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ABSTRACT 

Based on the biological heat transfer equation of Penne, the internal temperature distribution 

of the biological tissue was studied, taking into account the evolution of stenosis and 

hematocrit. The one-dimensional simplifying cylindrical heat equation of the biological living 

tissues  in permanent regime was solved by the finite difference method and analytically, to 

assess the temperature change under the variation of stenosis, hematocrit, thermal 

conductivity, kinematic viscosity, generation of metabolic heat and the heat transfer 

coefficient. The main results show that the temperature increases as the stenosis and 

hematocrit increase in size; and the secondary results show that the heat transfer coefficient 

and the thermal conductivity lower the body temperature while metabolic heat generation 

increases body temperature. This is in accordance with the literature. 
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INTRODUCTION 

With the advancement of clinical medicine in thermal diagnosis of diseases, it is very 

important to understand thermal phenomena and the behavior of biological body temperature. 

One approach is to study the distribution of temperature in biological tissue. However, precise 

thermal analysis of biological tissue is difficult because they include conduction, convection, 

radiation, internal metabolism, evaporation, phase change and the regulation of the inherent 

temperature. Not only is the tissue heterogeneous and anisotropic, but the mechanisms also 

maintaining body temperature, such as blood flow and metabolic heat generation. Recently, 

the development of research shows that the problem of heat transfer in biological tissues 

becomes a complex problem. But there are several discussions without conclusion in this area. 

Thus in (HenneryPennes, 1948) proposed a simple linear mathematical model to describe the 

thermal interaction between human tissue and perfused blood, and the effect of metabolism. 

He measured the radial temperature in the forearm by drawing thin thermocouples through the 

arms of nine elongated subjects. This was based on experimental observation. Using this 

experimental concept, the model (Mitchell and Myers 1968), the model (Keller and Seiler 

1971), the model (Wulff 1974), the model (Chen and Holmes 1980), the model (Weinbaum 

and Jiji 1985), the model (Khaled and Vafai 2003), (Nakayama and Kuwaha Model 2008) 

have discussed thermal behavior in various constant parameters with human tissue layers. The 



distribution of temperature takes over in the blood and arterial tissues. (Cooper and Trezek 

1972) found an analytical solution of heat diffusion equation for brain tissue with negligible 

effect on blood flow and metabolic heat generation. (D. B. Gurung 2007) studied the 

abnormal thermoregulation model in the human dermal part. He also studied the temperature 

distribution in the steady state and in the unstable state in three layers of the dermal part. He 

also used the numerical method for the finality of the techniques of solution which is the most 

precise for the analysis of the temperature in the human body. (Hen and Dil 2018) study the 

effect of the thermal parameters of the dermal part in living cylindrical tissues. For the 

different models which have been investigated in literature, none of them did not considered 

the effect of hematocrit and stenosis which strongly influences the flow regime. In the present 

work, we are going to use the model of (Pennes 1948) use by (Hen and Dil 2018), by coupling 

with hematocrit and stenosis to better control the variation of the temperature. Furthermore, 

we shall analyze the partitioning effect of hematocrit and the evolution of atherosclerosis on 

variation temperature variation. Here, we neglected the axial and angular direction and 

considered only the stationary state model of radial direction. The numerical (finite difference 

method) and analytical result obtained are presented graphically and compared to the result of 

(Zhang et al 2004) and (Hen and Dil 2018) by applying the appropriate values of the physical 

and physiological parameters. The solution obtained can be used for the measurement of 

thermal parameters, the reconstruction of the temperature field and thermal diagnosis and in 

the treatment which maximizes the therapeutic effect while minimizing undesirable side 

effects. It may also be useful to design medical devices to operate within a special range of 

heating and cooling temperature rates, such as (Zhang et al 2004), thus for the prediction of 

cerebrovascular diseases. 

II) MATRIELS AND METHODS 

II-1) MODELISATION OF TEMPERATURE 

Over the past years, many researchers have developed different models with different views. 

The mathematical model used for the transfer of bio-heat is based on the Penne equation. 

(Pennes 1948) is preferable for studying the heat transfer between the blood and the tissues 

which also associates the metabolism effect and the blood perfusion. The modified Pennes 

equation is written as 

  
  

  
                                                                                                                

where       are the density (k/  ), the specific heat (J/kg. ) and the thermal conductivity of 

tissue, respectively.   is the blood perfusion rate per unit volume (kg/s.  ).    is the specific 

blood,    is the metabolic heat generation pert unit volume (w/  ),    represents the 

temperature of arterial blood (   and T is the tissue temperature ( ). Based on the Pennes 

equation, the one-dimensional mathematical model was used to describe the heat transfer 



from living cylindrical tissues, in the stationary state, is presented below (Kai and Xinxin; 

Hen and Dil 2018). 

 

 

 

  
  
  

  
  

      
 

        
  
 

                                                                                            

The model is axial symmetric, so the boundary conditions are described as (Kai and Xinxin 

;Hen and Dil 2018): 

 
     

  

  
  

       
  

  
         

                                                                                                                                  

Where R is the radius of the concerned tissue,    is the coefficient of heat transfer which 

accounts for the effects of both convection and radiation on the surface of the tissue,   is the 

ambient temperature. 

II-2) STENOSIS MODELING 

Stenoses are characterized by a lesion of lipid infiltration, called an athermous plaque which 

develops on the internal surface of the arterial vessel (Figure II- 1) and which blocks blood 

circulation and hematocrit (Figure II-2). 

 

Figure (II-1) https://www.doctissimo.fr/html/sante/encyclopedie/sa_1583_ischemie_cereb.htm 

 



 

Figure (II-2) :Circulation of hematocrit in different stage of stenoses (Tsafack et al 2019) 

 

II-3) CHARACTERIZATION OF DIFFERENT VALUES OF REYNOLD 

To characterize the Reynolds difference value at the different stages of stenosis, we 

concentrated our mine in the work of (Maurizio 2018), which during its simulation calculated 

the Reynolds number (Re). The Reynolds number is a dimensionless quantity which is useful 

for determining whether the flow is laminar or turbulent: if it is greater than a critical value, 

the flow is turbulent, if it is less, the flow is laminar. In general, the Reynolds number is 

defined by the flowing formulation 

   
    

  
                                                                                                                                                         

Where    is the blood density, d is the diameter of the vessel,   is the mean blood velocity 

throughout the vessel and it can be expressed as the ratio between the mean incoming flow 

(Q) and the inlet area (A): 

       
 

 
 

  

   
                                                                                                                                         

     is the blood viscosity that is express using a simplified formulation of the Einstein 

relationship and is given by the following formula 

                                                                                                                                                       

where    represents plasma viscosity 

For low value of shear rate, blood behave like pseudoplastic fluids and this behavior occurs 

for   >12%.This is due to the presence of fibrinogen which determine the aggregation of the 

red blood cells into “rouleau”,generally mode up by fewer tens of erythrocytes, increasing 



blood viscosity. Since these parameters were known, Reynolds number were calculated at rest 

condition both for the non-stenotic  model and in correspondence of the 3 stenoses diameter, 

to see if these three degrees of stenosis may promote a laminar flow or cause a turbulent flow. 

The value obtained by (Maurizio 2018) are reported in the following table (1) 

Table (1): Different stages of artery conditions with correspondent of Reynolds values 

determine by (Maurizio 2018) at rest condition                

Different stage 

of artery 

condition 

Non-stenotic 

model 

30% stenosis 50% stenosis 75% stenosis 

Re 334.04 482.27 675.15 1350.33 

 

II-4) FINAL MODEL FORMULATION 

In this section, we will couple the bio-heat model with the stenos model. Introducing equation 

6 into equation 4, we will have 

   
    

                    
                                                                                                                                        

Using equation (7), we have the new blood density 

     
             

  
                                                                                                                                            

Now let us introduce equation (8) into equation (2) to have a final expression of our model 

 

 

 

  
  
  

  
  

                 

     
           

  
 
                                                            

II-5) RESOLUTION BASED ON FINITE DIFFERENCE METHOD 

From equation (9), we have 

   

   
  
 

 
 
  

  
  

                 

     
         

  
 
                                                      

Using the Finite Difference Method (FDM) 



  

  
 

         

  
                                                                                                                                                  

   

   
 

             

  
                                                                                                                                     

with h=   

Now let us introduce equation (11) and (12) into equation (10), with have 

      
 

  
            

                 
     

  

 
          

 

  
                                  

where                    
  

 
    

                 

     
      

II-6) DISCRETISATION OF BOUNDARY CONDITION 

from equation (3)  

                 

                 

     
  

 
                                                                                  

  for i=1,2…,R-1 

     
 

  
            

                 
     

  

 
         

 

  
                                  

and for i=R 

                                                                                                                                          

with 

D=[(2+

                 

     
  

 
) - 
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From equation (14), (15) and (16) we can find the following system of linear equations 

represented in matrix form: 

 AX=B                                                                                                                                   (17)   

where 
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a= - (2+
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) where i is the number of line . 

The matrix (17) gives the nodal values in FDM which make it possible to calculate the 

temperature distribution profile. 

II-7) ANALYTICAL RESOLUTION 

To solve analytically, we first carry out the dimensioning of equation (9) and its boundary 

condition by introducing the characteristic quantities (Ozisik et al 1983 and Wang et al 1992) 

   
 

 
      

    
     

                                                                                                                       

Then, replace equation (16) in equation (9): 

 

  
 

   
   

   

   
  

                   
 

     
       

   
 

        
                                                                               

Here the dimensionless parameters and variables will be defined as 

  
  

                   
 

     
     

  
   

 

        
    

  
   

 
                                              

Thus equations (9) and (3) can be rewritten in the form 

 

  
 

   
   

   

   
    

      
        

    
                                                                          

      
   

   
            

   

   
     

                                                                                     

Also, in order to normalize the equation, we assume 

     
    

        
                                                                                                           

By thus substituting equation (21) in equation (19), we obtain: 



   

    
 
 

  
  

   
                                                                                                                            

It is clear that equation (22) is a modified zero order Bessel differential equation, the general 

solution of which can be expressed as follows: 

                                                                                                                                          

Where    and     are respectively the modified Bessel function of the second type. In order to 

determine, if the analytical solution can be expressed by the Bessel function, equation (22) 

was compared to the generalized Bessel equation as follows: 

   

   
  

    

 
    

  

  
               

       

 
 
       

  
                

The corresponding solution of equation (24) is: 

               
          

                                                                                                   

Where   and     are respectively the modified Bessel functions of the first type,   and    are 

arbitrary constants which can be obtained as a function of the given boundary conditions. The 

result of the comparison between equation (22) and equation (24) is shown below: 

   , m=0,    ,p=1,      

Thus, the solution of equation (22) can be expressed as: 

          
             

                                                                                                              

By replacing (26) with (21), the solution of (19) can be written as 

   
  
    

 

  
   

  
  
       

     
  
  
       

                                                                           

The next step is to determine the values of two arbitrary constants         . 

According to the characteristics of the Bessel equation, when z = 0, we have 

                     

Taking into account the boundary conditions (20), simple derivations lead to: 



      
   

   
   

  
  
        

                                                                                                              

so we have : 

          
  
 

  
  

 
 
 
 
 

  
      

    

      
   

   
 

  
       

  

 

 
 
 
 
 

                                                                  

Finally, the analytical solution of T is: 

                   
  
 

  
  

 
 
 
 
 

  
      

    

      
   

   
 

  
       

  

 

 
 
 
 
 

                                        

 

II-8) DETERMINATIONS OF PARAMETERS 

Table 2: Values of parameters  

Symbol Value Unit Description Reference 

   0.00003 Kg/s.   Blood perfusion  

   3850 J/Kg.  Blood specific 

heat 

Hen and Dil 

2018 

K 0.48 W/m.   Tissue thermal 

conductivity 

Hen and Dil 

2018 

   30.023 W/m.   Heat transfer 

coefficient 

Hen and Dil 

2018 

   1085 W/   Heat generation 

per unit volume 

Hen and Dil 

2018 

   37   Artery 

temperature 

Hen and Dil 

2018 



R 0.0285 m radius Hen and Dil 

2018 

   45% - Hematocrite Hen and Dil 

2018 

  0.0167  mean blood 

velocity 

 

   0.165  plasma viscosity  

 

 

III) RESULTS AND DISCUSSIONS 

III-1) VALIDATION OF RESULTS 

The results of the new model were validated by the reproduction of the results of the literature 

established for a simple pipe (without stenosis and Hematocrit). Figure (1) shows a decrease 

in temperature when the radial direction becomes important. This is due to the fact that when 

the body temperature is above the set value, the hypothalamus causes the phenomenon of 

sweating, evaporation, which causes a lowering of the skin temperature. At the same time, the 

skin arterioles dilate in order to promote heat exchanges with the outside. 

Figure (1): Temperature as a function of the radial direction 

II-2) INFLUENCE OF STENOSIS ON TEMPERATURE 
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Figure (2) describes the evolution of the temperature with the increasing of the stenosis size. 

It shows that, as the obstacle increases, the temperature increases too. This increase in 

temperature is due to the friction of the fluid particles. This implies that, the stress becomes 

important at the cross of the stenosis section and it will therefore be important to control the 

temperature to avoid the evolution of stenosis. In the previous work of (Tsafack et al 2019) it 

was observed that, when the stenosis increased radially, the amplitude of the oscillations 

decreased as the inertial blood flow decreased rapidly due to blockage of the lumen. This 

suggests that the loss of singular inertial blood flow occurs when there is disturbance of the 

normal flow.  

In the same vein (Gou et al 1999) shows for a high temperature, more than 38  , the patient 

is victim of cardiovascular and cerebrovascular disease. This is in agreement with our result, 

since figure (2) shows that, at a higher temperature of 38   the stenosis is already more than 

50% of reduction in the initial wall. 

Furthermore, in the experience of (kin et al 1996), he observed a rat with a body temperature 

above 40  , plunging into a brain violation in a few hours. this is in agreement with our 

result, since figure (2) shows that, when the temperature is higher than 40  , the degree of 

stenosis is higher than 75% of reduction of the arterial wall, therefore this is normal  that, this 

rat is exposes to the brain offense. 

Figure (2): Influence of stenosis on temperature 
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III-3) TEMPERATURE DECREASE STUDY 

III-3-1) INFLUENCE OF THE HEAT TRANSFER COEFFICIENT 

Figure (3) shows that increasing the heat transfer coefficient decreases body temperature. This 

is because the temperature of the atmospheric pressure cools the body surface. 

 

   Figure (3): Influence of the heat transfer coefficient on temperature 

III-3-2) INFLUENCE OF THERMAL CONDUCTIVITY (K) 

The result of figure (4) shows that the thermal conductivity has the effect of lowering the 

temperature. This decrease in temperature is because the atmospheric air touches the body at a 

lower temperature. According to Fourier law the temperature moves from the hottest medium 

to the least hot medium. 
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Figure (4): Influence of thermal conductivity (K) on the temperature 

 

III-4) STUDY OF AN INCREASE OF TEMPERATURE 

III-4-1) INFLUENCE OF HEMATOCRITIS (Ht) 

The result of figure (5) shows that, the increase of hematocrit increases the body temperature; 

this is due to the fact that, the hematocrit increases the density of the blood, and that provokes 

an increase in resistance of the blood flow (Shung et al 1992 and Tsafack et al 2019). 

Figure (5): Influence of hematocrits (ht) on the temperature 
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III-4-2) INFLUENCE OF THE GENERATION OF METABOLIC CHARGER (qm) 

Figure (6) shows that, increasing (qm) increases the temperature. This is due to the fact that 

the metabolic generates heat, which causes the body temperature to rise. 

 

Figure (6): Influence of the generation of metabolic charger (qm) on temperature 

II-4-3) INFLUENCE OF ARTERIAL TEMPERATURE 

Figure (7) shows that increasing arterial temperature increases body temperature. Furthermore 

we observe that the arterial temperature is equal to the body temperature (Ta = 36.5; 37; 37.5; 

38 is equal to body temperature T = 36.5; 37; 37.5; 38 respectively) 

\

 

Figure (7): Influence of arterial temperature on the skin temperature 
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CONCLUSION 

In this article we have studied the distribution of the temperature of biological tissue, taking 

into account stenosis and hematocrit.  The heat transfer model of penne in one-dimensional 

biological heat transfer in steady state has been solved by the numerical and analytical 

method, to obtain the temperature changes with variation in the size of the stenosis and 

hematocrit. The results of this contribution brought a new technic to use temperature to 

control the evolution of stenosis; this is to improve the prediction of cardiovascular and 

cerebral diseases. The results provided by this article promote the knowledge to control the 

evolution size of stenosis by taking just a temperature of the body. These provide a good 

knowledge of the thermal behavior of biological tissue, which is precious for the 

measurement of thermal parameters, the reconstruction of a temperature field and the 

diagnosis and treatment of cardiovascular and cerebral disease. 
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