
HAL Id: hal-03034652
https://hal.science/hal-03034652

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and Lightweight Polynomial-based Key
Management Scheme for Dynamic Networks

Mohammed Nafi, Samia Bouzefrane, Mawloud Omar

To cite this version:
Mohammed Nafi, Samia Bouzefrane, Mawloud Omar. Efficient and Lightweight Polynomial-based
Key Management Scheme for Dynamic Networks. The 6th International Conference on Mobile, Secure
and Programmable Networking, 2020, Paris (virtuel), France. �10.1007/978-3-030-67550-9_8�. �hal-
03034652�

https://hal.science/hal-03034652
https://hal.archives-ouvertes.fr


Efficient and Lightweight Polynomial-based Key
Management Scheme for Dynamic Networks?

Mohammed Nafi1,2, Samia Bouzefrane2, and Mawloud Omar3

1 Laboratoire d’Informatique Médicale (LIMED), Faculté des Sciences Exactes,
Université de Bejaia, 06000 Bejaia, Algérie

mohammed.nafi@cnam.fr
2 CEDRIC Lab, Conservatoire National des Arts et Métiers - CNAM, Paris, France

samia.bouzefrane@cnam.fr
3 LIGM, ESIEE Paris, Université Gustave-Eiffel, Noisy-le-Grand, France

mawloud.omar@univ-eiffel.fr

Abstract. Wireless sensor networks and Internet of Things (IoT) are
part of dynamic networks as new nodes can join while existing members
can leave the system at any time. These networks mainly suffer from
severe resource constraints like energy, storage and computation, which
makes securing communications between nodes a real challenge. Several
key establishment protocols have been proposed in the literature. Some
of them are based on symmetric polynomials. However, the latter solu-
tions have some limitations, such as the resilience to node capture attacks
as well as the storage and computation overheads that are high for con-
strained nodes. In this paper, we propose a lightweight polynomial-based
key management scheme for dynamic networks. The proposed scheme al-
lows nodes to be able to establish secure communications between them,
and ensures dynamism by supporting node addition and deletion after
the setup phase. It also resists to node capture attack. The performance
evaluation shows that our scheme reduces both the storage and com-
putation overheads when compared to other related polynomial-based
protocols.

Keywords: Polynomial · Key management · Lightweight.

1 Introduction

A dynamic network can be defined as a distributed system whose topology
changes continuously over time, where new nodes join the network while ex-
isting members leave it at any time. Ad hoc networks, wireless sensor networks
and the Internet of Things (IoT) are some examples of dynamic systems since
they allow addition and removal of nodes after the deployment phase. These
networks are widely used in many application domains such as military, pa-
tient and environmental monitoring, agriculture, smart cities and smart homes,

? Supported by General Directorate for Scientific Research and Technological Devel-
opment, Ministry of Higher Education and Scientific Research (DGRSDT), Algeria.



2 M. Nafi et al.

etc. The nodes mainly share a wireless communication channel through which
they exchange messages. However, this medium is vulnerable to various types
of attacks if it is not secured. Securing such a channel should involve the use of
cryptographic keys. However, managing these keys is a complex process, due to
essentially high resource constraints of some nodes.

Several key predistribution approaches have been proposed in the literature
for dynamic networks, especially for wireless sensor networks. Some of them
rely on the use of polynomials [1–5], which allows two nodes to establish a
pairwise key between them. In these schemes, nodes generally share a common
symmetric t-degree polynomial so that any pair of nodes is able to compute the
same pairwise key by evaluating the polynomial using as input the identifier of
the other node. For instance, Blundo et al. [1] introduced a multi-variate t-degree
polynomial-based group key predistribution scheme.

The main drawback of these polynomial-based schemes is that when an ad-
versary physically captures a node, he or she may be able to access its memory
and therefore get the shared polynomial. As a result, the adversary could cal-
culate the pairwise key between any pair of nodes by evaluating the polynomial
at the identifiers of those nodes. In other words, compromising one node could
also affect other communication links between non-captured nodes.

In this paper, we propose a lightweight polynomial-based key management
scheme for dynamic constrained networks. Our scheme mainly aims to address
the aforementioned limitations of existing polynomial-based schemes. In fact,
instead of using the identical polynomial to compute all the secret keys, nodes
do not share the same polynomial in our scheme. Accordingly, compromising
a node affects the links it shares with its neighbors, but has a little influence
on those between non-compromised nodes. In addition, the proposed scheme
significantly reduces the storage and computation overheads on the constrained
node side. The main features of the proposed scheme are highlighted below:

– Our solution is more resistant to node capture attacks since nodes do not
share the same polynomial. In fact, compromising a node has a little influence
on the links between two non-captured nodes;

– It reduces the memory overhead. In fact, each node has to store (d + 1)
coefficients of a bivariate polynomial instead of (t+ 1) shares, where d is the
number of neighbors;

– It reduces the computation cost. Indeed, to be able to establish a pairwise
key, one node must evaluate only two adequate terms of its polynomial,
rather than all the terms of a t-degree polynomial as in the other schemes;

– It enables dynamism following the addition and deletion of nodes. In other
words, nodes can join or leave the network at any time. These operations
have only impact on the nodes that are in the neighborhood.

The rest of this paper is organized as follows. Section 2 discusses some existing
polynomial-based key establishment solutions. Our proposed polynomial-based
key management scheme is described in detail in Section 3. Its performance
evaluation is presented in Section 4. Section 5 concludes this paper and gives
some future research directions.



ELiPKMS 3

2 Related work

Various mathematical key predistribution schemes have been proposed in the lit-
erature for wireless sensor networks. Some schemes make use of matrices [10–12]
while others rely on polynomials [1–5]. In this section, we discuss some schemes
belonging to the latter category.

Blundo et al. [1] proposed a non-interactive multi-variate t-degree polynomial-
based group key predistribution scheme. This scheme uses symmetric polynomial
of m variables, where m is the group size. When the group has only two members
(m = 2), this scheme degenerates into a symmetric bivariate polynomial-based
scheme. To obtain the same pairwise key, a pair of nodes evaluates the polyno-
mial at the identifier of the other. This scheme is t-secure and no communication
is required between nodes during the key establishment process. However, each
node must store (t+1)(m−1) coefficients, and evaluate all the polynomial’s terms
when computing a secret key. In addition, compromising more than t nodes leads
to the compromise of the entire network.

To improve the resilience to node capture attacks, D. Liu et al. [2] proposed
a key predistribution framework based on a pool of polynomials. In this scheme,
a set of random bivariate polynomials is used instead of a single polynomial.
A subset of polynomials’ shares is assigned to each sensor. A pair of nodes
establishes a direct key if they have a common polynomial shares. Otherwise,
they compute a path key by relying on intermediate nodes. This scheme is more
resilient to compromising attacks. However, the storage overhead is increased
when compared to the previous scheme.

A. Fanian, et al. [3] introduced a key establishment protocol, called SKEP,
based on symmetric t-degree (k+1)-variate polynomials, where k is a credential.
In their scheme, the network is first divided into separate virtual hexagonal cells.
Then, each cell receives a group of sensors, which share the same symmetric t-
degree bivariate polynomial. Two members of the same cell establish a direct key,
while a pair of sensors from different groups computes an indirect key. In SKEP,
each sensor stores the polynomial shares of two distinct t-degree polynomials.
This scheme is scalable and resilient to node capture attack. However, the storage
overhead remains high when compared to some other related protocols.

J. Zhang et al. [4] proposed a key predistribution scheme for wireless sensor
networks that combines both random and polynomial-based key predistribution
schemes. Each sensor is assigned with g t-degree polynomials picked from a
pool of m elements along with their identifiers. The nodes are also given s keys
with their identifiers. Two neighbors can compute a pairwise key if they share
the same polynomial or key, or at least a key of one node is derived from the
polynomial shares of the other node. This scheme has better resilience to node
capture attacks. However, it introduces some additional storage and computation
overheads.

A polynomial-based session key establishment scheme in dynamic groups,
called NISKC, is presented by V. Kumar et al. in [5]. This scheme uses a multi-
variate t-degree polynomial, where the number of variables is equal to the group
size m. So, each node can compute the session key by putting its private value



4 M. Nafi et al.

in the polynomial. This scheme is efficient in terms of communication overhead,
and allows node addition and deletion after the deployment phase. However, the
storage and the computation costs are still high.

Authors in [6] were the first to introduce a non-interactive group key distri-
bution scheme with revocation that has the self-healing property. The key idea
is that only active members have the ability to recover the missed session keys
by combining the key shares received before and after the lost. These key shares
are complementary to each other. The scheme allows users to be able to estab-
lish a group key in an unreliable environment. In addition, it enables users to
join or leave the group as well. However, this scheme requires high storage and
communication overheads. Moreover, Blundo et al. in [7] presented an attack
against the first construction of this scheme.

Another efficient session key distribution scheme for unreliable wireless sensor
networks was proposed in [8]. The scheme has also the self-healing and revoca-
tion features as the previous one. Each user stores a t-degree polynomial with the
initial or current session identifier. From a broadcast message, each non-revoked
user is able to compute the current session key, which is in turn used to recover
the self-healing keys. The scheme reduces both the storage and the communi-
cation overheads. Moreover, authors mentioned that their scheme also ensures
forward and backward secrecy since users that join the network at a subsequent
session ignore the initial session identifier. However, authors in [9] showed that
this scheme does not really resist against forward and backward attacks.

Note that in most existing polynomial-based key establishment protocols,
nodes generally share the same t-degree polynomial. Consequently, if more than
t nodes are captured, the whole network will be compromised. Moreover, the
storage and computation overheads are considerable for constrained nodes. In
this paper, we propose a polynomial-based scheme where nodes do not neces-
sarily share the same polynomial, which makes it more resilient to node capture
attacks and efficient in terms of storage and computation overheads.

3 ELiPKMS: The proposed scheme

In this section, we present our proposed scheme, called ELiPKMS (Efficient and
Lightweight Polynomial-based Key Management Scheme), which allows nodes
to establish secure links in their neighborhood. ELiPKMS consists of six phases,
namely the setup, neighbor discovery, key generation, node addition, node dele-
tion and key refresh phases, which are described in detail in the following. The
notation used in this paper is summarized in Table 1.

3.1 Setup

The trusted server generates a bivariate symmetric 2n-degree polynomial over
the finite field F (q), where n represents the number of nodes in the network
during the deployment phase. The form of the obtained polynomial, let’s say
f(x, y) =

∑n
i=1 aix

iyi, and the initial network key Kn are then preloaded into
the memory of each node before its deployment.



ELiPKMS 5

Table 1. Notation

Notation Description

x, y Variables of the polynomial
i, j Identifiers of nodes i and j
ai Secret value of node i (coefficient of the polynomial)
F (q) Finite or Galois field of q elements
Kn Network key
Kij Pairwise key shared between nodes i and j
ti Neighbor table of the node i
di Degree of the polynomial of the node i
d Degree of the node (number of neighbors)

3.2 Neighbor discovery

Once the deployment is done, each node proceeds to discover other nodes that
are within its communication range. To do that, each node i generates a random
secret value, denoted ai, and then broadcasts a Hello message encrypted with
the initial network key Kn. This message contains the sender’s identifier and its
generated secret value. Each node i holds a neighbor table ti wherein it stores its
identifier along with its secret value as well as those received from its adjacent
nodes (j, aj), with j ∈ ti. At the end of this discovery phase, each node i orders
its neighbor table in ascending order of the identifiers. Afterwards, it uses the
polynomial’s form to generate its own bivariate di-degree polynomial according
to its direct neighbors, where di = 2 ∗Max(j), with j ∈ ti, as described in the
equation Eq.1.

fi(x, y) =
∑

ajx
jyj , with j ∈ ti. (1)

where aj is the secret value of the node j.

3.3 Key establishment

Two kinds of keys are used: direct and indirect keys that are established as in
the following.

Direct key When a pair of neighbors i and j want to securely communicate
with each other, they first compute a common pairwise key Kij by evaluating
only the two appropriate terms of their respective polynomials as follows:
fi(i, j) = aii

iji + aji
jjj and fj(j, i) = ajj

jij + aij
iii, where ai and aj are the

secret values of the nodes i and j respectively. As a result, both nodes obtain
the same symmetric secret key as shown in Eq.2.

Kij = fi(i, j) = fj(j, i) = Kji (2)



6 M. Nafi et al.

Path (indirect) key A node i that needs to communicate in a secure way with
a non-neighbor node j, tries to establish a key path via intermediate nodes. To
do so, the node i requests assistance from its direct neighbors by sending them
a request encrypted with the appropriate direct keys. This request contains the
identifier of the sender i as well as its secret value ai and the identifier of the
other node j. A neighbor k that receives such a request, decrypts it with the ad-
equate direct key Kki, and then checks its neighbor table to determine whether
or not the node j belongs to its neighbors. If the verification is not successful,
the message will simply be ignored. Otherwise, the intermediate node checks the
freshness of that message by comparing the received secret value ai with the one
already stored in its neighbor table. If the verification fails, the node discards
the message. Otherwise, the intermediate node computes a path key Kij for
both nodes i and j in the same way as it is performed between two neighbors
by evaluating the corresponding terms of its polynomial. After that, this key is
sent back to each of the two nodes within a response message encrypted with
the appropriate pairwise keys. Upon receiving the previous message from the
intermediate node, both nodes i and j decrypt it and store the path key Kij .
The latter nodes are then able to use this indirect key in order to establish secure
communication between them.

Example Let’s consider a network initially deployed with three nodes, as shown
in Figure 1.

1

3 2

K12	=	K21K13	=	K31

K23	=	K32

Direct	link Indirect	link

Fig. 1. Network with three nodes

After deployment, the nodes 1, 2 and 3 generate, for instance, the secret values
a1 = 11, a2 = 22 and a3 = 33 respectively. At the end of the discovery phase,
each node generates its own polynomial as follows:
As the node 1 has two neighbors, hence its polynomial contains three terms:
f1(x, y) = a1x

1y1 + a2x
2y2 + a3x

3y3.
As the degree of the node 2 is equal to one, hence its polynomial has two terms:
f2(x, y) = a1x

1y1 + a2x
2y2.

The degree of the node 3 is also equal to one, hence its polynomial has two terms
too:
f3(x, y) = a1x

1y1 + a3x
3y3.



ELiPKMS 7

The nodes 1 and 2 compute the direct pairwise key by evaluating the appropriate
two terms of their polynomials as follows:
Node 1 computes the key K12 = f1(1, 2) = a1x

1y1 + a2x
2y2 = 11 ∗ 11 ∗ 21 + 22 ∗

12 ∗ 22 = 110.
Node 2 computes the keyK21 = f2(2, 1) = a2x

2y2 + a1x
1y1 = 22 ∗ 22 ∗ 12 + 11 ∗

21 ∗ 11 = 110.
In the same way, both nodes 1 and 3 compute their common direct key.
Node 1 computes the key K13 = f1(1, 3) = a1x

1y1 + a3x
3y3 = 11 ∗ 11 ∗ 31 + 33 ∗

13 ∗ 33 = 924.
Node 3 computes the key K31 = f3(3, 1) = a3x

3y3 + a1x
1y1 = 33 ∗ 33 ∗ 13 + 11 ∗

31 ∗ 11 = 924.
Finally, each pair of neighbors obtains the same direct pairwise key. As a

result, they establish a secure channel and can communicate securely. Further-
more, when the node 2 needs to communicate securely with the node 3 that is
not inside of its radio range, it solicits the help of the intermediate node 1. The
latter computes for them a path key as follows:
K23 = f1(2, 3) = a2x

2y2 + a3x
3y3 = 22 ∗ 22 ∗ 32 + 33 ∗ 23 ∗ 33 = 7920.

3.4 Node addition

Before deployment, a new node has to request the trusted server to obtain the
present network key Kn as well as the current polynomial’s form used by the
network members. After that, the new node generates a secret value, let’s say
an, and broadcasts a Join message that contains especially its identifier with
that secret value. The Join message is encrypted using the network key Kn. A
neighbor that receives this message uses the network key to decrypt it and up-
dates its neighbor table by inserting the identifier and the secret value of the new
node. Afterwards, it adds to its polynomial a term that corresponds to that new
node, and responds back with an acknowledgment Ack message, which contains
its identifier along with its secret value, let’s say ai. When receiving the Ack
messages, the new node updates its neighbor table in turn, and constructs its
polynomial. Finally, both the current member and the new node are able to com-
pute a common key by evaluating the adequate two terms of their polynomials
as follows: kin = fi(i, n) = fn(n, i) = aix

iyi + anx
nyn = anx

nyn + aix
iyi.

It is important to note that at each node addition, the polynomials of all
neighbors of the new node are increased by one term.

Example Let’s assume that the new node 4 joins the network as depicted in
Figure 2. During the setup phase, the node 4 is preloaded with the network key
Kn and the form of the current polynomial before its deployment in the area of
interest. Just after deploying it, that node generates a secret, let’s say a4 = 44,
then broadcasts in its neighborhood a Join message encrypted with the network
key. The nodes 1 and 2 are neighbors of the node 4, so they receive that message.
These nodes will then decrypt it and update their neighbor table by adding the
ID and secret value of the new node 4. After that, they respond back with an
Ack message containing their IDs along with their generated secret values. Upon



8 M. Nafi et al.

1

3

4

2

1

3

4

2

Join

Join

Direct link Indirect link

K14	=	
K41

K24	=	K42
K 3
4	
=	K

43

Fig. 2. Node addition

receiving the Ack messages, the node 4 decrypts them and adds the IDs as well
as these secrets a1 and a2 to its neighbor table.
The nodes 1 and 4 respectively and separately compute their direct pairwise key
as follows:
K14 = f1(1, 4) = a11141 + a41444 = 11 ∗ 1 ∗ 4 + 44 ∗ 1 ∗ 256 = 11308.
K41 = f4(4, 1) = a44414 + a14111 = 44 ∗ 256 ∗ 1 + 11 ∗ 4 ∗ 1 = 11308.
Note that nodes 1 and 4 obtain the same pairwise key: K14 = K41.
The nodes 2 and 4 respectively and separately compute their direct pairwise key
as follows:
K24 = f2(2, 4) = a22242 + a42444 = 22 ∗ 4 ∗ 16 + 44 ∗ 16 ∗ 256 = 181632.
K42 = f4(4, 2) = a44424 + a24222 = 44 ∗ 256 ∗ 16 + 22 ∗ 16 ∗ 4 = 181632.
Note that nodes 2 and 4 also get the same direct pairwise key: K24 = K42.
Moreover, the nodes 3 and 4 are also able to secure their communications by
using the path key K34, which can be computed by the intermediate node 1.

3.5 Node deletion

When a node is compromised or leaves the network with its willingness, all its
neighboring nodes carry out the following operations:

– Update their neighbor tables by removing the entry corresponding to the
leaving node;

– Delete the polynomial’s term of that node;
– Erase the pairwise key they share with that node.

It is important to notice that at each node deletion, the polynomials of all
nodes adjacent to the outgoing node, are decreased by one term.

3.6 Key refresh

To counter some kinds of security attacks, the network key and the established
pairwise keys must be periodically refreshed. To do so, the server node regularly
generates a new network key K ′n, and chooses a completely different symmetric
polynomial’s form. The latter are then transmitted to the network members in a
secure way. Upon receiving these new security parameters, all members replace



ELiPKMS 9

the old network key and use the received polynomial’s form to generate their new
symmetric bivariate polynomials. After that, they use the obtained polynomials
to compute the new pairwise keys and erase the old keys afterwards.

4 Performance evaluation and comparison

To evaluate the performance of the proposed scheme, we focus primarily on ef-
ficiency metrics such as the storage and computation overheads. We compare
ELiPKMS with the polynomial-based protocols [3], [4], and [5] described in Sec-
tion 2. The simulations are developed using MATLAB environment [14]. The
nodes are randomly deployed in a square area of 100 m2. The network size
ranges from 10 to 100 nodes. Each node is equipped with a communication ra-
dio with a range equal to 10 m. We assume that the number of polynomials
picked from the polynomial pool is equal to one (g = 1) in [4], while the t-degree
polynomial used in [5] is bivariate. Note that these two last parameters are set
to their minimum values. The simulation parameters are summarized in Table
2.

Table 2. Simulation parameters

Parameter Value

Network area 100 m × 100 m
Radio range 10 m
Network size varies from 10 to 100 nodes
F (q), F (q′) Finite fields of 100 elements each
Polynomials’ degree t = 10
Number of selected polynomials g = 1
Number of polynomials’ variables m = 2

4.1 Storage overhead

In the simulations, we are interested in the storage space occupied by both poly-
nomials shares and their identifiers (IDs). We assume that these coefficients and
IDs are chosen from two pools of 100 elements each. Moreover, the polynomial
degree is set to 10 in the other schemes. Figure 3 shows the storage overhead in
function of the network size. We can clearly see that the memory space required
to store polynomials’ shares and IDs increases with increasing the number of
nodes in the network. However, ELiPKMS requires less storage cost when com-
pared to the other schemes. This is because in ELiPKMS, each node needs to
store (d + 1) polynomial’s coefficients, whereas in the other schemes, each node
must save at least (t + 1) polynomial’s shares. Accordingly, the total storage
space is considerably reduced in our scheme.



10 M. Nafi et al.

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2
·104

Network size

S
to

ra
g
e

ov
er

h
ea

d
(B

it
s)

ELiPKMS

[3]

[4]

[5]

Fig. 3. Storage overhead vs. network size (t=10, g=1)

4.2 Computation overhead

In the experiments, we focused on the computation cost in terms of the number
of polynomials’ terms evaluated when each node establishes one pairwise key.
Figure 4 illustrates the computation overhead depending on the network size.
From the figure, we note that ELiPKMS largely outperforms the other schemes.
This is due to the fact that unlike the most existing polynomial-based schemes
where a node evaluates all the terms of the same t-degree polynomial in order to
compute one pairwise key, in our scheme, each node needs to evaluate only two
adequate terms of its polynomial. In this way, ELiPKMS significantly reduces
the computation cost at the constrained node side.

4.3 Comparison

A fair comparison between our scheme and the related works discussed in Section
2 is shown in Table 3. This comparison is made according to the storage and
computation overheads. As mentioned before, the storage cost is estimated based
on the memory space occupied by polynomials’ coefficients and identifications,
while the computation overhead is related to the number of polynomials’ terms
evaluated during the pairwise key establishment. According to [13], each node
has to store (t + 1)(m−1) coefficients for a t-degree polynomial of m variables.
We have assumed that the polynomial shares are chosen from the same finite
field F (q), and the identifications are selected from F (q′), with q and q′ are two
large numbers. The value s represents the number of communication sessions
considered in [6].



ELiPKMS 11

10 20 30 40 50 60 70 80 90 100

500

1,000

1,500

2,000

Network size

C
o
m

p
u
ta

ti
o
n

ov
er

h
ea

d

ELiPKMS

[3]

[5]

Fig. 4. Computation overhead vs. network size (t=10, m=2)

Table 3. Comparison

Scheme Storage Computation

[1] (t + 1)(m−1) ∗ log q (t + 1)(m−1)

[2] s′(t + 1) ∗ log q + s′ ∗ log q′ (t + 1)
[3] 2(t + 1) ∗ log q (t + 1)
[4] g(t + 1) ∗ log q + g ∗ log q′ ≤ (t + 1)

[5] (t + 1)(m−1) ∗ log q (t + 1)(m−1)

[6] s ∗ (t + 1) ∗ log q (t + 1)
[8] (t + 1) ∗ log q ≥ (t + 1)
ELiPKMS (d + 1) ∗ log q 2

5 Conclusion

In this paper, we have proposed an efficient and lightweight polynomial-based
key management scheme in dynamic networks with high resource constraints.
Compared to existing polynomial-based protocols, our proposed scheme ELiP-
KMS significantly reduces the amount of key material stored in the memory of
each node as well as the computation overhead since the number of multiplica-
tions and additions operations required to generate a pairwise key is reduced.

As future work, we first intend to assess the energy consumption of the
proposed scheme during communication and computation operations, and then
expand the security analysis by including a formal verification using AVISPA tool
[15], in order to check whether this scheme resists well to some known attacks
and satisfies the secrecy, integrity and authentication properties.



12 M. Nafi et al.

References

1. Blundo, C.: Perfectly-secure key distribution for dynamic conferences. Annual in-
ternational cryptology conference, Springer, 471–486 (1992)

2. Liu, D.: Establishing pairwise keys in distributed sensor networks. ACM Transac-
tions on Information and System Security (TISSEC), 41–77 (2005)

3. Fanian, A.: An efficient symmetric polynomial-based key establishment protocol
for wireless sensor networks. ISeCure-The ISC International Journal of Information
Security, 89–105 (2010)

4. Zhang, J.: Key establishment scheme for wireless sensor networks based on poly-
nomial and random key predistribution scheme. Ad Hoc Networks, Elsevier, 68–77
(2018)

5. Kumar, V.: Polynomial based non-interactive session key computation protocol
for secure communication in dynamic groups. International Journal of Information
Technology, Springer, 283–288 (2020)

6. Staddon, J.: Self-healing key distribution with revocation. In: Proceedings 2002
IEEE Symposium on Security and Privacy. pp. 241–257. IEEE, (2002)

7. Blundo, C.: Design of Self-Healing Key Distribution Schemes. Designs, Codes and
Cryptography 1(32), 15–44 (2004)

8. Mukhopadhyay, S. : Improved Self-Healing Key Distribution with Revocation in
Wireless Sensor Network. In: 2007 IEEE Wireless Communications and Networking
Conference (2007).

9. Daza, V.: Flaws in some self-healing key distribution schemes with revocation. In-
formation processing letters, 523–526. (2009)

10. Nafi, M.: Matrix-based key management scheme for IoT networks. Ad Hoc Net-
works, Elsevier, vol. 97, p. 102003 (2020)

11. Blom, R.: An optimal class of symmetric key generation systems. Workshop on the
Theory and Application of Cryptographic Techniques, Springer, 335–338 (1984)

12. Du, W.: A key management scheme for wireless sensor networks using deployment
knowledge.IEEE INFOCOM 2004, IEEE, vol. 1 (2004)

13. Harn, L.: Predistribution Scheme for Establishing Group Keys in Wireless Sensor
Networks.IEEE Sensors J., vol. 15, no. 9, pp. 5103–5108 (2015).

14. MathWorks, https://www.mathworks.com/. Last accessed 20 August 2020
15. Armando, A.: The AVISPA tool for the automated validation of internet security

protocols and applications. In: International conference on computer aided verifica-
tion, pp. 281–285. Springer, (2005)


