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ABSTRACT

Recently, a type of neural networks called generative adversarial networks (GANs) has been proposed as a solution for the fast genera-
tion of simulation-like datasets in an attempt to avoid intensive computations and running cosmological simulations that are expensive
in terms of time and computing power. We built and trained a GAN to determine the strengths and limitations of such an approach in
more detail. We then show how we made use of the trained GAN to construct an autoencoder (AE) that can conserve the statistical
properties of the data. The GAN and AE were trained on images and cubes issued from two types of N-body simulations, namely 2D
and 3D simulations. We find that the GAN successfully generates new images and cubes that are statistically consistent with the data
on which it was trained. We then show that the AE can efficiently extract information from simulation data and satisfactorily infers
the latent encoding of the GAN to generate data with similar large-scale structures.

Key words. methods: data analysis – methods: numerical – methods: statistical

1. Introduction

The standard cosmological model provides a description of the
Universe as a whole: its content, evolution, and dynamics. In
this model, the structures observed today (galaxies and clus-
ters of galaxies) have evolved from tiny fluctuations of den-
sity imprinted during the very early stages of the Universe
(Bond et al. 1996; Coles & Chiang 2000; Forero-Romero et al.
2009). Matter has accreted over time from this homogeneous dis-
tribution to form what today is a complex network of structures
known as the cosmic web (Bond et al. 1996). This hierarchical
assembly of matter was tested with increasingly large numer-
ical simulations such as the Millennium (Springel et al. 2005)
and Illustris (Vogelsberger et al. 2014) simulations, and was con-
firmed with actual observations of the large-scale matter distri-
bution in galaxy surveys such as the Sloan Digital Sky Survey
(SDSS; Tempel et al. 2014).

However, the large and detailed simulations that included
detailed baryonic physics, such as Horizon-AGN (Dubois et al.
2016), BAHAMAS (McCarthy et al. 2016), or IllustrisTNG
(Pillepich et al. 2018), which are needed to compare theory with
observations, are computationally expensive. Faster fully analyt-
ical approaches (Shandarin & Zeldovich 1989; Kitaura & Heß
2013) and semianalytical simulations (Monaco et al. 2002;
Tassev et al. 2013) relying on first- or second-order perturbation
theory exist, but they cannot address the highly nonlinear stages
of the structure formation.

The recent advances in computer technology and in machine
learning have prompted an increasing interest from the astro-
nomical community in proposing machine learning as an inter-
esting alternative for the fast generation of mock simulations
and mock data, or for image processing. The ever larger
quantities and quality of astronomical data call for system-

atic approaches to properly interpret and extract the informa-
tion that can be based on machine-learning techniques such as
in Villaescusa-Navarro et al. (2020), Schawinski et al. (2018),
or Bonjean (2020). Machine learning can also be used to pro-
duce density maps from large N-body simulations of dark matter
(DM; Rodríguez et al. 2018; Feder et al. 2020) in a computa-
tionally cheaper manner, to predict the effects of DM annihi-
lation feedback on gas densities (List et al. 2019), or to infer a
mapping between the N-body and the hydrodynamical simula-
tions without resorting to full simulations (Tröster et al. 2019;
Zamudio-Fernandez et al. 2019).

In this context, certain types of neural networks, called con-
volutional neural networks (CNN; LeCun et al. 1990), excel in
the general field of image processing through their automatic
pattern detection property (for a comprehensive review, see
Ntampaka et al. 2019). Generative models among CNN, such
as generative adversarial networks (or GANs; Goodfellow et al.
2014), have shown promising results in computer science and
physics (Casert et al. 2020; de Oliveira et al. 2017; Ahdida et al.
2019). These networks aim to learn a probability distribution as
close as possible to that of a considered dataset in order to later
generate new instances that follow the same statistics. GANs
have proven to be very promising tools in terms of media genera-
tion (Donahue et al. 2018; Clark et al. 2019). In astronomy, they
have recently been used in several cases, and more specifically,
by Rodríguez et al. (2018) and Feder et al. (2020), to provide
a fast and easy alternative to simulations and images. Wasser-
stein GANs (or WGANs) have also been used to detect anoma-
lies in astronomical images (Margalef-Bentabol et al. 2020;
Storey-Fisher et al. 2020).

In the present work, we first further explore the use of GANs
in generating simulation-like data. We built networks and con-
ducted statistical tests for two types of data: images built from
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2D simulations and cubes from 3D simulations. This is a way to
test the applicability of the networks on two data types that are of
interest for further work. The 2D simulations provide a simpli-
fied best-case scenario, and have potential applications on obser-
vational projected probes such as lensing (Kaiser et al. 1995) and
Sunyaev-Zeldovich (SZ) effects (Birkinshaw 1999), and the 3D
simulations are used for direct application in studying simula-
tions of the density field. In this respect, this part of our work is
an independent confirmation of the studies of Feder et al. (2020)
on GANs, but introduces simpler and more effective image pre-
processing techniques than were used previously.

We also present how we can build on a trained GAN to con-
struct an autoencoder (AE; Hinton & Salakhutdinov 2006) that
is able to preserve the statistics of a dataset. This network, made
up of an encoder and a decoder, takes in data of a certain dimen-
sion (typically an image), learns a representation with a reduced
size of the data (typically a vector) in a latent space, and provides
the means, through the encoder and decoder, to translate data
from one space into the other. Developing a meaningful latent
encoding space for data can have several applications, such as
semisupervised classification, disentangling style and content of
images, unsupervised clustering, and dimensionality reduction
(Hinton & Salakhutdinov 2006), as can be seen, for example, in
the case of variational autoencoders (Makhzani et al. 2015) and
adversarial autoencoders (Kingma & Welling 2013). In the case
of astrophysics or cosmology, AEs could be used to help remove
instrumental or astrophysical signal contamination (e.g., point
sources, beam, andinstrumental noise; Vojtekova et al. 2021) or
for inpainting masked areas while preserving the statistics of the
data (Sadr & Farsian 2021; Puglisi & Bai 2020).

In Sect. 2 we describe the data we used to train the neural
networks, from the simulations from which they are extracted to
the way in which we construct the training sets. In Sect. 3 we
present the two types of networks that we used in our analysis
in detail, and in Sect. 4 we present the results we obtained with
the two network types for both datasets. Finally, we draw con-
clusions from our findings.

2. Data

Our work rests on the use of convolutional networks that are
applied on 2D and 3D arrays that we refer to as images and
cubes, respectively.

2.1. Simulations

The images were produced from a publicly available 2D particle-
mesh N-body simulation code1 to simulate 1000 2D snapshots
of size (100 Mpc h−1)2 with 5122 particles using the standard
ΛCDM cosmology. In detail, the evolution of matter distribu-
tion along cosmic time was described by a Hamiltonian system
of equations that were solved using the leap-frog method. More-
over, the gravitational potential was computed by solving the
Poisson equation in Fourier space from the 2D grid density field.

The 3D data used for this analysis are snapshots from numer-
ical simulations of large-scale structures produced with the pub-
licly available code GADGET2 (Springel et al. 2001; Springel
2005). These are DM only simulations, referred to as N-body
simulations. GADGET2 follows the evolution of self-gravitating
collisionless particles. This is a good description of DM dynam-
ics in accordance with the cosmological model because DM
gravitationally only interacts with itself as well as with baryons.

1 https://zenodo.org/record/4158731#.X5_ITJwo-Ch

In practice, the GADGET2 code computes gravitational forces
with a hierarchical tree algorithm to reduce computing time and
to avoid having to compute the gravitational effect of N particles
on each particle (which would mean N2 computations at each
time step). The algorithm divides space using a grid. To compute
the gravitational forces exerted on an individual particle, GAD-
GET2 then groups particles increasingly coarsely according to
their distance and computes the gravitational pull of groups
rather than that of individual particles.

The simulation started at redshift z = 99 with a 3D
box of 100 Mpc3 size (chosen to contain representative large-
scale structures) with a quasi-homogeneous distribution in space
of 5123 DM particles, with Gaussian-distributed very low-
amplitude inhomogeneities, and an initial velocity associated
with each particle. The inhomogeneities stand for the initial den-
sity perturbations produced in the early Universe that eventually
evolve into galaxies, clusters, and filaments. The system was
then evolved, and the particles were subject to gravity alone.
Cosmic expansion was also taken into account, and we used the
cosmological parameters Ωm: 0.31, ΩΛ: 0.69 and H0: 0.68 from
Planck 2018 (Aghanim et al. 2020). The simulation was run up
to the present epoch (z = 0). At any time step, we were able to
retrieve the individual particle positions and velocities in the 3D
box. These data, describing the dynamical state of the system
at a particular time, are referred to as a snapshot. To build our
dataset, we only retained the positions. They were used as input
for the network.

2.2. Construction of the sample

2.2.1. Pre-augmentation data

For the images, we first used a set of 1000 2D simulations. From
these we obtained 1000 independent discrete 256 × 256 density
maps by estimating local densities from 2D snapshots with the
help of a Delaunay tessellation field estimator (Aragon-Calvo
2020). We used this as a basis to construct the images.

For the cubes, we built a 3D discrete density field from one
3D (z = 0) snapshot by computing the histogram of particles
over a 768 × 768 × 768 grid. After we applied a log-like trans-
formation (see Eq. (2)), the grid was smoothed with a Gaussian
filter with a standard deviation of the size of three pixels with
a stride of three pixels. This choice yielded cubes with smooth
structures while preserving the fine low-density structures. It
therefore resulted in significantly better results than standard
stride-less Gaussian smoothing when used with the different net-
works in our study. This left us with a cube of side 256 pixels and
100 Mpc.

2.2.2. Data augmentation

From the initial 1000 2D images and the 3D cube (both of side
256 pixels, corresponding to 100 Mpc), we extracted and aug-
mented the final smaller training images and cubes (128 pixels
and 50 Mpc side for the 2D cube, and 64 pixels and 25 Mpc side
for the 3D cube). This is commonly done by dividing the larger
arrays into smaller arrays that do not overlap (e.g., one 256×256
array yields four 128×128 arrays). However, we considered that
for the sake of variety and continuity within our training sets, we
instead extracted all possible subarrays (by the periodic bound-
ary conditions of our larger arrays, this corresponds to one n × n
array that yields n × n possible subarrays, regardless of their
size). This quickly led to a dataset that was too large to load
or store (1000 × 2562 images and 2563 cubes before rotations).
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We therefore elected to load the larger arrays and randomly
extracted the smaller arrays on a need basis to create training
batches or a subset.

We thus generated batches by choosing a set of random posi-
tions within the images or cube. Then we extracted a set of
squares of side 128 pixels or cubes of side 64 pixels for the 2D or
3D case, respectively, centered on random positions. In addition,
we rotated or flipped these images or cubes by randomly invert-
ing and permuting the axes (d! × 2d possibilities for an array of
dimension d, i.e., 8 for the images and 48 for the cubes). These
transformations augmented the dataset to yield a total of 5 × 108

different possible training images for the 2D case and 8 × 108

training cubes for the 3D case. However, we expect the networks
to capture the key features of the original datasets long before
all of the possible images or cubes were encountered. We there-
fore did not define an epoch as the network having encountered
all these possibilities, but instead arbitrarily defined an epoch
as the network having encountered 40 000 images/cubes. This
approximately corresponds to the size of the 2D dataset if we
use subarrays that do not overlap (32 000) and ten times that of
the 3D dataset (≈3000). We therefore expect the network to have
on average encountered all possible structures at every angle by
the time it has encountered this number of data.

2.2.3. Data transformation
The GANs operate by using a set of filters (Sect. 3.1) to rec-
ognize and learn patterns at different size scales in an image.
Therefore we need to work with images with clearly apparent
patterns such that the GAN can easily detect the set of salient
features. However, linear density maps of the cosmic web show
a poor array of shapes, with images appearing mostly uniformly
dark, with occasional bright pixels corresponding to dense halo
centers. On the other hand, a log representation of the same den-
sity maps makes the cosmic web filaments apparent, providing
shapes and texture that the GAN can more readily detect and
reproduce. Finally, our GAN was built to take in and output
images with pixel values ∈ [−1, 1]. We thus needed to map the
original pixel distribution into this interval.

We hence applied a log-like transformation to the image
pixel values (1). For the 2D images, the pixel value v′ in the
transformed images reads

v′ =
2 log(v) − (b + a)

b − a
. (1)

v is the original pixel value, and a and b are chosen such that a .
min(log(v)) and b & max(log(v)) so as to have v′ ∈] − 1, 1[ com-
patible with the network outputs. We used these strict inequali-
ties to give the network freedom to exceed the boundaries of its
training set when it generates images with pixel values ∈ [−1, 1].
We thus set a = log(0.01) and b = log(600).

The cubes from the 3D simulation have a significantly wider
range of values than the 2D cubes, with values up to 2000 parti-
cles per pixel as well as zero values. For these cubes, we adapted
the transformation described above to better suit the pixel range
of the images and 0 values. We recall that this transformation
was applied before the smoothing with a Gaussian filter. The
obtained pixel value v′ reads

v′ =
2 log(v + c) − (b2 + a2)

b2 − a2
, (2)

where b2 was chosen such that b & max(log(v)), c was chosen
such that c > 0, but c � v̄ to increase the contrast, while allow-
ing for a log transform, and a2 = log(c). We set b2 = log(2632),
c = 0.001, and a2 = log(0.001).

While adding the constant c allows for a log-like transforma-
tion, linear values smaller than c become difficult to distinguish
from one another after transformation. This can be observed in
the lower right panel of Fig. 1, which represents the transforma-
tion function given by Eq. (2). We clearly see a saturation effect
for values below c = 10−3. We therefore do not expect our net-
works to correctly recover the pixel PDF for values below c.

3. Unsupervised neural networks

In the following, we use two types of neural networks that we
describe in more detail below. First, we train a GAN to recover
the underlying distribution of our data and generate new data
hailing from this distribution. Second, after learning a meaning-
ful and continuous representation in latent space of our datasets
with the GAN’s generator, we build upon it to construct an AE
that can recover the latent encoding of any given datum within
this representation. Concretely, this will create a tool that can
extract any image or the essential information of a data cube in
the form of a vector of small size (100 elements for 2D and 200
for 3D) and recover the same image or data cube with this infor-
mation.

The two networks are more specifically CNNs. A neural net-
work can be described as a differentiable function N with param-
eters (or weights) θN , input(s) x, and output(s) N(x). As with
other machine-learning models, it is trained to complete a spe-
cific task by minimizing a loss function LN(θN , x) by gradually
modifying the parameters to reduce the loss over multiple itera-
tions with different x. A CNN builds or extracts information from
images through a series of convolutions between these images
and filters that act as feature detectors. Training of the network
rests on learning a set of filters that optimally detect or recover
the defining shapes and structures of a set.

3.1. GAN

Given a dataset on which to train, GANs extract the underlying
modes of its distribution and can then generate new data that
share the same distribution and thereby are similar to the training
dataset. Trained correctly, GANs can hence be used to produce
an infinite number of new images given a large but finite number
of input images (i.e., training dataset).

The GAN consists of two competing neural networks. The
first, a generator, takes a random vector as input from which it
produces data (an image or cube in our cases). The second net-
work, a discriminator, distinguishes these generated data from
true data from the training set. As both networks start out with
no information about the data, the tasks of generator and dis-
criminator start out as simple: the generator easily misleads the
discriminator, and the discriminator has to distinguish very dis-
similar images. However, as each of the two networks becomes
more efficient, one at generating convincing images and the other
at distinguishing them from the true set, the task is made harder
for the other network. Through this competition, the two net-
works train each other by gradually increasing the difficulty of
the other’s task while simultaneously improving themselves.

In practice, the networks work in the following way. The
generator takes a random Gaussian-distributed vector (z) as input
and from this builds a datum (G(z)) through a series of deconvo-
lutions and activations, as described in Appendix A. The dis-
criminator takes in a datum, either from the training set (x)
or from the set produced by the generator (G(z)), and through
a series of convolutions and activations further described in
Appendix A, produces a single number D(x/G(z)) ∈ [0; 1] that
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Fig. 1. Example of a simulation image (upper left) or cube slice of thickness ≈0.4 Mpc (lower left), histogram of the pixel values before and after
log-like transformation (middle), and pixel value transformation function (right) for the images (top) and cubes (bottom). In the middle column,
gray represents the pixel value histogram in linear scale, and blue shows the pixel value histogram after log-like transformation (Eq. (1) at the top
and Eq. (2) at the bottom) of the images. For both cases, the GAN has been trained using the log-transformed sets of images.

can be interpreted as the probability that the input datum is
drawn from the training set.

The training procedure can therefore be described as follows.
First, the generator will generate a batch of images or cubes (in
our case, 50 for 2D and 100 for 3D), and the same number of
images or cubes will be drawn from the training set. Then, the
parameters θD of the discriminator are adjusted such that the
probability given by the discriminator that the generated data are
true decreases, while at the same time, the same probability com-
puted on the training set increases. Denoting m = 0, . . . , 50/100
the indices of the generated images or cubes z(m) and the training
set of images or cubes x(m) in the batch, we wish to maximize
the following loss:

lG =
∏

m

D(x(m))
∏

m

(1 − D(z(m))), (3)

which is equivalent to minimizing the following log-loss:

LD = −
1
2
Ex log D(x) −

1
2
Ez log(1 − D(G(z))), (4)

where Ex represents the average over the dataset and Ez the aver-
age over the random vector z. To minimize this expression, the
discriminator should yield a prediction near to one for the data
of the training dataset and near to zero for the data produced by
the generator. Conversely, the generator should aim at producing
images or cubes that look like true images or cubes, and so for
the discriminator to yield predictions close to one when assess-
ing its generated data. Therefore the generator’s loss is simply
defined as

LG = −LD. (5)

At the end of the training stage, the two networks should
converge to an equilibrium wherein the discriminator is unable

to distinguish between the two sets of data and the generator is
outputting data sampled from the true underlying distribution of
the training set.

In practice, most GANs, including ours, never perfectly
reach this equilibrium and instead reach a point at which the
quality and diversity of the generated images fluctuates with
training. Instead of stopping training and collecting the result-
ing networks at a specific point, we therefore elected to regularly
save the weights of our networks during training and chose the
best set of weights by comparing the quality of images they gen-
erated and their statistical properties. When this was done, we
were equipped with a functioning generator and discriminator
that we further used in the construction and training of an AE.

3.2. Autoencoder

An AE is a neural network that learns a representation (encod-
ing) for a set of data in an unsupervised manner. It is built and
trained in the following way: A first network e, called encoder,
takes as input a datum x and outputs a vector of reduced size
z = e(x). A second network d, the decoder, takes as input z and
outputs a recovered datum x̃ = d(e(x)). The AE is trained by
imposing that the resulting x̃ is as close as possible to the ini-
tial x. This is typically (but not systematically) done by using
a cross-entropy loss, or by making ‖x − d(e(x))‖2 as small as
possible.

Incidentally, we can also consider and use the GAN’s gener-
ator as a readily trained decoder from a reduced space (R100 for
2D and R200 for 3D) to our target space (z = 0 simulation images
or cubes). The generator has learned a representation of the sim-
ulated data. Taking in an input z of reduced size, the generator is
to output any image x̃ = g(x) from the simulations. Furthermore,
given the ability of the generator to generate images or cubes that
are statistically consistent with those of the simulations, using it
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in the AE would constrain the outputs to share the same statis-
tical properties. Thus, we would avoid the common AE pitfall
to output blurry images (Dosovitskiy & Brox 2016). To create a
functioning AE, we therefore need only build and train a func-
tioning encoder that works as an inverse function of the genera-
tor, such that x̃ = g(e(x)) = g(g−1(x)) = x.

In a classical autoencoder, the encoder and decoder are
trained alongside each other. In our approach, the decoder was
first trained separately in an effort to constrain it to output data
that are statistically sound (i.e., that hail from the underlying dis-
tribution of the simulation). These constraints might imply a loss
of accuracy in our recovery of structures in individual images. It
is therefore important to consider both global and pairwise statis-
tics to determine how the AE fares in both regards, as we show
in Sect. 4.

The different layers of the encoder are based on the dis-
criminator architecture because the latter is especially developed
to extract essential information from simulated data. However,
because the goal of the network differs from that of the discrim-
inator, we only retain the architecture and not the weights. Fur-
ther details about the architectures of the networks can be found
in Appendix A.

We can now build the AE by setting the two networks
(encoder and decoder) end to end. This can be described as the
following function: a(x) = d(e(x)). We fixed the weights of the
decoder and updated the weights of the encoder to decrease the
loss function described above: ‖x − a(x)‖2. However, instead
of using the `2 loss in the space of the image or cube, com-
paring pixels at the same location on the true and inferred
images or cubes, which accounts poorly for well-recovered but
slightly shifted structures, we instead used the discriminator2. It
is expected that the discriminator learns a latent representation
of our datasets during the training of the GAN. This represen-
tation is given by the penultimate layer, where its elements are
used to estimate the probability for a datum to be a true image
or cube. This representation in the latent space of the discrim-
inator is semantically meaningful (Bang et al. 2020) because it
accounts for the presence of specific structures or shapes, and
tends to place visually similar images or cubes at a small dis-
tance in this space, where they would otherwise be more distant
in the space of the images or cubes.

Therefore we define the AE loss as:

LAE = ∆(x, x̃), (6)

where ∆ is the `2 difference in the latent space of the discrimi-
nator. Alternatively, calling T D the truncated discriminator with
its final layer removed,

LAE = ‖T D(x) − T D(x̃)‖2. (7)

We then trained the AE by updating its weights to minimize
this loss. Training was stopped when the loss measured on a sep-
arate validation set reached a minimum. From now on, we refer
to the images or cubes x̃ reconstructed by the AE as inferred
images or cubes. We assess their quality in Sect. 4.

4. Results

In this section, we use a set of statistical estimators to evalu-
ate the performances of both the GAN and the AE in emulat-
ing or reproducing the input data from 2D or 3D simulations,
2 As an independent test, we built a separate traditional AE with the
same structure, but in which the decoder weights were initially random-
ized and were updated during training with an `2-norm loss function.
As expected, we obtained the blurry results.

which are considered here as the ground truth. Because we ulti-
mately wish to reproduce ground truth linear density maps, we
applied an inverse-log transformation to revert to linear den-
sity. This density, corresponding to the pixel values, is expressed
in particles per pixel (hereafter noted ppp) and is referred to
as ρ.

We compared datasets on the basis of their pixel PDFs, the
distribution of their mean density, their power spectra, and their
peak counts. Additionally, as we expect that the AE-inferred
images or cubes reproduce their input images or cubes, we per-
formed a pairwise measure described in Sect. 4.1.4 to quantify
how well the individual images or cubes are recovered.

4.1. Statistical estimators

4.1.1. Pixel PDF and distribution of the mean density

A first basic test is to compare the distributions of the pixel
values, which correspond to a density measure in ppp in both
sets of data. We also computed the mean particle density, µ, of
each image or cube and compared their PDF over the simulated
(truth) sets and generated and inferred sets from the GAN and
AE. Whereas the pixel PDF is informative of the density dis-
tribution of a datum on average, and therefore ensures that two
sets of images or cubes are similar on average, the mean density
serves as a simple one-dimensional visualization of the distri-
bution of images or cubes over a set. This type of information is
important to ensure that we recover the underlying distribution of
both datasets and recover different cosmic regions and different
halo densities in the correct proportions. Furthermore, GANs can
often experience so-called mode collapse (Thanh-Tung & Tran
2018). In this situation, the generated images or cubes are indis-
tinguishable from the original set, but show little to no diver-
sity. Although visual inspection of the images can help to detect
mode collapse, a visualization of the overall distribution through
the mean density provides additional information to confirm its
absence.

4.1.2. Peak counts

We computed the average peak counts over the generated or sim-
ulated dataset. A peak is a local maximum (ρmax), defined as
a pixel whose contiguous neighbors (8 for images and 26 for
cubes) have lower values. For each image or cube, we computed
the number of peaks for a given value of ρmax and averaged this
number over the whole dataset. In the simulated data, the higher
peaks, which are dense local maxima, are expected to corre-
spond to halo centers, whereas smaller near-zero peaks are more
likely to be the result of noise from the simulation or the image-
making process. Therefore we are more interested in the higher
peaks, which give us an indication as to our recovery of the halo
distribution.

4.1.3. Power spectrum

We computed the 2D and 3D power spectrum of each image or
cube from the different sets (input, generated, and inferred). For
a frequency ν, it is given by

P(ν) = 〈‖Akl‖
2〉(k,l)|k2+l2=ν2 , (8)

where Ak,l are the discrete Fourier transform elements of the
image.
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4.1.4. Sørensen-Dice coefficient

As stated above, we need an additional test to quantify how well
the AE infers individual images or cubes. Therefore we need
a pairwise comparison of input images or cubes from the sim-
ulations and their inferred counterparts from the AE. Taking a
simulation or inferred pair, we tested how well the structures
overlap by thresholding the images or cubes at different values
and counting the fraction of pixels or voxels above the threshold
that overlap.

For a pair of images or cubes a and b, the overlap is expressed
in the following way:

Oab(t) =
Nab(t)

Na(t) + Nb(t)
. (9)

Here Naorb(t) is the number of pixels or voxels whose value
is above the threshold t in a or b, and Nab(t) is the number of pix-
els or voxels whose value is above t for both a and b in a given
position in an image or cube. To gauge the overall quality of the
encoded images or cubes, we plotted the dice coefficient aver-
aged over a set of simulated-inferred pairs: Ō(t) = 〈Oab(t)〉a,b.
For clarity, the overlap Oab(t) was plotted against the top per-
centage, associated with a given threshold, rather than the thresh-
old itself (Figs. 10 and 13). The thresholds were independently
defined for the simulated and inferred sets.

A random pair of true and inferred images or cubes on aver-
age provides a nonzero overlap. Two images or cubes with n%
thresholded pixels or voxels are expected to overlap by n% on
average. To better gauge the entire performance or recovery of
the inferred set, we thus computed a random overlap, defined as
an overlap measured over a random set of simulation pairs. We
plotted this along with our overlap averaged on simulation or
inferred pairs. From this random overlap measure, we proceeded
to build an unbiased estimator of the feature recovery by sub-
tracting it from the overlap measured for simulated or inferred
pairs. This difference is not informative by itself, therefore we
studied it relative to relevant values.

First we observed it relative to its maximum possible score
(1 − r(t)), r(t) being the average random overlap for a given
threshold t. This provided a completion score between 0 and 1,
in which 1 corresponds to a perfect overlap and 0 to a completely
random overlap,

Ō(t)1 =
Ō(t) − r(t)

1 − r(t)
. (10)

We refer to this as the normalized sd coefficient.
Next we observed it relative to the standard deviation of the

random overlap to ensure that the inferred images or cubes, if
imperfect, were well beyond the random range. This corresponds
to a signal-to-noise ratio,

Ō(t)2 =
Ō(t) − r(t)
σ(r(t))

. (11)

We refer to this as the sd coefficient significance.
These measures allowed us to determine whether the struc-

tures are well recovered, and at which scale they are best
recovered.

4.2. Results from GANs

4.2.1. 2D images

We first present the results of the GAN trained on images
from 2D simulations. The network consistently outputs sets of

verisimilar images as early as 30 epochs, but we trained the GAN
for 85 epochs for the best results. We expect the relative simplic-
ity of the images of our training set to result in a faster con-
vergence than a GAN trained on natural images. We also note
that our chosen number of epochs, consisting of 40 000 images
each, corresponds to longer training than that of Rodríguez et al.
(2018; 20 epochs for a dataset of 15 000 projected cubes). In
addition, training the GAN for too long (e.g., >100 epochs)
eventually results in mode collapse, whereas the quality of
the generated data stops to improve long before that point is
reached.

Two sets of 50 images taken at random from the simulations
and from the GAN-generated images in Fig. 2 show the ability
of the GAN to generate images of convincing similarity. Visu-
ally, we observe that the large-scale structure is well recovered.
This is most notably the case for the filaments, which are repro-
duced in all their diversity of length, thickness, and frequency.
It is also the case for high-density regions, or halos, in terms
of their occurrence, brightness (or density), and positions within
the structures.

This observation is further corroborated by the statistical
estimators, as shown in Fig. 3. The pixel PDFs (lower left panel
of Fig. 2) show an almost perfect overlap for the majority of
the pixel density values, with a very slight under-representation
in the generated images of the densest values. This agreement
shows that the density distribution of the images is very well
recovered by the GAN.

The mean particle density distribution of the generated set
(displayed in the upper right panel of Fig. 2) shows an almost
perfect agreement with the simulation set. The overall agree-
ment indicates that the diversity of the original set is globally
well represented in the generated set. The median power spectra
and their median absolute deviation (mad) layer (Fig. 3 upper
left panel) for the simulated and generated sets show a satisfac-
tory overlap, indicating a good recovery of the correlations at
various distances and thus a good representation of the different
scales in the images. Finally, we show the peak counts in the
lower right panel of Fig. 2. The very good agreement between
the true simulated images and the generated images confirms that
the dense regions are well represented. In particular, not only a
similar average number of peaks is observed, but also a similar
average distribution of the peak values in both sets, with a slight
under-representation of the densest peaks and a more notable
over-representation of low-density peaks. However, the peaks at
low density are due to simulation noise and are not physical, so
this is not an issue.

4.2.2. 3D cubes

We now turn to the results obtained by the GAN trained on the
3D cubes. The GAN again progressed in a stable manner and
consistently produced very similar cubes after about 30 epochs
of training. For the best results, we trained it for 50 epochs. We
find that this agrees with the training time of Feder et al. (2020;
150 epochs for a dataset of 16 000 cubes). As for the 2D GAN,
training for too long results in mode collapse, but not before the
quality of the generated cubes stabilizes.

First, we focus on two subsets taken at random from the orig-
inal set of simulated cubes and from the set of generated cubes
(Fig. 4). Our visual inspection again shows that the diversity
of the simulated cubes is well recovered by the GAN in terms
of distribution in size, frequency of filaments, and number and
brightness of high-density regions. A closer look at the statistical
properties of the images as seen in Fig. 5 further confirms this.
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Fig. 2. Two subsets of 50 images taken at random from a set of 2D simulation images (left) and a set of images generated by the GAN (right).
Every image represents a 128 × 128 log density map of side 50 Mpc. They are virtually indistinguishable by eye.

Fig. 3. Statistics of the 2D simulation images compared to their GAN-generated counterparts. The upper left panel shows the pixel PDF, the upper
right panel shows the mean density distribution, the lower left panel shows the median power spectrum as well as the median absolute deviation
(mad) layer, and the lower right panel shows the average peak count per image. The curves overlap almost perfectly.

Notably, the voxel PDFs (Fig. 5 upper left panel) show an
almost perfect overlap, confirming the good recovery of the den-
sity distribution on the average cubes. However, the lower tail of
the distribution is poorly represented for voxel values <10−4 ppp.
The generated cubes show a deficit compared to the simulations.

This can be explained by the saturation effect related to the con-
stant c in Eq. (2).

Meanwhile, the mean density PDF (Fig. 5 upper right panel)
seems to be well recovered, confirming the good recovery of
the cube diversity. The median 3D power spectra and their mad

A46, page 7 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039866&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039866&pdf_id=3


A&A 651, A46 (2021)

Fig. 4. Two subsets of cube slices (of thickness ∆z ≈ 0.4 Mpc) taken at random from a set of 3D simulation cubes (left) and a set of cubes generated
by the GAN (right). Every cube represents a 64 × 64 × 64 log density map of side 25 Mpc. They are virtually indistinguishable by eye.

Fig. 5. Statistics of the 3D simulation cubes (red) compared to their GAN-generated counterparts (blue). The upper left panel shows the voxel
PDF, the upper right panel shows the mean density distribution, the lower left panel shows the median 3D power spectrum as well as the mad
layer, and the lower right panel shows the average peak count per cube. The curves overlap almost perfectly.

regions (Fig. 5 lower left panel) yield an almost perfect over-
lap, with a slight over-representation of higher frequencies in the
generated cubes. We plot the peak counts in the lower right panel
of Fig. 5. True simulated cubes and generated cubes again show
an almost perfect agreement, confirming that the high-density
region centers are well represented in terms of their numbers as

well as their distribution. However, we observe a slight misrep-
resentation of the lower tail of the distribution, similarly to the
voxel PDF, for similar reasons.

We find that the mean density distributions of the simu-
lated and generated sets are somewhat distinguishable but over-
lap very well, and that the power spectra overlap satisfactorily
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Fig. 6. Ten images taken at random from the 2D simulations (top row) and their AE-inferred counterparts (bottom row). Every image represents a
128 × 128 log density map of side 50 Mpc. The larger dense structures are better recovered than the finer diffuse structures.

Fig. 7. Statistics of the 2D simulation images compared to their encoded counterparts. Upper left shows the pixel PDF, upper right shows mean
density distribution, lower left shows median power spectrum as well as mad (median absolute deviation) layer, and lower right shows average
peak count per image. As for the GAN the curves overlap quite satisfyingly, with only the MPDD showing a slight flattening.

in both their medians and their mad regions. We note that our
results appear to agree with those of Feder et al. (2020), who
encountered similar saturation issues as we did at low densities
for similar reasons. Because Rodríguez et al. (2018) studied pro-
jected 3D simulations whereas we present results for actual 3D
cubes, a proper comparison is not possible.

4.3. Results from the AE

4.3.1. 2D images

We now focus on the outcome of the AE for the set of images.
For this dataset, the AE was trained over 195 epochs. To deter-
mine the best point at which to stop training, we considered the
evolution of the loss function of our model when it was tested on
a validation set. We expect it to decrease up to a point at which
our model should start overfitting, that is to say, it becomes too
fine-tuned for its training set and starts to perform poorly on new
sets, after which the validation loss should start to increase. In
practice, we never observed an overfitting during our training of

the AE on the images. The loss on the validation set instead con-
verged almost monotonously toward a constant.

We studied how the AE fares with images that it had never
encountered during its training because our goal is to be able to
apply it on new datasets. All the images shown and used to mea-
sure the different statistical properties in the results were there-
fore part of or were inferred from a separate set than those used
for training. We call this a test set. This was the case for the 2D
images and 3D cubes.

We first illustrate the results in terms of the AE’s perfor-
mance and recovery of features with a set of ten simulated
images taken at random from the test set (Fig. 6, first column
from left to right) and their inferred counterparts (Fig. 6, sec-
ond column from left to right). We note that the inferred images
visually look similar to the simulated images, but the larger and
denser structures tend to be recovered better than the smaller dif-
fuse structures.

We recall that while the decoder, which has the exact same
structure and weights as the GAN’s generator, is expected to
infer images that are statistically similar to that of the GAN,
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Fig. 8. Examples of 2D simulation or inferred image pairs (Cols. 1–2) and their thresholded equivalents as used to compute the overlap function.
The first column in each pair represents images from the simulations, and the second column lists their inferred counterparts. Here they are
thresholded for top 20% (Cols. 3–4), 40% (Cols. 5–6), 60% (Cols. 7–8), and 80% (Cols. 9–10).

it nevertheless infers images from a different prior. While the
GAN’s inputs were selected randomly from a Gaussian distri-
bution, the decoder’s inputs were all constructed in a deliber-
ate fashion by the AE’s encoder and are not expected to follow
quite the same distribution. A change in statistics is therefore
expected. As a sanity check, we additionally trained an iso-
lated encoder directly on images that were randomly generated
by the 2D GAN, constraining it to output an encoded vector
z = E(G(x)) similar to the input vector x of the generated images,
with a simple l2 loss LE = ‖z− x‖2. The ensuing images inferred
by the AE when tested on new GAN-generated images give very
satisfactory results with all estimators (almost perfect overlap of
all estimators, dice coefficient>0.7 even for the top 1% pixels).
However, this did not translate well when we tested the AE thus
trained on real simulation images. This test suggests that much
of the AE’s limitations might be due to a certain dissimilarity
between GAN-generated images and true images, and thus due
to the GAN’s limitations themselves. An identical check for the
3D cubes yielded the same results, from which we can draw the
same conclusions.

A closer inspection of the statistical properties of the images
(Fig. 7) shows a very satisfactory agreement of the sets of
inferred and simulated images. The pixel PDFs (Fig. 7 upper left
panel) show a satisfactory overlap for the two sets, presenting
a very slight under-representation of high-density pixels in the
inferred images. The mean particle density distributions (Fig. 7
upper right panel) show a satisfactory agreement. The inferred
images exhibit a slight skewness toward higher mean densities.
In the lower left panel of Fig. 7, the power spectra overlap satis-
factorily. Finally, the peak counts (Fig. 7 lower right panel) show
an almost perfect overlap, with a slight over-representation of
lower peak values in the inferred images. Overall, while slightly
less so than the GAN-generated images, the images are recov-
ered with almost perfect statistical quality.

Fig. 9. Examples of the overlap of thresholded structures for 2D simula-
tion or inferred image pairs. Yellow pixels indicate where the structures
overlap, and green pixels show where they do not. The dark background
represents pixels below the threshold. The Dice coefficient is simply
measured as

nyellow
nyellow+ngreen

. Here they are thresholded for top 20% (Col.

1), 40% (Col. 2), 60% (Col. 3), and 80% (Col. 4).

A46, page 10 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039866&pdf_id=8
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039866&pdf_id=9


M. Ullmo et al.: Encoding large-scale cosmological structure with generative adversarial networks

Fig. 10. Left: dice coefficient (as defined
by Eq. (9)) of the top n% pixels between
2D simulation images and their inferred
counterparts in increments of 5% (yel-
low). The inner dark yellow layer repre-
sents measure uncertainty, and the outer
yellow layer represents the standard devi-
ation over the set. The random overlap is
represented in black. Right, red: dice coef-
ficient significance (see Eq. (11)). Blue:
Normalized Dice coefficient (see Eq. (10));
both are represented with their standard
deviation layers.

Fig. 11. Ten cube slices from the 3D simulations (top row) and their ten AE-inferred counterparts (bottom row). Every image represents a slice
from a 64 × 64 × 64 log density map of side 25 Mpc. As for the 2D case, the larger dense structures are better recovered than the finer diffuse
structures.

We now focus on the Sørensen-Dice coefficient, which com-
putes the overlap fraction of two thresholded images. Visual
inspection (Figs. 8 and 9) of the thresholded simulated or
inferred image pairs and how they overlap suggests that dense
structures are strikingly well recovered. The AE favors the
retrieval of thick, contrasted features to the detriment of finer
ones. This is again expected because of the predisposition of the
CNN to detect and construct well-defined shapes.

An inspection of the Dice coefficient (Fig. 10, left) corrob-
orates this finding. Despite some slight shifts in structures and
the loss of finer structures, we note that the high-density regions
overlap satisfactorily and apparently well beyond the random
region for up to the top 60% pixels. The normalized Dice coeffi-
cient (Fig. 10, right, blue) lets us assess the density threshold at
which the AE captures structures best. Here, it peaks for the top
20% pixels.

4.3.2. 3D cubes

We now consider the AE’s performance when trained on cubes
from the 3D simulation. For these cubes, the AE was trained for
55 epochs, after which the loss measured on the validation set
showed that the network started to overfit.

To illustrate our results, we first show a random set of ten
cubes from the 3D simulations test set and their inferred coun-
terparts (Fig. 11). We again observe that the densest structures
appear to be better recovered than the more diffuse structures.
We concentrate on the statistical properties of the cubes (Fig. 12)
to better assess the AE’s performance.

First, the voxel PDFs (Fig. 12 upper left panel), as for the
GAN’s case, overlap well up to the lower tail of the distribution,
with an over-representation of lower densities in the inferred
cubes. The mean density distribution, as we show in the upper
right panel of Fig. 12, is well recovered, as is the 3D power
spectrum (Fig. 12 lower left), although it again shows a slight

under-representation of higher frequencies in the inferred cubes.
The peak counts (Fig. 12 lower right panel) show, similarly to
the voxel PDF, a slight over-representation in the high-density
regime.

An inspection of the Dice coefficient (Fig. 13, left) shows an
overall satisfactory recovery of the cubes that significantly differ
from random cubes. We further note that the retrieval of high-
density structures is good for the top 60% voxels in a majority
of cubes, as shown by the Dice coefficient significance (Fig. 13,
right, red). The normalized Dice coefficient (Fig. 13, right, blue)
suggests that structures associated with the top 10% voxels are
captured best by the AE.

5. Conclusion

We trained a GAN on two types of simulations to produce statis-
tically consistent data. The first set was built from 2D N-body
simulations using a Delaunay tessellation field estimator, and
the second set was built from 3D simulations using a smoothed-
histogram field estimation method.

Using an ensemble of estimators (pixel PDF, mean density
distribution, power spectrum, and peak counts), we confirmed the
ability of the GAN to extract the underlying statistical distribu-
tion of data built from the simulations and generate new data hail-
ing from this distribution. We showed that this was the case for
both data types. They were indeed emulated with striking simi-
larity to the true original data, as we showed visually and with
the almost perfect overlap of the different statistical estimators.
Additionally, the training proved stable. The networks consis-
tently generated images of increasing quality with training up
to a stable point after which the generated images were visually
indistinguishable from the true ones. We note that despite the suc-
cess of GANs to reproduce a desired input with high fidelity, it is
important to be careful when these black-box models are used.
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Fig. 12. Statistics for the 3D simulation cubes (red) and their AE-inferred counterparts (blue). The upper left panel shows the voxel PDF, the upper
right panel shows the mean density distribution, the lower left panel shows the median 3D power spectrum as well as mad layer, and the lower
right panel shows the average peak count per cube. In the same way as for the GAN, the curves overlap quite satisfactorily.

Fig. 13. Left: dice coefficient (as defined
by Eq. (9)) of the top n% voxels between
the 3D simulation cubes and their inferred
counterparts in increments of 5% (yellow).
The inner dark yellow layer represents the
measure uncertainty, and the outer yel-
low layer represents the standard deviation
over the set. The random overlap is repre-
sented in black. Right, red: dice coefficient
significance (see Eq. (11)). Blue: Normal-
ized Dice coefficient (see Eq. (10)). The
coefficients are represented with their stan-
dard deviation layers.

As we noted when we tried to train an AE on GAN-generated
data alone and noted its poor generalization to simulation data,
a visual inspection is not sufficient to guarantee that the gener-
ated dataset is statistically equivalent to the targeted set. Because
the generated data cannot be distinguished visually from the
simulation data, it is thus very important to design a series of
quantitative tests ensuring in which range they can be exploited.
In other words, neural networks are very appealing tools to
be explored and exploited, but at the cost of devising pre-
cise tests of their domains of validity and their generalization
capability.

Building on the GAN’s properties, we used the trained net-
work to devise an AE that reduced images or cubes, and related
information, to encoded vectors of smaller size that were then
decoded with as little loss as possible, while satisfactorily con-
serving the statistical properties of the data. A visual appraisal

of the data inferred by the AE suggested that large dense struc-
tures were very well reproduced for both data types (images
and cubes), while for the smaller fine structures, the degree
of reproduction was not satisfactory at all. Furthermore, the
inferred data appeared to be visually realistic. Statistical estima-
tors showed a quite satisfactory overlap, but suggested a slight
overall decrease in statistical similarity with the original sets
when compared with the results from the GAN. This is to be
expected. Although the decoder is constrained to output realistic
data when given a Gaussian-distributed input and the encoder
is constrained to translate data into a meaningful way in the
latent space of the decoder, we cannot expect the data to per-
fectly follow a Gaussian distribution when they are translated
into the latent space. Finally, the fact that the AE can success-
fully reproduce the contrasted features of the input data on a test
set indicates that the GAN did capture meaningful features of
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the dataset, and is far from overfitting it by only reproducing the
training set with small perturbations.
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Appendix A: Network specifications

A.1. GAN

The generator and discriminator are based on the structure
described by Tiago Freitas3 and built following the structure
detailed in Table A.1. They are trained using the Adam optimizer
with parameters (lr = 0.0002, β1 = 0.5) and minimize the loss
given in Eq. (4), wherein a small noisy component that labels
the images incorrectly is added. This imperfect loss avoids the
common pitfall of GANs wherein one of the competing par-
ties, usually the discriminator, becomes too efficient compared
to the other, which stops the competition and thus the training
well before quality images can be generated.

A.2. AE

We recall that the AE is built by appending a second network, the
decoder, to a first network, the encoder. In our case, as explained
in Sect. 3.2, we took the trained generator of a GAN as a readily
built decoder. Similarly, we based the encoder architecture on
that of the discriminator, and only changed the final (8192 −→ 1
for 2D and 4096 −→ 1 for 3D) dense layer to a (8192/4096 −→
100/200) dense layer with no activation, such that the output
was of the correct size and limitations. The general structures
of the encoder and decoder are also defined in Table A.1. With
the weights of the decoder fixed, the AE was trained by varying
the weights of the encoder to reduce the loss given in Eq. (7)
using the Adam optimizer with the same parameters as above
(lr = 0.0002, β1 = 0.5).

3 https://github.com/tensorfreitas/
DCGAN-for-Bird-Generation

Table A.1. Architecture specifications for each layer of the 2D GAN
generator network (G) and discriminator network (D) as well as the 2D
AE’s encoder (E) and decoder(De).

Filter sizes {5, 5, 5, 5, 5}

nfilter(G/De) {256, 128, 64, 32, 1}
nfilter(D/E) {32, 64, 128, 256, 512}
Strides: {2, 2, 2, 2, 2}
Layer Act. ReLU (G/De), Leaky ReLU (D/E)
Final Act. Tanh (G/De), Sigmoid (D), None(E)
Latent dimension 100

Table A.2. Architecture specifications for each layer of the 3D GAN
generator network (G) and discriminator network (D) as well as the 3D
AE’s encoder (E) and decoder(De).

Filter sizes {4, 4, 4, 4}

nfilter(G/De) {128, 64, 32, 1}
nfilter(D/E) {32, 64, 128, 256}
Strides: {2, 2, 2, 2}
Layer Act. ReLU (G/De), Leaky ReLU (D/E)
Final Act. Tanh (G/De), Sigmoid (D), None(E)
Latent dimension 200
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