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Coarse-grained quantum cellular automata

One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain colorblind quantum cellular automata that follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size N ; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes N of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.

I. INTRODUCTION

Cellular automata (CA) are discrete dynamic systems whose rules appear very simple, but whose emerging phenomenology is complex [START_REF] Wolfram | Cellular automata as models of complexity[END_REF]. An example is Conway's famous game of life [START_REF] Adamatzky | Game of life cellular automata[END_REF]: simple understandable rules produce an entire animated world, with blinkers, gliders, guns and Garden of Eden states. Historically, they have been adapted to describe several complex systems such as hydrodynamic fluids [START_REF] Rothman | Lattice-gas cellular automata: simple models of complex hydrodynamics[END_REF], traffic patterns [START_REF] Kerner | Cellular automata approach to three-phase traffic theory[END_REF], the formation of biological processes [START_REF] Ermentrout | Cellular automata approaches to biological modeling[END_REF] and reaction-diffusion [START_REF] Chopard | Cellular Automata Modeling of Physical Systems[END_REF]. One of the first definitions of cellular automata is that of von Neumann [START_REF] Neumann | The computer and the brain[END_REF], whose rules are applied locally on a two-dimensional grid, in discrete time. It soon became clear that many CA are universal models of computation, or in other words they effectively simulate Turing machines [START_REF] Neary | P-completeness of cellular automaton rule 110[END_REF]. More formally CA are a discrete set of cells whose values are in identical finite sets; a state is the current value of the cells; cells evolve in discrete time according to a local translation-invariant update rule.

Although CA describe a very broad spectrum of classical phenomena, they cannot describe a quantum system. In order to do so correctly and effectively, to the best of our knowledge today, we must consider the quantum analog of CA, namely quantum cellular automata (QCA). QCA can be defined in various ways, and many of them are recently proved equivalent [START_REF] Arrighi | An overview of quantum cellular automata[END_REF]. We define our QCA over a general graph where in each vertex sits a cell, with each cell composed of sub-cells defined as finite-dimensional quantum systems. The evolution of the QCA is given by local unitaries that act on partitions of the graph. From the above definition it is clear that all QCA in this model are reversible, as only unitary operations are performed. This is in accordance with the expected microscopic, fully quantum dynamics. These automata can be used as a model of distributed quantum computation and in particular they can provide quantum schemes to simulate quantum physics theories [START_REF] Arrighi | Dirac equation as a quantum walk over the honeycomb and triangular lattices[END_REF][START_REF] Di Molfetta | Quantum walks as massless dirac fermions in curved space-time[END_REF][START_REF] Di Molfetta | Quantum walks as simulators of neutrino oscillations in a vacuum and matter[END_REF][START_REF] Arnault | Quantum walks and non-abelian discrete gauge theory[END_REF]. Indeed QCA offer a nat- * Electronic address: giuseppe.dimolfetta@lis-lab.fr ural framework to theoretical physics. They seem promising since they satisfy fundamental concepts such as unitarity and causality, and we can make them gauge invariant [START_REF] Arrighi | Gauge-invariance in cellular automata[END_REF][START_REF] Arrighi | A quantum cellular automaton for one-dimensional QED[END_REF][START_REF] Arnault | Discrete-time quantum walks as fermions of lattice gauge theory[END_REF] and even Lorentz covariant [START_REF] Arrighi | Discrete lorentz covariance for quantum walks and quantum cellular automata[END_REF][START_REF] Bisio | Quantum walks, weyl equation and the lorentz group[END_REF][START_REF] Debbasch | Discrete geometry from quantum walks[END_REF].

If a quantum description of a discrete dynamic system does not pose major problems, the transition to classical is not yet free of difficulties. In order to study such transition in the discrete framework of the QCA, here we imagine that a hypothetical "detector" is not good enough to resolve the more basic level of the dynamic, which translates into a loss of information. This can be formalized by a quantum coarsegraining procedure, namely a completely positive trace preserving (CPTP) map. The idea to coarse-grain complex systems other than particles or polymers is very recent, and range from quantum chemistry [START_REF] Han | Quantum theory of multiscale coarse-graining[END_REF] and high energy physics [START_REF] Bartlett | Reference frames, superselection rules, and quantum information[END_REF][START_REF] Kabernik | Quantum coarse-graining, symmetries and reducibility of dynamics[END_REF][START_REF] Agon | Coarse grained quantum dynamics[END_REF] to biology [START_REF] Feret | Internal coarse-graining of molecular systems[END_REF]. Few studies have been produced in the context of quantum walks [START_REF] D'ariano | Virtually abelian quantum walks[END_REF][START_REF] Bisio | Quantum walks with a one-dimensional coin[END_REF] and optical lattices [START_REF] Correia | Spin-entanglement wave in a coarse-grained optical lattice[END_REF] In this article, inspired by classical coarse graining procedures [START_REF] Israeli | Coarse-graining of cellular automata, emergence, and the predictability of complex systems[END_REF][START_REF] Costa | Coarse graining of partitioned cellular automata[END_REF] and a first recent result for quantum systems [START_REF] Duarte | Emerging dynamics arising from coarse-grained quantum systems[END_REF], we space-time group unit cells in one supercell, and we construct effective emergent dynamics for different sizes of the supercell. In the lowest level we have the fully microscopic and reversible quantum dynamics; while for increasing supercell size the quantum features are gradually suppressed and a classical dynamics emerges.

The use of QCA is particularly useful for a coarse-graining procedure, as its discrete structure gives a clear visualization of the process: instead of being able to resolve a single cell, one is only able to see bigger blocks, thus not taking into account the full information about the microscopic structure. This erasure of information leads to an effective state and effective discrete dynamics, which is possibly simpler than the microscopic fully quantum dynamics and thus, at some level, likely to be simulated in an efficient way by a classical computer.

In order to explore this idea, we specialize to a very broad class of QCA, following the so-called Goldilocks rules, recently introduced in [START_REF] Hillberry | Entangled quantum cellular automata, physical complexity, and goldilocks rules[END_REF]. The Goldilocks rules are tradeoffs of the kind underpinning biological, social, and economic emergent complexity. For the sake of simplicity, we investi-gate the simplest, but still non trivial, rule which makes the state evolution depending on a neighborhood of unitary radius.

The interest for such a choice is double: (i) as is proven in Appendix A, this Goldilocks QCA is color-blind, i.e. is global invariant under the change 0 ↔ 1; (ii) the overall dynamics may be described by border states, we call signals, leaving on the edges of the grid. We will see that these signals are natural candidates for describing the QCA at different level description.

The article is organized as follows. In section II we define the Goldilocks QCA. Then in section III we introduce the coarse-graining procedure and we derive the dynamical law for a given size of the supercell. We conclude and discuss in section IV. Moreover we provide two appendices: in Appendix A we give a full rigorous proof of the color blindness of the Goldilocks QCA; in Appendix B we show an interesting by-product of the coarse-graining procedure, namely, a discrete analogous of the Stokes law.

II. GOLDILOCKS RULES

The Goldilocks QCA (GQCA) is defined over a onedimensional qbit string as depicted in Fig. 1. Each qbit |e i ∈ C 2 , updates in discrete time steps, according to a local gate defined on the qbit's neighborhood as follows:

U i = σ=ei-1,ei+1 |σ σ| ⊗ V cσ i .
acting on the qbit at position i, where the sum is performed on the four possible configurations σ of the two neighbors of i. The parameter c σ ∈ {1, 0} 2 controls whether V i is applied or not to |e i . According to the simplest Goldilocks rule T 6 [START_REF] Hillberry | Entangled quantum cellular automata, physical complexity, and goldilocks rules[END_REF], we have to apply V to |e i if its two neighbors are different, otherwise we have to keep it unchanged, leading to the following rule: c 00 = 0, c 11 = 0, c 01 = 1 and c 10 = 1. The dynamics of the GQCA strongly depends on the choice of V . A sufficiently general expression for V is the following: where φ ∈ [0, 2π[ and m is a constant real parameter, which we call the mass. The real parameter ε is the characteristic length of the space-time grid. One may remark that the scheme depicted in Fig. 1, still well defined, does not put time and space on an equal footing, because we apply first gates at odd positions at step n and later gates at even positions at step n + 1 2 . To avoid this inconvenience, we can equivalently represent the GQCA, depicted in Fig. 1, as in Fig. 2. Let us introduce the position x i = i 2 ε and the time t n = nε. Since the unitaries U i and U j commute if |i -j| > 1, we say that the state at position x i and time t n can evolve to the position x i at time t n+1 , if its two neighbors at positions x i-1 and x i+1 are ahead at time t n+1/2 . In Fig. 2, the black solid arrows represent the local time evolution of the state and the current state is then represented by a broken solid line. The dynamics of a GQCA locally looks very simple, as is shown in Figs. 3 and5, although at large scale it may lead to high complexity [START_REF] Hillberry | Entangled quantum cellular automata, physical complexity, and goldilocks rules[END_REF]. In fact, by looking at its spacetime diagram, we can observe finite regions of |0 's and |1 's propagating quite regularly. In this scenario, the domain walls between these regions, appear to be the most relevant point to investigate. This suggests a dual representation of the GQCA. Let us introduce an auxiliary state ψ ∈ C 2 , sitting on the edges of the space-time grid: this new discrete field is defined in order to account, modulo 2, the local difference of the two nearest neighbor qbits. If they are different, ψ = |1 , otherwise ψ = |0 . More formally, taking (x i , t n ) and (x j , t m ) neighbors, (x, t) being the midpoint:

V = e iφ [cos(mε)σ x + sin(mε)σ z ], (1) 
ψ(x, t) = |e(x i , t n ) ⊕ e(x j , t m ) .
As we can see in Fig. 4, the ψ ≡ |1 propagates in spacetime at speed 1, following the domain walls that separate regions of |0 's and |1 's. Indeed, we can fully describe the automaton only looking at the signals ψ. Each of them behaves like a quantum walker over the dual grid. If we look at the one ψ-subspace, a straightforward calculation leads us to the following recursive relations:

ψ+ (x, t + ε 2 ) = e iφ cε ψ+ (x - ε 2 , t) ± sε ψ-(x, t) ψ-(x, t + ε 2 ) = e iφ cε ψ-(x + ε 2 , t) ∓ sε ψ+ (x, t) (2) 
where we set c ε = cos(m ) and s ε = sin(m ). The ψ+ (respectively ψ-) is the right-(respectively left-)moving signal and the sign choice depends on whether we have 0 -ψ -1 or 1 -ψ -0.

However, as we rigorously prove in Appendix A, the automaton is color-blind: the global time evolution of the ψ is invariant by the flip |0 ↔ |1 .

The constant φ selects the signal statistics: when two ψ's cross, we obtain a phase delay of 2φ and this phase induces a statistics. For φ = π/2, the ψ's have to be considered fermions. The local evolution rules for ψ are summarized in Fig. 5.

The fact that the signals ψ actually behave as (Dirac) quantum walkers in (1 + 1) is not surprising: quantum walkers are usually though as the one-particle sector of a QCA. In this context, the domain walls, although defined in a multiparticle setting, behave geometrically as one-dimensional states. Moreover, looking at the single-particle sector and gauging the global phase away, we can take the continuous limit of (2). Expanding around ε = 0 of Eq. (2) and taking formally the limit for ε → 0, the single particle dynamics recovers the Dirac-like equation in (1 + 1) space-time dimensions:

i∂ t ψ = H D ψ, (3) 
where ψ = (ψ + , ψ -) and H D = iσ z ∓ 2mσ y . 

III. DECIMATION AND COARSE-GRAINING

The procedure to coarse-grain the above automaton is decomposed in three steps. First we partition the space-time diagram in cells of size N . Then we sample a number of qbits on the borders of these cells, and we refer to them as probes. Finally we coarse-grain by a CPTP map the signals, constructing the effective dynamics for different sizes of the cells. Notice that as a by-product of the coarse-graining procedure, we can always establish a connection between the probes, along the domain walls and the signals, traveling through the cells, as we prove in Appendix B.

Let us first illustrate this procedure in general terms. Consider a space-time diamond of size N and a line of initial qbits, arranged as in Fig. 6, its extremities being fixed. From a microscopic point of view, the unitary evolution of one qbit |e i is given locally by U i . Now let us imagine that an available detector is not able to resolve the microscopic dynamics within a space-time super-cell of size N , but may only have access to a high-level description. Here, we assume that such macroscopic picture is the result of a space-time sampling of the automaton onto some sites. Then, we retro-engineer a CPTP map in order to recover such probes from the bottom. Without lack of generality, we can assume that such probes are sampled onto the vertices of a space-time diamond of size N , as depicted in Fig. 6 (top-right). If we project onto the probes by brute force, at each stroboscopic time t = nN , we would have access to a state of the form:

ρ = i∈Z |E - i E + i E - i E + i |
where

E - i = |e - i,0 and E + i = |e + i,0
. We mean by brute force, killing all the fine qbits between the coarse qbits, i.e. all |e - i,j and |e + i,j for j = 1 . . . N -1. We ought to do better than that, trying to preserve the maximum of coherence shared among the fine states.

In order to formally build such a quantum channel, in the following we consider the one-particle sector of the dual GQCA, illustrated in Sec. II. 

A. Non-interacting signals

Let us start to consider a fine state composed by two qbits |ef and its density matrix ρ = |ef ef |. If our detector has a finite resolution, we may expect that two close enough qbits are not well discriminated; for instance, it could not be good enough to distinguish the states |01 and |10 . At a higher level both states could be mapped to the state |1 . Such a coarse-graining is somehow arbitrary but in the case in which the channel is quantum, the map has to be trace preserving and completely positive [START_REF] Nielsen | Quantum computation and quantum information[END_REF]. The first condition translates in demanding that the population terms are preserved:

Λ (|00 00|) = |0 0| ; Λ (|01 01|) = |1 1| ; Λ (|10 10|) = |1 1| ; Λ (|11 11|) = |1 1| .
Let us consider that coherence terms are transformed as follows:

Λ (|01 00|) = a|1 0| ; Λ (|10 00|) = a|1 0| ; Λ (|11 00|) = a|1 0| ,
with a being a constant that we aim to constrain. The associated Choi matrix is a block matrix, with blocks (i, j), Λ(|i j|), i, j being the element of the computational basis:

C Λ =             1 0 0 0 0 a 0 0 0 a 0 0 0 a 0 0 0 0 a * 0 0 0 0 1 0 0 0 0 a * 0 0 0 0 0 1 0 0 0 a * 0 0 0 0 0 0 1             . (4) 
Its non-null eigenvalues are λ = 1, 1, 1 ± √ 3aa * and they must be positive. Consequently,

|a| ≤ 1/ √ 3,
which defines an upper bound for the coherence coefficients.

Note that the choice a = 0 translates in a projection onto the coarse states.

If we consider a more general coarse-graining onto L coarse states, where each coarse state corresponds to N fine states, matrix (4) reads

C Λ     1 N a • • • a a * 1 N • • • a . . . . . . a * a * . . . 1 N     .
The Choi matrix is now a block matrix whose L blocks have dimension N ×N and a is a block filled with a. Notice that we choose this particular form because we would like a Λ which is invariant by permutation or translation of the coarse-states. Again it must be positive. In particular, for a = 0 its eigenvalues are all positive; to study the general case, we use their analyticity in a and we look for a null eigenvalue; this is equivalent to studying the L × L matrix:

    1 N a • • • N a N a * 1 • • • N a . . . . . . N a * N a * • • • 1     .
After simple algebra, it is straightforward to verify that the spectrum of the above matrix is positive for a small set of a(N ) encompassing 0, and that the maximum value coincides with a max = 1/N. Let

ρ = i,j c ij |s i s j |
be a fine grained density matrix and Λ be the uniform coarsegraining that gives the largest coherence; then

ρ Λ -→ i,j cij|Λsi Λsj|, cij = cij if Λsi = Λsj, cij/N otherwise.
This shows that coarse-graining a quantum state reduces coherence and, then, the quantumness of the system. One can estimate this loss: coherence is divided by the cardinal N = #Λ -1 ; it is as if the coherence of the coarse state were shared among its N fine states. Notice that this does not depend on L and this is also composable with respect to the iteration of coarse-graining.

Finally, we may also interpret the above result as the N possible positions a signal ψ can take going through two coarse qbits: we cannot distinguish these trajectories as depicted in Fig. 7.

Notice that, in the formal limit for N → ∞, the dynamics describes a fully classical cellular automata, where the rightand left-moving coarse signals are completely decoupled.

The most interesting case is for finite N , where the effect of this coarse-graining map translates in renormalizing the coupling parameter m, embedded in the coherence terms of the density matrix, by a factor N . In the following we focus on the case for ε 1. Let us consider the evolved state in Eq.( 2), with φ = 0, starting from a single ψ+ localized at fine position j. At first order in ε, at time nN , the evolved state is:

| ψ (nN ) = | ψ+ n,j + εm n i =1-n N -1 j =0 | ψ- i ,j
where in the 0 -1 gauge

| ψ+ i,j = i <i,j |e - i ,j = 0, e + i ,j = 0 i >i,j |e - i ,j = 1, e + i ,j = 1 j |e - i,j = 0 ⊗ |e + i,0 . . . e + i,j e + i,j+1 . . . e + i,N -1 = 0 . . . 01 . . . 1 | ψ- i,j = i <i,j |e - i ,j = 0, e + i ,j = 0 i >i,j |e - i ,j = 1, e + i ,j = 1 ⊗|e - i,0 . . . e - i,j e - i,j+1 . . . e - i,N -1 = 0 . . . 01 . . . 1 j |e + i,j = 1 .
Now, the coarse-grained evolved density matrix reads:

Λ| ψ ψ|(nN ) = Λ| ψ+ n,j ψ+ n,j | +εm n i =1-n N -1 j =0 Λ(| ψ- i ,j ψ+ n,j | + | ψ+ n,j ψ- i ,j |) = | Ψ+ n Ψ+ n | + εm n i =1-n N 1 N (| Ψ- i Ψ+ n | + | Ψ+ n Ψ- i |) = | Ψ Ψ|(n) with | Ψ (n) = | Ψ+ n + εm cg n i =1-n | Ψ- i , m cg = m N , ε = N ε and | Ψ+ i = i ≤i |E - i = 0, E + i = 0 i >i |E - i = 1, E + i = 1 , | Ψ- i = i <i |E - i = 0, E + i = 0 i >i |E - i = 1, E + i = 1 ⊗|E - i = 0, E + i = 1 .
The new space-time length is ε, which is consistent with the fact that the probes, located on the vertices of the space-time super-cell are far N ε. Moreover, from the above equation, it is clear to recognize the very same action of the local gate V , but with a renormalized mass m cg , on the coarse-grained state space. The dynamics is simple; the coherence is caught by the mass. As one can notice, at first order in ε, this coarsegraining map leaves essentially intact the dynamics up to a renormalization factor. On the new lattice with characteristic length ε, the formal continuous limit leads to a Dirac-like equation, as in (3), with a renormalized mass m cg .

IV. CONCLUSION

We studied a color-blind QCA, following the Goldilocks rules and we characterized its dual introducing extra qbits on the edges of the spacetime diagram. Such states play the role of discrete gradient, accounting the difference, modulo 2, between neighbors qbits. We called them signals. Such entities propagate in space-time and coincide formally with quantum walkers, living on the borders between region of different color. A procedure to coarse-grain the overall microscopic system has been introduced. We first partition the spacetime diagram in cells of size N and we project each cell on some probes on the borders. The choice of the probes induces a unique quantum channel which coarse-grains the dynamics. We showed that the emergent automaton essentially behaves as the microscopic one with a renormalised mass, which scales inversely with the size of the cells, or in other terms with the resolution of the detector. The coherence shared among the microstates vanishes asymptotically with the size N of the supercells.

Moreover, we found that it is possible to formally connect the coarse states (the probes) to the signal dynamics, connecting them by a discrete analogous of the Stokes law. This yields a rigorous geometrical correspondence between the (edge) coarse-states and the microscopic (bulk) dynamics, which, we believe, deserves further investigations.

From a purely theoretical point of view, the direction is to generalize the previous results to QCA with finite interactions and large mass (m ≈ 1), as in [START_REF] Arrighi | A quantum cellular automaton for one-dimensional QED[END_REF]. We suspect that, once the interaction is turned on, the emergent dynamics will lead to non-linearities [START_REF] Correia | Macro-to-micro quantum mapping and the emergence of nonlinearity[END_REF] or diffusion terms [START_REF] Costa | Quantum-to-classical transition via quantum cellular automata[END_REF]. Moreover, the purpose is to provide new quantum simulation schemes for quantum field theories, taking into account the limited access that the observer has to the microscopic substrate. Also we may wonder whether the above results could be extended to higher dimensional space and in case of gauge field interaction. We leave it to future investigations.
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 1 FIG.1:The GQCA in one spatial dimension. Squares represents local unitary gates U applied to a qbit state.
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 2 FIG.2:The looser evolution rule. Top left we can evolve 1, via unitary transformation U1, then 2, via U2. Top right we can evolve 1 , via U 1 and 1", via U 1" , then 2, via U2. Bottom the bold line is the current state.
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 3 FIG. 3: The time evolution of the GQCA and the domain walls (bold lines) with φ = 0 and m = 0.
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 4 FIG. 4: The time evolution of the ψ's (bold lines) with φ = 0 and m = 0.
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 5 FIG. 5: One time step evolution rules of ψ. The two upper lines are for one ψ+ ; ψis mirrored.
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 6 FIG. 6: Top: evolution and states without and with graining. The initial states are the upper ones (g, d, b, a, c, f and j). N = 3. Bottom: the bold line is the current coarse-grained state.
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 7 FIG. 7: Coarse-graining of a single ψ at order . N = 3, n = 1. The many arrows should be understood as a superposition of states. N left moving states are mapped onto one coarse state.
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Appendix A: Color blindness

Color-blind cellular automata have been extensively studied in [START_REF] Salo | Color blind cellular automata[END_REF], where all cells get transformed by the same group element. The quantum analog has not been studied to the best of our knowledge. Although a complete characterization of this class of automata goes beyond the scope of this article, we will demonstrate in this section that our GQCA is colorblind and therefore subject to a global gauge invariance under transformation 0 ↔ 1.

Let us consider the gates

with the same Goldilocks rules for c s we introduced in the main part of the article. The most general unitary for the gate V reads

We compare the evolution of the particles ψ in the two possible gauges. Either the gauge is 0 -ψ -1 and the evolution is

or it is 1 -ψ -0 and the evolution is

Setting ε = 2 for simplification, we summarize these rules as:

or in the second gauge

We see that the change 0 ↔ 1 induces only phase shifts on transition rates and consequently preserves their amplitudes. There are only four possible phase shifts if we wish to change the gauge from 0 -ψ -

Now, let us look first to the single particle subspace: the total phase shift does not depend on the particular trajectories, meaning that the motion of one particle is gauge invariant. We prove it in the following.

The initial state is ψc (x, t) and the final state is ψq (x + N, t + T ) with c, q = ± and N ∈ {-T, -T + 2, . . . , T }. There are n + times ψ+ → ψand n -times ψ-→ ψ+ with

, which does not depend on a particular trajectory.

For a many particle case, the motion is gauge invariant if 2(α + β -φ) = 0. Indeed, there may be an additional total phase shift if two particles cross. To calculate this, we consider two particles, at initial time ψc1 (x 1 , t) and ψc2 (x 2 , t), x 1 < x 2 , and at final time ψq1 (x 1 , t + T ) and ψq2 (x 2 , t + T ),

If the particles do not cross, we can apply twice the previous result, remembering that one particle is in the 0 -1 gauge and the other in the 1 -0 gauge:

If they do cross at position x, we decompose the motion in four parts and, being aware that we shall apply the identity operator once, the phase shift is

The additional phase is:

it must cancel i.e., from the definitions (i), (ii), (iii) and (iv), 2(α + β -φ) = 0. This equation leads to, with s = ±1:

which is the local gate V we need to keep the trajectories of the GQCA gauge invariant. Choosing β = (φ + π)/2, we recover the local operator introduced in Eq. ( 1).

Appendix B: Stokes law

Whenever we have access to a probe, what can we infer about the microdynamics? We answer this question using the dual representation of the GQCA, introduced earlier. Indeed, the auxiliary qbit ψ, sitting on the edges of the microscopic grid, captures a local feature of the automaton. If we are able to access the probe states, then we may have enough information to describe the microscopic dynamics.

A straightforward way is to count how many ψ's go between two arbitrary probes, by integrating along edges modulo 2 the ψ's, as in Fig. 8. More formally, we obtain (B1)

Note that, the above equation may be seen remarkably as a discrete analogous of Stokes formula. Using this result, and having access to the probes, we can deduce how many ψ's we cross going from one probe to another following a path Γ, as is shown in Fig. 8. In other words, we can describe a line of fine states by its two vertices, i.e. the two probes. It turns out that this procedure coincides with a geometrical projection of the system onto its borders, which is reminiscent of the edge-bulk correspondence in quantum field theory. Also, from Eq. (B1) we may argue that parallel rays of an even number of close enough ψ's are not seen from a hypothetical detector, as is shown in Fig. 9. In this case the evolution of a probe does not depend on the fine state it represents.

FIG. 9: Graining of the evolution. The bold dots are the probes, i.e., the qbits we observe. Left: the bold lines are the fine grained motion of the ψ's. Right: the probe qbits cannot catch one of the two rays made of two parallel moving ψ's.