analysis of soil moisture products at 1
km against airborne PLMR soil moisture in which analysis was carried out for all the pixels
covering the study area. These results are from different scenarios including: a) the equal
number of downscaled products captured during SMAPEx-4, b) all available products during
the SMAPEx-4, and c¢) products captured over the entire SMAPEx-4 and -5 airborne field

campaigns’ period.

the correlation of products with PLMR, soil moisture during SMAPEx-5 with that of products

e03 during SMAPEx-4 showed a reduction of R? for SMAPEx-5, which was more pronounced for
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the SMAP SFIM. The SMAP SFIM was among products with the best performance during
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SMAPEx-4, but among those with the poorest performance during SMAPEx-5. The SMAP
SFIM experienced a decrease in R? from 0.33 in SMAPEx-4 to 0.14 in SMAPEx-5 and increase
of RMSD from 0.062 to 0.093 m? m™3. Although the performance of SMAP EnhancedA was
slightly poorer during SMAPEx-5 than SMAPEx-4, it still ranked the best with R? of 0.18,

RMSD of 0.089 m? m™ and ubRMSD of 0.055 m® m™.

General results

Based on the results, none of the downscaled products could capture the spatial variability of
the PLMR soil moisture maps. Products at both 1 and 9 km showed low spatial correlation
with airborne PLMR maps, denoted by R? values less than 0.5. However, products at 1 km had
a lower spatial correlation than the products at 9 km, with R? values of ~0.1. While none of
these methods met the accuracy expectations, the slightly better results at 9 km were expected,
being an artefact of undertaking the evaluation at larger spatial scales where the high spatial
variability is smoothed by the averaging processes.

Superiority of the oversampling-based technique to the radar-, optical- and radiometer-
based techniques, in capturing spatial variability of airborne PLMR soil moisture, was revealed
based on findings from spatial analysis. Nevertheless, the oversampling-based products did
not indicate a strong correlation with the airborne PLMR spatial pattern. The superiority of
the oversampling-based product relative to others was not limited to just the spatial patterns
provided by airborne PLMR soil moisture maps; temporal evaluation against the in situ soil
moisture measurements and airborne PLMR soil moisture estimates also revealed superiority
of the oversampling-based products. For both of the temporal analyses, oversampling-based
products had a low RMSD/ubRMSD and high R? values. Availability of the oversampling-
based products under all-weather conditions is another factor supporting their adoption for

applications.
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Figure 13: As for Figure 12 but for the spatial analysis at 9 km.
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6 Discussion

This paper has rigorously assessed the performance of a variety of available downscaled soil
moisture products at resolutions between 1 and 10 km, to find approach(es) that is(are) ap-
plicable for multi-sensor soil moisture retrieval from the SMAP and SMOS. This assessment
involved comprehensive inter-comparison of downscaled products, including radar-, optical-,
radiometer- and oversampling-based retrievals against in situ and airborne reference data for a
typical Australian landscape and climate. The performance of the original coarse radiometer
only products including SMAP and SMOS was analyzed to understand the extent of improve-
ment of their respective downscaled products in terms of accuracy and capability of capturing
the spatio-temporal variability of soil moisture relative to assuming a uniform spatial field. A
summary of accuracy statistics of the downscaled and non-downscaled products at 9 km, eval-
uated against the airborne PLMR soil moisture during SMAPEx-4 and -5, and OzNet in situ
soil moisture measurements is provided in Table 2. Based on Table 2, none of the products at
9 km could deliver soil moisture estimates at an accuracy of 0.04 m® m™, being the accuracy
requirement suggested for a wide range of soil moisture applications over areas with vegetation
water content of less than 5 kg.m™ (Entekhabi et al., 2008).

Based on the results, downscaled products showed a range of performance against differ-
ent reference data sets and under differing spatial scale, weather and climate condition. This
variation of performance between downscaled products could be influenced by the nature of uti-
lized ancillary data for downscaling purpose. For example, in Figure 6 and 7 the optical-based
products could not retrieve consistent time series of soil moisture maps under cloudy skies as
optical observations are not captured under cloud coverage. This shortcoming reduces the func-
tionality of optical-based techniques while the high temporal and spatial resolution of optical
observations make them a promising ancillary data for soil moisture downscaling. Studies such

as Zhao and Li (2013), Peng et al. (2015), Piles et al. (2016), and Sabaghy et al. (2018) have
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suggested the use of geostationary based optical observations, instead of the optical imagery
captured by polar orbiting counterparts, to overcome this issue. The geostationary sensors
provide more frequent acquisitions and thus an opportunity for more cloud-free observations.
Furthermore, multi-sensor data fusion techniques could be employed as an alternative to the
use of geostationary based optical observations, in order to generate continuous time series of
cloud-free optical imageries (e.g. Long et al., 2019).

Unlike optical-based products, radar-, radiometer-, and oversampling-based downscaled soil
moisture maps were available regardless of meteorological conditions. Oversampling-based prod-
ucts retrieved from optimal interpolation theory, which provides the closest observation to what
could be measured by the radiometric instrument at the interpolation point, has the added ad-
vantage of not needing concurrent data from other sensors. This factor prevents data loss due
to unavailability of required ancillary data for disaggregation. The lack of access to concurrent
radar and radiometer observations that have the same temporal repeat is the main factor that
limits the application of the radar-based downscaling techniques.

The oversampling-based soil moisture products (SMAP EnhancedA and SMAP EnhancedD)
best captured the temporal and spatial variability of soil moisture overall, though the SMAP
MOEA and A/P had the better temporal agreement with PLMR during the short SMAPEx-4
period. This superiority may lie in the characteristic of the L-band radiometer and radar data
used for their soil moisture disaggregation. Especially, the oversampling-based soil moisture
products with their disaggregation procedure based on the use of SMAP L-band radiometer im-
ageries that are less affected by vegetation cover, surface roughness and meteorology condition.

The summary of accuracy statistics, in the review of temporal analysis of different down-
scaling techniques displayed in Figure 8 of Sabaghy et al. (2018), indicated that the radar-
based technique was expected to deliver more accurate downscaled soil moisture products than
optical-based techniques, with radar having been previously shown to have a greater sensitivity

to soil moisture dynamics than optical observation and with a direct relation to soil moisture
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dynamics. Nevertheless, in this study the temporal analysis of products against the OzNet
ground-based soil moisture measurements revealed that optical-based products (SMAP VTCI
at 9 km) performed the best, followed by the oversampling-based product (SMAP EnhancedD).
The radiometer-based products which had the poorest performance in the review by Sabaghy
et al. (2018), herein showed reasonable performance, being slightly higher than that of radar-
based products (SMAP A/P and MOEA). Moreover, the temporal analysis of products against
the airborne PLMR soil moisture during SMAPEx-4 and -5 revealed that SMOS VTCI at 9 km
performed the best, followed by the radar-based products (SMAP A/P and MOEA).

Differences observed between the temporal analysis of products against in situ and airborne
soil moisture references suggest that relying only on in situ measurement is not appropriate
for validation of soil moisture maps; basically in situ measurements are not necessarily a great
indicator of soil moisture variation in space. Furthermore, in situ measurements are not consis-
tent and have station-to-station bias variations (Colliander et al., 2017). In addition, Yee et al.
(2016) recommended a need to identify the most representative station(s) based on evaluation
against intensive soil moisture measurements to avoid biases in the in situ measurements due
to station placement. While there are a few isolated locations where temporal evaluation was
possible using stations, the aircraft with its full spatial coverage created the opportunity to look
in detail at the spatial patterns.

Based on the temporal analysis of seasonal performance, the performance of SMOS PassiveA
and DisPATChA products were noticeably affected by the season. The 9 km SMOS PassiveA
and DisPATChA had mean R? < 0.3 during SMAPEx-4 and mean R? > 0.8 during SMAPEx-
5, while the average RMSD/ubRMSD and bias of these products was approximately the same
for both campaigns. Merlin et al. (2012) previously reported a similar impact of seasonal
variations on the accuracy of DisPATCh products in capturing the spatial dynamic of soil
moisture but with better temporal correlation of DisPATCh products against reference soil

moisture for summer (semi-arid climate) than winter (temperate climate). The downscaled
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DisPATCh products were derived using the evaporative efficiency as the main downscaling
factor, which has a higher level of coupling with surface soil moisture for the semi-arid rather
than temperate climate (e.g. Colliander et al., 2017; Merlin et al., 2012); with evsporation being
the primary control on soil wetness in semi-arid conditions. Results herein have shown that
the R? of DisPATChD during semi-arid (SMAPEx-4, austral spring) and temperate climate
(SMAPEx-5, austral autumn) remained the same. Conversely, results from the analysis of
DisPATChA products agree with the results of Merlin et al. (2012), being that the R? of
DisPATChA for the semi-arid climate was significantly higher than that of DiSPATChA for the
temperate climate. In order to avoid such a reduction of DisSPATCh performance for wet soil
conditions, Djamai et al. (2015) have recommended the use of a non-linear relationship between
soil moisture and soil evaporative efficiency instead of the linear one used herein.

Results also showed that the seasonal performance of DisPATCh products was similar to
that of passive soil moisture estimates from which the DisPATCh products originated. These
findings suggest that the performance of DisPATCh is heavily influenced by the performance of
the original passive soil moisture estimates. Therefore, the uncertainty of the original passive
soil moisture products is dictating the accuracy of DisPATCh. These findings are not consistent
with findings from Merlin et al. (2012) and Colliander et al. (2017), that proposed the coupling
between soil moisture and evaporative efficiency as the main factor controlling the accuracy of
DisPATCh products. Improvement of the accuracy of passive coarse soil moisture products is
therefore another requirement for improvement of DisPATCh products.

Based on the spatial analysis of seasonal performance, products at 1 km had similar per-
formance for SMAPEx-4 and SMAPEx-5 regardless of season. These results are contrasted
against those obtained from spatial analysis of products at 9 km. In general, products at 9
km had slightly better performance during SMAPEx-4 than SMAPEx-5. The stark contrast of
the performance of downscaled products during SMAPEx-4 and SMAPEx-5, was specifically

introduced for SMAP SFIM products. Reduced sensitivity of high frequency radiometer obser-
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vations to soil moisture dynamics under increased vegetation cover and rainfall events during

SMAPEXx-5 could be the key factor in accuracy reduction of SMAP SFIM in temperate climate.

7 Conclusion

This paper has presented the first analysis of the alternative downscaled soil moisture products
currently available against a common reference data set, to overview their applicability for the
applications requiring soil moisture products at resolutions higher than 10 km. While cloudy
skies limit the application of optical-based downscaled products, the SMAP and SMOS VTCI
as optical-based products had the highest level of temporal agreement with OzNet and airborne
PLMR soil moisture, respectively. However, they could not meet the temporal requirements
for applications. The use of geostationary based optical sensors which collect data at about
30 minute time intervals may help to overcome this shortcoming by increasing the chance of
capturing cloud-free observations.

The oversampling-based soil moisture products (SMAP EnhancedA and SMAP EnhancedD)
best captured the temporal and spatial variability of soil moisture overall, though the SMAP
MOEA and A/P had a better temporal agreement with PLMR during the short SMAPEx-4
period. The SMAP Enhanced products not only surpassed the other downscaled products in
terms of performance and accuracy, but also in terms of availability under all-weather conditions
and improvement of soil moisture retrieval over coarse passive microwave retrievals. Further-
more, the interpolation technique used for the Enhanced soil moisture production does not
require any concurrent data from other satellites. However, the spatial resolution of the SMAP
Enhanced products does not meet the requirements for application to agriculture and water
resources management, which need a resolution of at least 1 km.

The difference between temporal analysis of products against in situ and airborne soil mois-
ture reference data sets also pointed to the fact that relying on in situ measurement alone is

not appropriate for validation of soil moisture maps; basically in situ measurements that are
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site specific and sparsely distributed ignored the short scale spatial variation of soil moisture.
Furthermore, the difference between temporal and spatial analysis of products against the air-
borne PLMR soil moisture maps suggests that dependence on temporal analysis is not ideal for
assessing the performance of spatial variation in soil moisture products. Based on the purpose of
the soil moisture application, spatial analysis should be conducted to quantify the performance

of the soil moisture products in capturing the variability of soil moisture in space.
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Appendix A
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Figure Al: Land cover maps showing dominant vegetation cover at 1 and 9 km spatial resolution
the same as that of downscaled soil moisture maps.
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