Philippe Jacquet 
  
Philippe Jacqut 
  
Gil I Shamir 
email: gshamir@ieee.org
  
Wojciech Szpankowski 
  
  
  
  
  
Precise Minimax Regret for Logistic Regression with Categorical Feature Values

We study logistic regression with binary labels and categorical (discrete) feature values. Our goal is to evaluate precisely the (maximal) minimax regret. We express it as the so called Shtarkov sum known in information theory. To the best of our knowledge such a sum was never computed in the context of logistic regression.

To be more precise, the pointwise regret of an online algorithm is defined as the (excess) loss it incurs over some value of a constant comparator (weight vector) that is used for prediction. It depends on the feature values, label sequence, and the learning algorithm (weight vector). In the maximal minimax scenario we seek the best weights for the worst label sequence over all possible learning algorithms/ distributions. Such a regret still depends on the feature values. For the d = O(1) dimensional logistic regression we show that the maximal minimax regret grows as

where T is the number of rounds of running a training algorithm and C is explicitly computable constant that depends on the feature values. We also extend these results to non-binary labels. The precise maximal minimax regret presented here is the first result of this kind. Our findings are obtained using tools of analytic combinatorics and information theory.

Introduction

Logistic regression has been important in theory and practice of modern machine learning. It has been used for tasks, such as, category classification, click-through-rate prediction, and risk assessment. A model consists of a set of features, whose parameters represent their effect on some outcome. In an online setup, such a model is trained to learn these parameters from examples whose outcomes are already labeled. The training algorithm consumes data in rounds, where at each round t = 1, . . . , T , it is allowed to predict the label based only on the labels it observed in the past t -1 rounds. In each round, the prediction algorithm incurs some loss and updates its belief of the model parameters. The pointwise (for all sequences) regret of an online algorithm is defined as the (excess) loss it incurs c 2021 P. Jacquet, G.I. Shamir & W. Szpankowski. over some value of a constant comparator (weight vector) that is used for prediction for the complete sequence. The pointwise regret for logistic regression has been studied in [START_REF] Foster | Logistic regression: The importance of being improper[END_REF]; [START_REF] Hazan | Logistic regression: Tight bounds for stochastic and online optimization[END_REF]; [START_REF] Sham | Online bounds for bayesian algorithms[END_REF]; [START_REF] Mcmahan | Open problem: Better bounds for online logistic regression[END_REF]; [START_REF] Shamir | Logistic regression regret: What's the catch?[END_REF].

In this paper, we introduce the maximal minimax regret that for a given feature sequence maximizes pointwise regret over label sequences and minimizes over learned distribution (weights). We express it as the so called Shtarkov sum, as in [START_REF] Shtarkov | Universal sequential coding of single messages[END_REF], that we evaluate asymptotically. We study the regret using methods outside traditional machine learning toolbox, namely analytic combinatorics (see [START_REF] Szpankowski | Average Case Analysis of Algorithms on Sequences[END_REF]; [START_REF] Flajolet | Analytic Combinatorics[END_REF]) and universal compression (see [START_REF] Shtarkov | Universal sequential coding of single messages[END_REF]; [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]; [START_REF] Szpankowski | On asymptotics of certain recurrences arising in universal coding[END_REF]; [START_REF] Szpankowski | Minimax pointwise redundancy for memoryless models over large alphabets[END_REF]; Xie andBarron (1997, 2000)).

For a start, we review various notions of regret and redundancy from information theory that we adopt for the performance evaluation of logistic regression. The pointwise redundancy R T (P ; y T ) and the average redundancy RT (P ) for a given source P and source (label) sequence y T = (y 1 , . . . , y T ) of length T (over alphabet of size m) are defined as R T (P ; y T ) = L(y T ) + log P (y T ), RT (P ) = E[L(Y T )] -H T (P ),

where H T (P ) is the entropy for a block of length T , E denotes the expectation, and L(y T ) is the code length of some code L(•). In the online learning -and indeed in information theoryone ignores the integer nature of the length (however, see [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]) and replace it by L(y T ) = -log Q(y T ) for some distribution Q that best approximates P . The above definitions imply a probabilistic setting, in which there is some source that generated the data. A non-probabilistic setting considers individual sequences (see, e.g., [START_REF] Shtarkov | Universal sequential coding of single messages[END_REF]), where the maximal redundancy is defined as

R * T (Q, P ) = max y T [-log Q(y T ) + log P (y T )]
which somewhat decouples it from modeling assumptions, as pointed out by [START_REF] Rissanen | Minimax codes for finite alphabets[END_REF][START_REF] Rissanen | Fisher information and stochastic complexity[END_REF].

In universal learning and compression, we assume we have some knowledge about a family of sources S that generates real data. Following [START_REF] Davisson | Universal noiseless coding[END_REF], we define the average minimax redundancy RT (S) and the maximal minimax redundancy R * T (S) for family S as follows

RT (S) = min Q sup P ∈S y T P (y T ) log[P (y T )/Q(y T )], R * T (S) = min Q sup P ∈S max y T log(P (y T )/Q(y T )) .
In words, we search for the best distribution Q for the worst source P on average and for the worst label sequence y T for individual sequences.

There are other measures of optimality for learning, coding, gambling, and prediction that are used in universal modeling and machine learning. We refer here to minimax regrets defined as follows (cf. [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]; Xie andBarron (1997, 2000)):

rT (S) = min Q sup P ∈S E P [-log Q(y T ) + log sup P ∈S P (y T )], r * T (S) = min Q max y T [-log Q(y T ) + log sup P ∈S P (y T )],
and to the maxmin regret r T (S) = sup

P ∈S min Q E[-log Q(y T ) + log sup P ∈S P (y T )].
We call rT (S) the average minimax regret, r * T (S) the maximal minimax regret and r T (S) the maxmin regret. It is easy to see that RT (S) ≤ rT (S), and, r * T (S) = R * T (S). For more sophisticated relation between various regrets and redundancy see [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF].

In this paper we focus on analyzing the maximal minimax regret for logistic regression with categorical (discrete) feature values, that is, we assume there are N vector feature over a finite set. In Theorem 1 we show that the maximal minimax regret of dimension d = O(1) (however, extension to d = o(T ) is possible) for categorical feature vales grows asymptotically as

d 2 log T - d 2 log(2π) + C + O(N/ √ T )
where C is a constant that depends on the feature values. For example, for d = 1 and features taking values from a finite set {a 1 , . . . , a N } we find in Corollary 2

C = log   ∞ -∞ N j=1 a 2 j α j (1 + e -a j w ) -1 (1 + e a j w ) -1 dw  
where α j is the fraction of T rounds that feature a j is applied. This seems to be the first precise result of this kind in the area of logistic regret. In Theorem 3 we extend these results to non-binary labels. We now briefly review relevant literature of information theory and machine learning. We start with information theory assuming that the size of the underlying alphabet is m. In [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]; [START_REF] Orlitsky | Speaking of infinity[END_REF]; [START_REF] Rissanen | Fisher information and stochastic complexity[END_REF]; [START_REF] Shamir | On the MDL principle for i.i.d. sources with large alphabets[END_REF]; [START_REF] Szpankowski | On asymptotics of certain recurrences arising in universal coding[END_REF]; Xie andBarron (1997, 2000) it was proved that for a large class of sources (up to Markovian but not for non-Markovian as shown in [START_REF] Csiszar | Redundancy rates for renewal and other processes[END_REF]; [START_REF] Flajolet | Analytic variations on redundancy rates of renewal processes[END_REF]; [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]) the redundancy grows as m 2 log T + O(1) when m is fixed and m 2 log(T /m) for m = o(T ) (see also [START_REF] Orlitsky | Speaking of infinity[END_REF]; [START_REF] Shamir | On the MDL principle for i.i.d. sources with large alphabets[END_REF]). A full asymptotic expansion for the regret and redundancy for the whole range of m are derived in [START_REF] Szpankowski | Minimax pointwise redundancy for memoryless models over large alphabets[END_REF].

Regarding the online convex optimization literature, logarithmic regret has been shown for strongly convex loss functions. Logistic regression, however, fell in the category of weakly convex loss functions, for which O( 

Problem Formulation and Notation

We denote by x t = (x 1,t , . . . , x d,t ) a d-dimensional feature vector. Notice that x T is a T × d matrix with x t = (x 1,t , . . . , x d,t ) as a row. The label binary vector is denoted as y T = (y 1 , . . . , y T ) with y t ∈ {-1, 1}. The vector w t = (w 1,t , . . . , w d,t ) representing d-dimensional weights is used to design a prediction algorithm, which we will not discuss here. Furthermore, we assume that the feature vector x t takes only finite number of (vector) values, that is, we set x t = a j for j = 1, . . . , N where a j = (a 1,j , . . . , a d,j ) with a ij ∈ A for i = 1, . . . , d, j = 1, . . . , N , and some discrete set A of finite cardinality. For example, for d = 1 we simply have

x t ∈ A = {a 1 , . . . , a N } for all t.
Finally, by T j we denote the number of t such that x t = a j where

T 1 + • • • + T N = T.
For T j > 0 we also write α j = T j /T . The logistic loss of an algorithm that plays w t at round t is

L(y T |x T , w T ) := T t=1 log [1 + exp(-y t x t , w t )] (1) 
where x t , w t = d i=1 x i,t w i,t . In our case, we can re-write L(y T |x T , w T ) as

L(y T |x T , w T ) = N j=1 log T j i=1 1 + exp(-y t j i a j , w t j i )
where

t j i is a subsequence of t = 1, . . . , T such that x t j i = a j . It is convenient to write (y t |x t , w t ) := log [1 + exp(-y t x t , w t )].
Both (y t |x t , w t ) and L((y T |x T , w T ) depend on x t and w t only through the product x t , w t . Notice that for binary labels, the probability of a label is given by

P (y t |x t , w t ) = 1 1 + exp(-y t x t , w t ) , (2) 
hence

(y t |x t , w t ) = -log P (y t |x t , w t ).
The goal of a learning algorithm is to find the best approximation Q(y t |x t , w t ) of the unknown distribution P (y t |x t , w t ). Hence, we also denote Q (y t |x t , w t ) = -log Q(y t |x t , w t ). The pointwise regret for all sequences (y t , x t ) is defined as in [START_REF] Hazan | The convex optimization approach to regret minimization[END_REF]; [START_REF] Foster | Logistic regression: The importance of being improper[END_REF]; Shamir (2020)

r(y T |x T ) := T t=1 Q (y t |x t , w t ) -min w T t=1 (y t |x t , w)
for some fixed comparator w. Thus

r(y T |x T ) = log sup w P (y T |x T , w) Q(y T |x T , w T ) . (3) 
In passing we notice that in our setting

P (y T |x T , w) = N j=1 1 1 + exp(-a j , w ) k j • 1 1 + exp( a j , w ) T j -k j (4)
where, we recall, T j is the number of rounds with a j feature vector, and k j is the number of y t = 1 among T j . Expression ( 4) is a consequence of the discrete nature of feature values.

The pointwise regret r(y T |x T ) is a function of y t and x t , so it depends on individual sequences (e.g., see [START_REF] Sham | Online bounds for bayesian algorithms[END_REF]; Shamir (2020)). A better measure of the learning algorithm performance should decouple the regret from the fluctuations of y T (but may still depend on the feature vector x T ). Following information-theoretic view as in [START_REF] Shtarkov | Universal sequential coding of single messages[END_REF]; [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF], we define the maximal minimax regret (conditioned on x T ) as

r * T (x T ) := inf Q max y T [r(y T |x T )].
Notice that this definition is over all possible learning algorithms represented by Q.

We first find a more succinct representation of the maximal minimax regret. We first notice that often we can replace min w (y t |x t , w) by sup P (-log P (y t |x t , w). Then, setting z T = (y T |x T ) and following [START_REF] Shtarkov | Universal sequential coding of single messages[END_REF]; [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF] we find,

r * T (x T ) = min Q sup P max y T [-log Q(z T ) + log P (z T )] = min Q max y T [-log Q(z T ) + sup P log P (z T )] = min Q max y T [log P * (z T )/Q(z T )] + log z T sup P P (z T ) = log y T sup P P (y T |x T )
where

P * (y T |x T ) := sup P P (y T |x T ) v T sup P P (v T |x T ) (5)
is the maximum-likelihood distribution and we chose Q(z T ) = P * (z T ) so that

r * T (x T ) = log y T sup P P (y T |x T ) =: log d T (x T ). (6) 
Observe that for not optimal Q = P * there will be extra O(1) term in the maximal minimax regret as discussed in [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]; see also [START_REF] Rakhlin | Online nonparametric regression[END_REF] for a slightly different approach to the minimax regret.

The sum log d T (x T ) in ( 6) is often called the Shtarkov sum as in [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF]; [START_REF] Grunwald | The Minimum Description Length Principle[END_REF]. To the best of our knowledge the Shtarkov sum was never evaluated in this context. The goal of this paper is exactly to do this asymptotically, up to o(1) term in order to show the impact of the feature values on the minimax regret. As we shall see the feature values emerge only in the second term of the asymptotic expansion (see Theorem 1 and Theorem 3).

Main Results

In this section we present our main results. We use the notation from the previous section, and in addition, we write p(w) := (1 + e -w ) -1 , and q(w) = 1 -p(w) = p(-w).

Our goal is the estimate asymptotically the Shtarkov sum

d T (x T ) = y T sup w P (y T |x T , w),
where, simplifying (4), we arrive at

P (y T |x T , w) = 1 N j=1 (1 + e a j w ) T j • exp   N j=1 k j a j w  
with k j being the number of y t = 1 in T j rounds that use feature a j . Maximizing P (y T |, x T , w) with respect to w leads to w * = w satisfying

N j=1 a j p( a j w )T j = N j=1 a j k j . (7) 
Notice that the above is a system of d linear equations, thus the tuple that share the same optimal value w * are in the intersection of d hyperplanes H 1 (w * ), H 2 (w * ), . . . , H d (w * ) where

H i (w) = {k N = (k 1 , . . . , k N ) : j a i,j (k j -p( a j w )T j ) = 0}. (8) 
For convenience we denote by

H d (w) = H 1 (w) ∩ • • • ∩ H d (w)
as a space vector of co-dimension d.

To estimate the Shtarkov sum we proceed as follows. Since the quantity w * does not change when k N = (k 1 , . . . , k N ) is in the hyperplane H d (w * ) the rule of the game will be to cut the set

[0, T 1 ] × • • • × [0, T N ] into parallel slices each representing the hyperplane H d (w). This leads to d T (x T ) = w k N ∈H d (w) B(k N , w) (9) 
where

B(k N , w) = N j=1 T j k j p( a , jw ) k j q( a j , w ) T j -k j . ( 10 
)
But B(k N , w) is the product of binomial distributions maximized at

k N (w) = (p( a 1 w )T 1 , . . . , p( a N w )T N ) that defines a manifold L of dimension d in the hyper-cube [0, T 1 ] × . . . × [0, T N ] of dimension N (thus we assume d < N ).
Approximating the binomial distribution by its normal approximation, we arrive at

P (y T |w * ) = exp -j (k j -k j (w)) 2 2p( a j w )q( a j w )T j j 2πp( a j w )q( a j w )T j (1 + O(N/ √ T )),
or written differently

det(A(w)/(2π)) exp - (k N -k N (w)) τ A(w)(k N -k N (w)) 2
where

A(w) = Diag 1 p( a 1 w )q( a 1 w )T 1 , . . . , 1 p( a N w )q( a N w )T N .
In order to evaluate the minimax regret r * (x T ) = log d T (x T ) we shall use the Euler-Maclaurin formula (see [START_REF] Szpankowski | Average Case Analysis of Algorithms on Sequences[END_REF]) leading to

d T (x T ) ∼ [0,T 1 ]ו••×[0,T N ] P (y T |w * )dk N = R d δ(w)dw 1 • • • dw d H d (w) P (y T |w)dk N (11)
where δ(w) is a thickness indicator factor that takes into account the variation of spacing between the parallel subspaces H d (w) which we will estimate in the next section. This allows us to formulate our main result with the detailed proof delayed till the next section Theorem 1 Let x t = a j for j = 1, . . . , N where a j = (a 1,j , . . . , a d,j ) with a ij ∈ A for some finite set A and i = 1, . . . , d and j = 1, . . . , N . Define also p(w) = (1 + e -w ) -1 with q(w) = 1 -p(w).

Then the maximal minimax regret becomes asymptotically for

N = o( √ T ) and d = O(1) r * (x T ) = d 2 log T - d 2 log 2π + log R d det( Bd (w))dw 1 • • • dw d + O(N/ √ T ) (12) 
where Bd (w) is a d × d matrix whose i, j element is

u i Ã-1 d (w)u j with u i = (a i,1 , • • • , a i,N ) and 
Ãd (w) = Diag 1 p( a 1 w )q( a 1 w )α 1 , . . . , 1 p( a N w )q( a N w )α N
where 0 < α j = T j /T < 1 and j α j = 1 Large d. To understand better the impact of large d on the regret, we shall use the following well known fact d tr( B-1 )

≤ det 1/d ( B) ≤ tr( B) d
where tr( B) is the trace of B. Therefore, we find

r * (x T ) ≤ d 2 log T d - d 2 log 2π + log R d [tr( B(w)] d dw 1 • • • dw d + O(N/ √ T )
which seems to be asymptotically correct on the leading term. However, it is still an open problem to find precise asymptotic regret for other ranges of d, N and T . Some recent results in this direction are reported in [START_REF] Shamir | Logistic regression regret: What's the catch?[END_REF].

Special Cases: d = 1. In the special case when d = 1 we find a simpler expression as in the corollary below.

Corollary 2 Let x i ∈ {a 1 , . . . , a N } and d = 1. Then the maximal minimax regret becomes

r * T (x T ) = log d(x T ) = 1 2 log T - 1 2 log(2π) + + log   ∞ -∞ j a 2 j p(a j w)q(a j w)T j /T dw   + O(N/ √ T ) (13)
for large T .

In particular, when N = 1 and a 1 = 1 (or all a i are the same) we find

∞ -∞ 1 (1 + e -w )(1 + e w ) dw = ∞ -∞ e w/2
1 + e w dw = π and therefore

r * T (x T ) = 1 2 log T + 1 2 log(π/2) + o(1)
as in [START_REF] Drmota | Precise minimax redundancy and regrets[END_REF].

Minimization of redundancy. The part of r * T (x T ) that depends on the feature values, say for

d = 1, is ∞ -∞ j
a 2 j p(a j w)q(a j w)T j /T dw.

Thanks to the concavity property of the square root function we hence have ∞ -∞ j a 2 j p(a j w)q(a j w)T j /T dw

≥ j T j T ∞ -∞
a 2 j p(a j w)q(a j w)dw

= j T j T ∞ -∞ p(w)q(w)dw = π. ( 14 
)
This minimum value is obtained when all a i are the same.

Extension to non-binary labels

Let us now consider a non-binary label alphabet Y of size m. We also define a matrix W = [w 1 , . . . , w m-1 ] such that w i = (w 1,i , . . . , w d,i ). The multinomial logistic function known also as softmax function is then defined as in [START_REF] Foster | Logistic regression: The importance of being improper[END_REF] p (a τ W) = e a,w m k=1 e a,w k (15) for = 1, . . . , m -1 and

q(a τ W) = 1 - m-1 i=1 p (a τ W)
where a = (a 1 , . . . , a d ) τ is a column vector. We now only briefly describe steps needed to extend our previous analysis to the non-binary case. Recall that a j = (a 1,j , . . . , a d,j ) τ is the j-th feature values column vector. We first observe that the binomial distribution will become the multinomial distribution, and in particular ( 10) is

B n (k N , W) = N i=1 T i k i m-1 =1 p (a τ i W) k j, q(a τ j W) T j -k j,
which we replace by the (m -1)-dimensional normal distribution with the covariance matrix

Σ i (W) = Diag(p(a τ i W)) -p(a τ i W)p τ (a τ i W),
where p(a) = [p 1 (a), . . . , p m-1 (a)] τ is a column vector. Also, as before we denote by A i (W) the inverse of the above covariance (m -1) × (m -1) matrix.

Finally, observe that

P (y T |a, W) = N j=1 q(a τ j W) T j exp m-1 =1 k j a j w .
From this we can obtain the system of linear equations as in (8) for every . Thus the set of optimal W is a hyperplane H (m-1)d that are parallel subspaces of codimension (m -1)d. Therefore H (m-1)d is orthogonal to the vectors u i, belonging to R (m-1)N . The (k, j)-th coefficient of vector

u i, is δ (k= ) a ji . It is convenient to represent u i, as vector in R (m-1) × R N .
Following the footsteps of our previous derivations we arrive at the following final result.

Theorem 3 Let x t = a j for j = 1, . . . , N where a j = (a 1,j , . . . , a d,j ) with a ij ∈ A for some finite set A and i = 1, . . . , d and j = 1, . . . , N . Furthermore, let the label alphabet Y be of size m, and W = [w 1 , . . . , w m-1 ]. Finally, p (a τ W) for = 1, . . . , m -1 are defined in (15). Then the maximal minimax regret becomes asymptotically for

N = o( √ T ) and m, d = O(1) r * (x T ) = d(m -1) 2 log T 2π + log R d(m-1) det( Bd,m (W))dw 1 • • • dw m-1 + O(N/ √ T ) (16) where Bd,m (W) is a d(m -1) × d(m -1) matrix whose ik, j coefficient is u ik Ã-1 d,m (W)u j with the k, j coefficient of u i ∈ R (m-1)N being a ji δ k = and Ã-1 d,m (W) = N i=1 α i (Diag (p(a τ i W)) -p(a τ i W)p τ (a τ i W))
where 0 < α j = T j /T < 1 and j α j = 1

We should point out that Theorem 3 can be extended to m and d growing no faster than o(T ), however, we leave it for the final version of this paper.

Analysis

In this this section we prove our main result Theorem 1. However, we split the analysis in two parts. First we prove Corollary 2 for d = 1 to illustrate our methods. Then we provide missing parts of the proof of Theorem 1.

Proof of Corollary 2

Assume now that d = 1, We notice that the quantity we want to maximize is the product of the binomial coefficients

B j (k j , w) = T j k j p(a j w) k j q(a j w) T j -k j .
The aim is to maximize each coefficients separately. The maximum (w and the T j fixed) is attained by k j which is the closest to k j (w) = p(a j w)T j .

Thanks to the asymptotic properties of the binomial distribution the maximum is attained asymptotically at max B j (k j , w) = (2πp(a j w)q(a j w)T j ) -1/2 (1 + O(1/ T j )).

Furthermore if k j is close to k j (w) ∈ H(w * ) (e.g., typically k j = k j (w) + O( T j log T j )), we have by virtue of the normal limit of the binomial distribution:

T j k j
p(a j w) k j q(a j w) T j -k j = 1 2πp(a j w)q(a j w)T j exp -(k j -k j (w)) 2 2p(a j w)q(a j w)

(1 + O(1/ T j ).

(17) We shall use the following known lemma to justify (17) (e.g., see [START_REF] Szpankowski | Average Case Analysis of Algorithms on Sequences[END_REF]).

Lemma 4 Let p n (k) = n k p k q n-k where q = 1 -p be the binomial distribution. Then for |k -pn| ≤ n 1/2+ε we have

p n (k) = 1 2πp(1 -p)n exp - (k -pn) 2 2p(1 -p)n + O(n -δ ) (18) uniformly as n → ∞. Furthermore |k-np|> √ p(1-p)n 1/2+ε p n (k) < 2n -ε e -n 2ε /2 (19)
for large n.

Let us now evaluate the Shtarkov sum. Using the Euler-Maclaurin formula we have

d(x T ) ∼ ∞ -∞ δ(w) H(w) B(k N , w)dk N dw
where δ(w) is the thickness factor, that is, the volume between H(w) and H(w + dw) and B(k N , w) is the product of B j (k N , w). Assuming that only the tuples within O( √ T log T ) of the mean (see Lemma 4) significantly contribute to d T (x T ), we can substitute B(k N , w) by

B(k N (w), w) = 1 j 2πp(a j w)q(a j w)T j exp   - j (k j -k j (w)) 2 2p(a j w)q(a j w)T j   (1 + O(N/ √ T ))
or written differently

B(k N (w), w) = det(A(w)/(2π)) exp - (k N ) τ A(w)k N 2
where A(w) = Diag 1 p(a 1 w)q(a 1 w)T 1 , . . . , 1 p(a N w)q(a N w)T N , with τ denoting the transpose operator.

In Appendix A we prove det(A(w)/(2π))

H(w) exp - 1 2 z τ A(w)z dz = 1 2π u τ A -1 (w)u ( 20 
)
where u is the unitary orthogonal vector to H(w). It is the same for all values of w since the hyperplanes are parallel and

u τ = 1 j a 2 j (a 1 , • • • , a N ). (21) 
Thus

u τ A -1 u = j a 2 j p(a j w)q(a j w)T j j a 2 j . (22) 
To finalize we need to find the thickness factor δ(w). As discussed, we cut the space [0,

T 1 ] × • • • × [0, T N ] into parallel slices H(w).
The hyperplane H(w) is the hyperplane orthogonal to u which contains the point k N (w). To reflect the full integral in the Cartesian metric δ(w)dw we must restrict thickness to slices between H(w) and H(w + dw). Since the hyperplane H(w + dw) is obtained by a translation of the hyperplane H(w) over the vector (k N ) (w)dw. To compute (k N ) (w)dw, we recall that k N (w * ) = (p(a 1 w)T 1 , . . . , p(a N w)T N ) satisfies the following equation j a j T j p(a j w) = j a j k j (w).

(

) 23 
Observe now that taking derivative of k j (w) with respect to w we obtain j a 2 j T j p (a j w) = j a j k j (w).

A simple by crucial observation here is that p (w) = p(w)(1 -p(w)) = p(w)q(w) leading to the thickness δ(w)dw which is the component of the vector being orthogonal to H(w). We find

δ(w) = u τ (k N ) (w) = j a 2 j p(a j w)q(a j w)T j j a 2 j .
Putting everything together we find

d(x T ) = 1 √ 2π ∞ -∞ j a 2 j p(a j w)q(a j w)T j dw 1 + O(N/ √ T ) . (25) 
This completes the proof of Corollary 2 for d = 1.

Finishing the Proof of Theorem 1

Following the same line of reasoning as in the previous subsection for general d we have

k N ∈ H 1 (w) ∩ • • • ∩ H d (w).
By approximating the underlying binomial distribution by the normal distribution, we arrive at

P (y T |x T , w) = exp -j (k j -k j (w)) 2 2p( a j w )q( a j w )T j j 2πp( a j w )q( a j w )T j (1 + O(N/ √ T ))
or written differently

det(A(w)/(2π)) exp - (k N ) τ A(w)k N 2
where

A(w) = Diag 1 p( a 1 w )q( a 1 w )T 1 , . . . , 1 p( a N w )q( a N w )T N .
We now evaluate the minimax regret r * (x T ) = log d T (x T ) expressed in (11) which we repeat here

d T (x T ) ∼ R d δ(w)dw 1 • • • dw d H d (w) P (y T |w)dk N (26) 
where δ(w) is a thickness indicator factor that takes into account the variation of spacing between the parallel subspaces H d (w). In Appendix B we prove in (33) that det(A(w)/(2π))

H 1 (w)∩•••∩H d (w) exp - 1 2 z τ A(w)z dz N -d = det(U) det(2πB(w)) ( 27 
)
where U is the d × d matrix whose i, j coefficient is u i u j and B(w) is the d × d matrix whose i, j coefficient is

u i A -1 (w)u j . Thus d T (x T ) ∼ R d δ(w) det(U) det(2πB(w)) dw 1 • • • dw d .
To finalize we need to express the thickness factor δ(w). As before, in the integral (26) we cut the space where p G is the orthogonal projection on the subspace G d generated by the u i 's. We use here the known fact that the volume cut off by edge vectors a 1 , . . . a N is equal to |det(a 1 , . . . a N )|.

[0, T 1 ] × • • • × [0, T N ] into parallel slices H d (w).
To better understand (28) we notice that the d × d matrix with ij coefficient is u τ i ∂k N (w) ∂w j is nothing less than matrix B(w). But to express the determinant we need its orthonormal base of G d which we denote as (e 1 , . . . , e d ). The determinant we are looking for is the determinant of the matrix D(w) whose ij coefficient is e τ i ∂k N (w) ∂w j

. We can create an orthonormal base of G d just by setting e i = j e ij u j as long as the matrix E with coefficients e ij satisfies: 

E t UE = I d ( 
Putting everything together:

d T (x T ) ∼ 1 (2π) d/2 R d det(B(w)dw 1 • • • dw d 1 + O(N/ √ T ) . (31) 
This proves Theorem 1, after some simple final calculations.

Appendix A: Special One-Dimensional Case

Let A be a self adjoint matrix definite positive. Let H be an hyperplane orthogonal to an unitary vector u, not necessarily an eigenvector of A. We want to compute the integral

I(H, A) = det(A/2π) H exp - z τ Az 2 dz
with z τ being the transpose of z = (z 1 , . . . , z N ). We know that the integral on the whole space, since the integrand is a Gaussian density with A -1 as covariance matrix. We will make the use of the following identity obtained by slicing the whole space into a folio of hyperplanes parallel to H 

√

  T ) regret bounds have been shown. In most machine learning literature, the feature values are assumed to belong either to the interval [0, 1] or are binary {0, 1} (active or passive). To the best of our knowledge, Kakade and Ng (2005) was first to demonstrate results that suggest O(d log T /d) regret for logistic regression, using Bayesian model averaging. The redundancy results we described from the information theory literature apply to the single dimensional binary labels logistic regression problem. Similar O(log T ) pointwise and individual sequence regret can be achieved for the single dimensional problem with gradient methods based approaches, as was demonstrated in McMahan and Streeter (2012). The authors of McMahan and Streeter (2012) then posed the problem of what happens for larger dimensions. Subsequently, Foster et al. (2018) demonstrated how to achieve regret bounds of O(d log(T /d)) with Bayesian model averaging. These results were strengthened in Shamir (2020), who show that the pointwise regret is d/2 log(T /d) + log log T for d = o( √ T ), again for Bayesian averaging. The worst case minimax regret was studied in a series of papers by Rakhlin and Sridharan (2014) using Rademacher complexity rather than Shtarkov sum approach. Here, we analyze precisely the maximal minimax regret for individual sequences and discrete feature values over a class of learning algorithms/ distributions (not necessary Bayesian).

  29) where I d is the d × d identity matrix. Thus D(w) = EB(w) and δ(w) = |det(D(w))| = |det(EB(w))| = det(B(w)) det(U) .

  tu) τ A(z + tu) 2 dz = 1.Let u = p(u) + v where p(u) is the projection of u on H according to the metric induced by A. Thus in the integrand we have(z + tu) τ A(+ ¯tu) = (z + tp(u)) τ A(z + tp(u)) + t 2 v τ Av .For a given t we have by a simple change of variableH exp -(z + tp(u)) τ A(z + tp(u)) t 2 v τ Av /2)dt = 1and therefore,I(H, A) = v τ Av 2π .

  The area between H(w 1 , . . . , w d ), and each of the H d (w 1 + dw 1 , w 2 , . . . , w d ), H d (w 1 , w 2 + dw 2 , . . . , w d ) . . ., and H d (w 1 , w 2 , . . . , w d + dw d )

	is equivalent to					
	det	∂p G (k N (w)) ∂w 1	, . . . ,	∂p G (k N (w)) ∂w d	dw 1 • • • dw d	(28)
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In order to determine v we notice that if v is orthogonal to H with metric A then Av is orthogonal to H with classic metric. Thus Av is colinear with u, or equivalently A -1 u is colinear with v. Since uv must belong to H then u τ (u -v) = 0 and

and consequently v τ Av = 1 u τ A -1 u . Finally, we arrive at

in the d = 1 case.

Appendix B: general d dimensional case

Now let H d be the intersection of d hyperplanes, respectively orthogonal to u 1 , u 2 , . . . u d not necessarily orthonormal. We denote

We know that

Let G d be the sub vector space orthogonal to H d . We have

The vector space is generated by the vectors u i . Let t = (t 1 , . . . , t d ) and we denote x(t) = i t i u i . Thus the change of variable leads to

Let p H (x) the projection of x on H d according to metric A. We denote by p

The p A (x(t)) belong to the vector space orthogonal to H d according to metric A. It is the image of G d by the operator A -1 and is generated by the vectors A -1 u i . Let c ij be such that

We denote C the matrix whose ij coefficient is c ij . To determine the matrix C we use the fact that for all j the vector u j -p A (u j ) belongs to H d , i.e for all k: (u j -p A (u j )) τ u k = 0, thus

In other words we have the matrix identity:

Finally det(U)