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Abstract 

1. The integration and synthesis of the data in different areas of science is drastically slowed 

and hindered by a lack of standards and networking programmes. Long-term studies of 

individually marked animals are not an exception. These studies are especially important 

as instrumental for understanding evolutionary and ecological processes in the wild. 

Further, their number and global distribution provides a unique opportunity to assess the 

generality of patterns and to address broad-scale global issues (e.g. climate change).  

2. To solve data integration issues and enable a new scale of ecological and evolutionary 

research based on long-term studies of birds, we have created the SPI-Birds Network and 

Database (www.spibirds.org) – a large-scale initiative that connects data from, and 

researchers working on, studies of wild populations of individually recognizable (usually 

ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 

120 members, and currently hosts data on almost 1,5 million individual birds collected in 

80 populations over 2000 cumulative years, and counting.  

3. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, 

secures easy data finding, use and integration, and thus facilitates collaboration and 

synthesis. We provide community-derived data and meta-data standards and improve data 

integrity guided by the principles of Findable, Accessible, Interoperable, and Reusable 

(FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data 

language).  

mailto:a.culina@yahoo.com
mailto:a.culina@nioo.knaw.nl
http://www.spibirds.org/
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4. The encouraging community involvement stems from SPI-Bird's decentralized approach: 

research groups retain full control over data use and their way of data management, while 

SPI-Birds creates tailored pipelines to convert each unique data format into a standard 

format. We outline the lessons learned, so that other communities (e.g. those working on 

other taxa) can adapt our successful model. Creating community-specific hubs (such as 

ours, COMADRE for animal demography, etc.) will aid much-needed large-scale 

ecological data integration. 

Keywords: database | birds | research network | data standards | meta-data standards | long-term 

studies | data hub | data management | FAIR data 

 

Introduction 

The importance of long-term individual-based studies 

Long-term individual-based studies of animals in their natural environment underpin our 

understanding of evolutionary and ecological patterns and processes in wild populations (Clutton-

Brock & Sheldon 2010). These studies considerably increase our ability to establish the links 

among genes, individual traits (including physiology and behaviour), fitness, and the 

environment (Broggi et al. 2005, Schroeder et al. 2015, Johnston et al. 2016, Bonnet et al 2019). 

They further document the responses of natural populations to changing environments (Grant & 

Grant 2002, Réale et al. 2003,  Espín et al. 2016, Mennerat et al. 2019, Paniw et al. 2019), and 

facilitate evidence-based conservation (Stokes 2008, Tylianakis et al. 2008, Vatka et al. 2014, 

Festa-Bianchet et al. 2019). 

The first large-scale individual-based field studies of vertebrates were conducted on birds and 

birds remain the most commonly studied group (Clutton-Brock & Sheldon 2010, Radschuk et al. 

2019). Several types of birds (e.g. hole-nesting passerines, colonially breeding seabirds, or fairy-
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wrens) have proven to be highly suitable for long-term individual-based monitoring of 

reproduction and survival. Some of the longest-running field studies with over 65 years of non-

interrupted time series focus on hole-nesting birds (e.g. Kluijver 1951, Lack 1954, Lack 1966, 

Ahola et al. 2007). Hole-nesters are well suited to detailed study as they often breed at high 

densities in nest-boxes (Dhondt 2007, Lambrechts et al. 2010), which allows for easy monitoring 

of the breeding performance (e.g. lay date, clutch size, nesting success) and capture of a large 

number of birds. Up to now studies cover species with different life-histories over a wide 

latitudinal and longitudinal range, and in a variety of habitat types, including urban habitats 

(Andersson et al. 2015, Charmantier et al. 2017, Corsini et al. 2017, Senar et al. 2017, Seress et 

al. 2018). Importantly, these long-term datasets make it possible to answer questions that were 

not anticipated at the onset of data collection (e.g. influence of global warming on phenology, 

Visser et al. 1998; effects of habitat fragmentation, Dhondt 2007). 

The main asset of individual-based bird studies is not only the long temporal scale, but also the 

high degree of spatial replication provided by multiple studies conducted simultaneously 

(Korsten et al. 2010, Dingemanse at al. 2012). The amount of information available when studies 

are combined has the potential to bring our understanding of ecological and evolutionary 

processes to entirely new levels, and has, not surprisingly, led to a number of collaborative 

projects (e.g. Both et al. 2004, Sæther et al. 2007, Eeva et al. 2011, Laine et al. 2016, Vaugoyeau 

et al. 2016, Wilkins et al. 2016, Keogan et al. 2018, Samplonius et al. 2018, Loukola et al. 2020), 

and we provide some examples in more detail in Box 1. This large-scale synthesis (including the 

meta-analysis context, Siepielski et al. 2017, Culina et al. 2018a, Siepielski et al. 2019) is 

especially important for capturing the diversity of biological systems and the variation in 

ecological conditions that are experienced by different populations. Which processes may be 

described as being general? Which processes can be identified as being more specific to certain 

environmental conditions? Only when we have answers to these questions, we can make 
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predictions and tackle global issues, such as habitat degradation, animal welfare, or global 

warming, and gain insights into reproducibility of findings based on ecological time-series.  

Over time, individual-based studies have become more complex and in addition to data on 

breeding parameters, other types of data have been collected (e.g. morphological, behavioural, 

physiological, genetic and genomic). Further, the number of potential relational links to other 

sources, such as biological samples, climatic data and individual movement data has increased. 

With the increasing extent and complexity of datasets we urgently need to address data archiving, 

standards and integration, not only for individual based-studies but in all branches where many 

independent research groups collect similar but differently managed, and consequently under-

exploited, data (the long-tail of science, Box 2, Palmer et al. 2007, Wallis et al. 2013). In these 

branches, transition to Findable, Accessible, Interoperable, and Reusable (FAIR) data (Wilkinson 

2016; Box 2) is more urgent, but also more challenging compared to fields where data standards 

have been set up at the very start (e.g. genomics).  

Scientific collaborations that involve large-scale sharing of standardized data, even when access 

to data is not fully open but restricted, have been shown to generate significant insights, but we 

can only guarantee this with adequate mechanisms in place to align, store, and advertise the data 

that are available for such endeavours. Examples of projects that successfully integrate animal 

data across a large number of studies are EURING Data Bank (https://euring.org/, du Feu et al. 

2016) that stores encounter records of ringed birds, Movebank database 

(https://www.movebank.org/, Kranstauber et al. 2011) on animal movement data, and 

COMADRE database on animal demography (Salguero‐Gómez et al. 2016). 

 

 

https://euring.org/
https://www.movebank.org/
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Barriers to collaboration 

Ideally, data should be openly archived in a way that supports FAIR principles (Wilkinson 2016), 

and as increasingly mandated by funders (Roche et al. 2014, Culina et al. 2018b). All data should 

be in a single, standard format, and accompanied by rich meta-data that include the description of 

the data collection protocols, and support data finding and reuse. In practice, this is difficult to 

achieve.  

The core cultural/sociological reasons that prevent open data are the lack of incentives, the fear 

of being scooped, and worries about losing control and overview over the way the data are 

interpreted and used (Roche et al. 2014, Evans 2016). The latter is not without good reason: it is 

easy to misinterpret data collected under specific ecological conditions and to misunderstand how 

variables were derived (Nelson 2009, Mills et al. 2016). Further, even when researchers are 

willing to adopt common data standards, they might lack the technical knowledge or time. Yet, 

inspiring examples of overcoming these barriers exist. For example, all national bird ringing 

schemes originally used their own data storing format, but ultimately agreed on one common 

output format, creating the European Union for Bird Ringing (EURING, du Feu et al. 2016). 

Now, all bird ringing data can be brought together at the European level. 

The core practical obstacles to effective data reuse and collaboration are the lack of: i) meta-data 

standards to describe populations, ii) data standards, and iii) a central registry of all the 

populations (Culina et al. 2018b). To find datasets, researchers commonly search the published 

literature, then contact data owners (who are not always readily reachable, e.g. if they change 

institution or retire) to determine whether the data are suited for an intended project and whether 

their owner is willing to share them. This process can take up to a year, and sometimes it fails 

(personal experience of the authors). If the data are obtained, the user needs to understand the 
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specific conditions of data collection (e.g. specific field protocols, ecologically relevant 

conditions), the data structure and vocabularies. Groups/researchers store data in different types 

of databases and formats, use different vocabularies to name data elements (e.g. different 

languages) or different coding for the same data element (e.g. some record hatching date as day 1, 

others as day 0). Thus, data owners usually require much time to extract and compile the data and 

provide meta-data to meet the user’s needs. This process needs to be repeated for each new 

collaborative project. Reformatting data is not only time consuming, but may also increase the 

risk of introducing errors.  

Cultural and technical barriers must be solved in parallel; and until open data practices become 

the norm and researchers recognise their benefits, it is crucial to encourage and enable proper 

data archiving and establish meta-data and data standards. To achieve FAIR data, and to increase 

and facilitate collaboration and data synthesis, we created Studies of Populations of Individuals  –  

Birds (SPI – Birds) Network and Database. To overcome cultural barriers, we opted for an 

approach where data owners can decide to keep full control over the use of their data or can make 

their data open access. This approach where some data are open access and some are not has also 

been previously successful with the Movebank, (Kranstauber et al. 2011). Data owners also keep 

their way of data management (i.e. how they organize their data) and SPI-Birds converts these 

primary data into a standard (FAIR) format.  All meta-data stored by SPI Birds are open access, 

as well as the code to convert primary data into the standard format. 

 

SPI-Birds: Connecting researchers and data 

SPI-Birds Network and Database (www.spibirds.org) is a grassroots initiative that connects 

researchers working on populations of birds in which individuals are uniquely marked, and thus 

can be recognized (at capture, or by sight). The main goals are to: (1) increase the coordination 

http://www.spibirds.org/
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and collaboration between research groups; (2) host the registry of populations and equalise the 

visibility among research groups; (3) buffer against data loss and provide long-term access to 

datasets; (4) ensure data quality and integrity; and (5) facilitate data use, and give appropriate 

credit for data use. To achieve these goals we: (a) derive meta-data attributes that describe 

populations (Box 2); (b) centrally archive version-controlled primary data from research groups, 

with attached conditions of data use; (c) derive data standards with controlled vocabularies and 

convert primary data format into a standard format; (d) conduct data quality checks; (e) run a 

series of technical reports on the impact that protocols for data collection may have on derived 

variables; (f) provide expert advice to researchers setting up new populations; and (g) provide an 

online interface to find and request data, and maintain outreach activities.  

To date, we count more than 120 members from 21 countries, monitoring over 80 populations of 

19 species (Fig. 1, Fig. 2A). Currently, the majority of the species are hole-nesting passerines 

(Table 1), but as a part of our long-term goal, we are actively reaching out to researchers that 

work on other species groups across the world, and so far have incorporated some of these into 

the database (e.g. owls, seabirds, dunnocks). The only requirement that needs to be met is that 

most of the birds in a population can be individually recognized (which is commonly achieved by 

a metal or coloured rings) and that at least one component of the breeding success of these 

individuals (e.g. laydate, clutch size) has been measured over at least two years.  

[Insert Fig1 here] 

Figure 1. A map showing the location of the populations with the data hosted in the SPI-Birds 

database as of August 2020. 
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Table 1. Number of unique breeders, breeding attempts, and ringed nestlings per species, as 

hosted at SPI-Birds Database 

Species No unique breeders No breeding attempts No ringed nestlings 

Parus major 60,501 90,882 590,157 

Cyanistes caeruleus 44,878 59,386 438,840 

Ficedula albicolis 35,088 45,933 247,141 

Ficedula hypoleuca 22,406 26,099 116,662 

Sterna hirundo 3,063 10,097 NA 

Poecile montanus 3,000 3,673 12,945 

Poecile palustris 2,319 1,537 3,495 

Periparus ater 1,462 2,160 13,662 

Passer domesticus 1021 2,690 2890 

Corvus monedula 852 2,120 NA 

Prunella modularis 305 466 432 

Lophophanes cristatus 195 164 465 

Emberiza melanocephala 186 66 221 

Poecile cinctus 184 253 NA 

Sitta europea 133 743 456 

Parus minor 120 232 745 

Strix aluco 63 84 168 

Phoenicurus phoenicurus 45 487 1586 

Parus varius 10 24 76 

Overall 175,831 247,096 1,416,293 

 

Community data standards 

To facilitate data compatibility and integration, SPI-Birds has already created data standard for 

storing breeding-season data on individually monitored birds. This standard format is described 

in detail on the SPI-Birds GitHub repository (Culina et al. 2019). It is designed to cover the data 

fields that are common across most individual-based bird studies, and is aligned with the 

standards suggested by the Ecological Meta-Data Language (EML, Jones et al. 2019) and the 

principles of FAIR data (Wilkinson 2016). The standard format is dynamic and can be further 
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extended or adjusted to accommodate the breeding biology (e.g. cooperative breeders) of species 

yet to be included into the database.  

SPI-Birds creates tailored pipelines to convert data from each research group/contributor (i.e. 

primary data format, Box 2) into the standard format. We hope that this standard format will be 

adopted by both new and existing research groups to archive their data. The existing groups will 

be more likely to start using the standard format once their old data have been converted into it 

by SPI-Birds. We further plan to extend this format (and create new standards) to accommodate 

other information (e.g. genetic, hormonal, colouration, ecotoxicological, behavioural data). 

Currently, each population’s meta-data clearly indicate whether this additional information has 

been collected, and the corresponding data can be stored at SPI-Birds (although not yet 

standardized). For example, physiological or personality data has been collected in almost 30 

populations (Fig. 2B) 

[Insert Fig2 here] 

Figure 2. Summary information on the number of populations hosted at SPI-Birds that (A) 

collect data on a certain species; (B) collect different types of data on individuals (alongside basic 

breeding parameters); (C) have been studied for a certain period of time.  

Data processing: integration, quality checks, yearly updates 

Fig. 3A provides an overview of the SPI-Birds data flow (data collection, standardization, 

request, and provisioning). First, data owners upload their primary data (Box 2) to SPI-Birds. 

Primary data come in various storing formats of different complexity, from spreadsheet files (e.g. 

MS Excel) and simple self-contained databases (e.g. MS Access), to dedicated database servers 

(e.g. MySQL). Tailored pipelines are then constructed (Fig. 3B) for each dataset to convert 

primary data into the standard format. The pipeline code is discussed with the data owners (e.g. 
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discussion of how fields in the primary data are coerced into corresponding fields in the standard 

format) to ensure maximum accuracy. Pipeline construction sometimes requires several iterations 

before an accurate pipeline is created. At this point, the pipeline can be confidently applied. The 

primary data and data in the standard format are stored within the secure SPI-Birds data hub (Fig. 

3A), at the file server cluster of the Netherlands Institute of Ecology (NIOO-KNAW) and backed 

up seven times a week. The pipelines are publicly available via GitHub.  

[Insert Fig3 here] 

Figure 3. Overview of SPI-Birds infrastructure. (A) Main data workflow that consists of 

provisioning of primary data, data processing (standardization and quality checks), and data 

request and provisioning. Panel (B) describes data processing, and panel (C) describes data 

request and provisioning process. The internal part (not accessible for users) of the SPI-Birds data 

hub stores versioned data in the primary and the standard format, with an accompanying quality 

report for each dataset. Users can search meta-data and request data (C) via the external part of 

the SPI-Bird data hub (i.e. website). Data is sent to the user (if approved by the data owner, or if 

data are fully open access) in the community standard format, together with the data-quality 

report(s). Prim. data = data in the primary format, as stored by a data owner; Stand. data = data in 

the standard format; Qual. report = a report produced by the standard quality check. 

 

Standard quality check is applied to the standardized data. It involves automated checks for 

missing data, formats of variables (e.g. date, integer), inconsistencies between variables (e.g. 

false brood assignment), and unexpected values within variables. The output of the standard 

quality check are two types of flags: ‘warnings’ (i.e. values that are uncommon or unusual) and 

‘likely errors’ (i.e. values that should be impossible). In discussion with the data owner, warnings 

and likely errors are resolved, if at all possible, and the quality check is updated. If data owners 

decide to address the ‘warnings’ and ‘likely errors’ and update their own primary data, these 

updated primary data will then be stored in the SPI-Birds data hub, under the version control 
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system. Finally, any remaining unresolved flagged records appear in the quality check report that 

is sent to the user. The ‘warnings’ and ‘likely errors’ list is part of the meta-data for each version 

of the dataset.  

For all populations with ongoing data collection primary data are updated to a new version every 

year and may include not only additional data collected over the additional year but also 

corrections of errors found in earlier data. We store all versions of the primary data following 

these yearly updates. This way, we aid to the reproducibility of results based on the version of the 

data used for the analysis.  

 

Data use: discovery, provisioning, terms of use 

Populations hosted at SPI-Birds can be searched via SPI-Birds website based on meta-data (e.g. 

species studied, country, length of data collection, variables measured). Once the relevant 

populations have been identified, data can be requested using the SPI-Birds request form (Fig 

3C). Unless the data owners have made their data fully open access, data requests are sent for 

approval to the data owner. If approval is given, standardized data from the requested 

population(s), accompanied by the standard quality check report, are delivered to the user, and 

the data owner is informed about the data sharing. When the user requests multiple datasets, all 

datasets (in a standard format) are compiled and sent to the user. Each dataset comes with a 

specific terms of data use, and these are stated in its meta-data. To give credit to those who have 

been collecting/managing the raw data, as a minimal requirement for data use (i.e. even when the 

data owner does not request any other conditions of data use) we ask that the data owner(s) and 

funding source(s) that they state in the meta-data, are explicitly acknowledged upon data use (e.g. 

in the acknowledgment section of an article). We also require acknowledgment of the SPI-Birds 

Network and Database, and citation of this paper. Further, SPI-Birds encourage citation of the 
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dataset source (or related publication) via DOIs (digital object identifiers). The detailed Data 

Access Policy can be found on our website.  

 

Understanding data and their limitations 

As discussed above, datasets come with errors and limitations. While SPI-birds increases data 

integrity and quality, the standard data may still contain errors, and data from different 

populations might still not be entirely comparable. To enable users to understand how the 

primary data and standardized data were derived and to highlight potential limitations in the 

dataset, we provide several documents (as a part of the meta-data). These include the description 

of the study site (e.g. location, size, habitat type), data collection protocols, and the list of any 

initial quality checks on the primary data conducted by a data owner. This way, users can better 

understand how the primary data were derived. Next, we provide a detailed description of 

decisions and assumptions made during the conversion of data from primary to standard format 

(with all the pipelines openly available via GitHub), details on quality checks conducted by SPI-

Birds and the resulting quality report. Finally, we publish a series of ‘technical reports’ on the 

SPI-Birds website, where we discuss a range of topics related to methodological conventions 

(e.g. conversion from one type of tarsus measurement method to another type) and potential 

biases induced by methodological approaches to data collection (e.g. impact of the frequency at 

which nests are checked on the estimation of laying date, the impact of nest box design on the 

vital rates, such as survival of young, Lambrechts et al. 2010).  
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Lessons learned – creating a community data hub 

The need to adopt global meta-data and data standards in ecology and evolution is growing 

(Poisot et al. 2019, Schneider et al. 2019). We strongly believe, and our example supports, that 

the best way to achieve the adoption of global standards is to first create standards for well-

defined communities (Poisot et al. 2019). When research communities that work on a similar type 

of data have established their own standards, it becomes easier to scale up to even larger, more 

global standards (e.g. EML, Jones et al. 2019). Lessons learned from the SPI-Birds example can 

be useful to research communities where many researchers (groups) collect data of a comparable 

type (or purpose), but where research protocols and data management are not uniform (i.e. the 

long-tail of science, Box 2, Palmer et al. 2007, Wallis et al. 2013). 

We suggest four key points in establishing a common database and community data standards in 

the long-tail of science: (1) How to start. Aim to identify researchers/groups that belong to your 

research community. This is largely a snowballing process – once you locate several members, 

ask them to identify others. Ideally, organize a kick-off meeting to discuss the aims, distribution 

of tasks, and further steps. From our experience, it is important to have at least several research 

groups keen on the project at the start. Further, it is important to consider needs and fears of your 

research community when deciding on the best working model. For example, our success in 

mobilizing members largely comes from a decentralized approach: data owners keep full control 

(i.e. ownership) over their data, and over their data management practices. (2) Keep the 

community engaged and informed. We found it essential to enable all the members to have the 

opportunity to contribute to the decisions made. For example, all of our members can provide 

feedback on any component of the project. Second, it is important, especially at the start, to show 

that the project is active. We suggest publishing a newsletter every month or two, and creating a 

social media account. We tweet about each data set we receive, keeping the community informed 
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of our continuous growth. Third, organise workshops/meetings where the community physically 

(or virtually) comes together. (3) Funding. Plan to allow for different funding scenarios. We find 

that it is best to plan finances in steps (if no long-term large funding is available at the very start). 

Make sure that the first step – what you want to achieve at the minimum – is financially covered 

at the start. This must include securing a permanent, long-term platform to archive the datasets. 

After that, plan in five-year (or similar) steps. Here, make sure that in the worst-case scenario (no 

further funding secured) each step is maintainable with a minimal financial and personnel 

commitment. For example, our first step was to integrate data on hole-nesting passerines in 

Eurasia, and this period was financially covered by a grants held by participating individuals, and 

volunteer contributions from several members. After this initial phase the SPI-Birds database can 

be kept functional with a minimal investment (e.g. storage capacity). In the next step, we plan to 

increase our scope. At this stage, our project has already proven successful, which makes it more 

attractive for longer-term support (e.g. European open science funds). Finally, we ask (but do not 

mandate) that those whose research plans rely on the collective power of datasets hosted at SPI-

Birds to allocate some of their resources to the SPI-Birds initiative.  

 

Vision for an integrated future 

SPI-Birds is a large-scale initiative that integrates data on individual-based studies of breeding 

birds and connects researchers that collect data in these populations. With this paper we also call 

for additional members to join our fast growing community. To join, please use the contact 

details as given on the SPI-Birds website (www.spibirds.org). We are inviting contributions from 

anyone who monitors a population of a bird species, where birds are individually recognizable 

(usually this would be numbered or colour rings), and where breeding success (at least one 

component of the breeding success, e.g. clutch size) is recorded over years (at least two years). In 

http://www.spibirds.org/
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further developments of the database we plan to: (1) cover additional populations, species, and a 

wider geographical area; (2) integrate and standardize other data types (e.g. hormonal, 

behavioural); (3) connect with ongoing centralized efforts to map the full spectrum of different 

types of data on birds that can complement each other. Here, the main collaborators are scientific 

groups that centralize the collection of complementary types of data (e.g. Movebank, Kranstauber 

et al. 2011, Fiedler and Davidson 2012; EURING, du Feu et al. 2016; the great tit HapMap 

project, Spurgin et al. 2019). Within this scope, we can connect individual-level data hosted at 

SPI-Birds to other types of data on the same individuals based on their unique ID and provide 

even more comprehensive information on individuals across their full life-cycle. A second target 

group are citizen science projects such as Nestkast (de Jong et al. 2018), or the Woodland Trust 

phenology network (https://naturescalendar.woodlandtrust.org.uk/).  

SPI-Birds can also serve as a platform to enable better resource allocation between research 

groups. For example, while a data owner might have the data, they might lack funds to analyse 

them. On the other hand, a data user might have funds or even apply for funds based on these 

data. SPI-Birds can thus help pull the resources (data and funds) together, thereby enabling 

scientific projects, and progress, where it may otherwise be unlikely to occur. We also encourage 

use of SPI-Birds data in student projects. Finally, during the unforeseen international crisis, such 

as caused by a novel corona virus during writing of this contribution, SPI-Birds provided an 

excellent platform to update and document field situations and to mitigate the unbalanced effects 

of the crisis on research groups. We hope that initiatives such as SPI-Birds can truly help a 

transition to a new level of ecological synthesis. 

 

 

https://naturescalendar.woodlandtrust.org.uk/
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Box 1 –Examples of using multiple wild populations 

(a)     Assessing the ability to substitute space-for-time  

Within the scope of understanding and predicting ecological and evolutionary responses to climate change, 

sampling and studying multiple populations of the same species across latitudinal or altitudinal gradient 

may provide insights into adaptation to climate variation, if we assume that time can be substituted by 

space in the processes involved (Phillimore et al. 2010, Blois et al. 2013). For example, Bay et al. (2018) 

sampled yellow warblers (Setophaga petechia) across their breeding range to analyse genomic variation 

across space and environments (climate, vegetation type, and elevation). Assuming that the current spatial 

variation in traits of this species may provide information  on temporal variation in the future, this study 

suggested that those yellow warbler populations that have already experienced the largest population 

declines, require the greatest shifts in allele frequencies to keep pace with future climate change (i.e. are 

most genetically vulnerable). Similarly, urban-driven evolutionary adaptation is a fascinating process that 

not only can be followed in time, but also across space, and fostering long-term ecological and 

evolutionary monitoring in urban areas is key (Szulkin et al. 2020a). In urban evolutionary biology, the 

spatial dimension is particularly valuable from an empirical perspective as it allows researchers to take 

advantage of replicated urbanisation gradients, where each city or urban area acts as independent 

urbanisation replicate (Vaugoyeau et al. 2016, Szulkin et al. 2020b, Santangelo et al. 2020). 

(b) Using spatial replication to infer causal relationships 

Spatial variation in local temperature trends across long-term population studies allows researchers to 

separate effects of climate change from confounding correlates which may also be changing over time. As 

we, unfortunately, have no replicate world without climate change, it is often difficult to attribute changes 

in local phenotypic distributions to temperature change, rather than to the multitude of other 

environmental changes that may happen simultaneously. For example, based on local trends of spring 

temperatures and laying dates in 25 long-term populations of Ficedula flycatchers across Europe, Both et 

al. (2004) showed that many populations did not exhibit a trend towards earlier breeding, but altogether, 

there was a clear negative population-level correlation between the trend in laying date and the trend in 

temperature. In a similar analysis on great tits (Parus major) and blue tits (Cyanistes caeruleus), such an 

effect of local temperature was not found: rather, populations originally having a low frequency of second 

broods did advance, whereas populations in which second broods used to be common did not advance 

their laying dates (Visser et al., 2003). These examples nicely illustrate how both within- and between-

species comparisons of long-term studies deepen our understanding of how organisms may adapt to 
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climate change. 

(c) Comparisons of evolutionary potential 

Evolutionary potential depends on the genetic architecture of traits. From a quantitative genetics 

perspective, this architecture is summarized in G, the additive genetic (co)variance matrix. Comparisons of 

evolutionary potential across populations or species enable us to evaluate the generality of evolutionary 

constraints (Agrawal & Stinchcombe, 2009) and to gain insight into the evolution of the underlying 

genetic architecture (Steppan, Phillips, & Houle, 2002, McGlothlin et al., 2018). For example, using long-

term datasets with pedigree information, Teplitsky et al. (2014) assessed the expected constraints on 

evolutionary responses of morphological traits in ten populations of seven wild bird species. Based on 

estimated G matrices and selection gradients for four morphological traits, their results suggest that 

genetic correlations may reduce the expected rate of evolution by 28% on average, even for traits such as 

morphological traits, that are generally thought to have a high evolutionary potential. 

In terms of the evolution of genetic architecture, Delahaie et al. (2017) showed that the genetic 

architecture of life history and morphological traits is relatively conserved across populations of blue tits 

inhabiting contrasting habitats. Additionally, Martínez-Padilla et al. (2017) compiled all published 

estimates of additive genetic variation of morphological traits quantified from 20 long-term and 

individually-monitored populations of 12 wild European bird species. They found that the evolutionary 

potential of morphological traits decreases as environmental conditions approaches the extremes, either 

being favourable or unfavourable. Stronger selection pressures that erode additive genetic variation when 

environmental conditions were unfavourable or high intraspecific competition in favourable environmental 

conditions may explain the pattern. These examples illustrate the need of larger-scale studies, both in 

terms of geography and phylogeny, to fully address the question of the evolution of genetic architecture in 

wild populations.    

    (d) Resolving methodological issues 

Long-term individual level studies often vary in protocols, applied methodologies and approaches to data 

collection. Using many long-term datasets may help identify such variation, and point towards those 

variables that can have potentially significant impacts on how results are interpreted, especially at the 

between-study level. Møller et al. (2014) targeted one important, strongly varying component of long-term 

hole-nesting bird studies: nest-box design. Their study included reproductive data of four bird species: 

blue and great tits, and pied and collared flycatchers. They have found a positive relationship between 

nest-box floor area and clutch size in great tits, and between box material (wood vs. concrete) and clutch 

size in blue tits. These results indicate that variation in study design at the between-population level should 
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always be included as it may prove an important predictor of some of the observed inter-population 

variation. 

Box 2 – Glossary 

Individual-based studies of birds – Individual birds are marked with rings engraved with a unique 

identifying number. Birds are captured (or observed), often over subsequent years, and data on individual 

characteristics and/or breeding parameters (e.g. laying date, clutch size, number of hatchlings and 

fledglings, partner) are collected. This information directly links to fitness because it provides data on 

breeding success and on survival of individuals between years, and thus can be used to study different 

ecological and evolutionary processes, such as selection on individual traits or population-dependent 

processes (e.g. density-dependent selection). Other types of data are also increasingly collected, e.g. 

behavioural, hormonal, genetic or genomic, fine-scale environmental data (including e.g. pollutant data). 

Long tail of science – Dispersed scientific research that is conducted by many individual 

researchers/teams. Data produced in the long tail tend to be small in volume, and less standardized within 

the same field of study. The majority of scientific funding is spent on this type of research. 

Open Data – Data that anyone is free to use, reuse and redistribute — subject, at most, to the requirement 

to attribute or share-alike, https://creativecommons.org/licenses/by-sa/2.5/ 

FAIR data – FAIR data are equivalent to open data. FAIR data are structured and described in a way that 

supports their Findability, Accessibility, Interoperability, and Reusability, for both machines and humans.  

Meta-data – Data that describe datasets. Meta-data comprise information explaining the purpose and 

origin of data, methods used to acquire them, the structure of the data, time references, geographical 

location, brief description of the study site(s), creator, access conditions and terms of use.  

Data owner – A person or institution that has collected the raw data and/or is hosting the primary data.  

Data user – A person interested in using the data owned by the data owner. Data owners can be data users 

of someone else’s data.  

Raw data – Data as collected in the field.  

Primary data –Data stored locally by each research group. Primary data might differ from raw data 

because of (1) errors made during transcribing raw data into primary data or (2) correction of obvious 

errors in raw data during transcribing them into primary data (3) primary data contain some derivate of 

https://creativecommons.org/licenses/by-sa/2.5/
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primary data (e.g. average value for a repeated measurement of an individual)  

Primary data format – A format in which primary data are stored. This includes the way that data are 

divided among different tables, the variables recorded, names of these variables, and how values of these 

variables are expressed.  

Standard data format – A format agreed upon within the research community to record and archive data. 

The standard format defines the way data are organized among different tables, the vocabularies used to 

describe the data elements (names of the variables), and conventions used to express the values of the 

variables.  

Standard quality check – A range of checks to test the quality and integrity of the primary data converted 

into the standard format. Each check differentiates between two main types of flags: ‘warnings’ (values 

that are uncommon or unusual) and ‘likely errors’ (values that seem impossible).  

Data hub – A central location to physically store (archive) all data for a certain domain.  

Pipeline – A set of code functions and commands used to convert data provided in the primary format into 

the standard format. A pipeline usually has a hierarchical structure (outputs of one component of the 

processing sequence are fed to the next step) and often is modular (non-necessary components can be 

removed or changed to modify the final structure of output data). 
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