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Abstract
This paper deals with the computation of d-dimensional multicriteria shortest paths. In a weighted
graph with arc weights represented by vectors, the cost of a path is the vector sum of the weights of
its arcs. For a given pair consisting of a source s and a destination t, a path P dominates a path Q

if and only if P ’s cost is component-wise smaller than or equal to Q’s cost. The set of Pareto paths,
or Pareto set, from s to t is the set of paths that are not dominated. The computation time of the
Pareto paths can be prohibitive whenever the set of Pareto paths is large.

We propose in this article new algorithms to compute approximated Pareto paths in any dimension.
For d = 2, we exhibit the first approximation algorithm, called Frame, whose output is guaranteed
to be always a subset of the Pareto set. Finally, we provide a small experimental study in order to
confirm the relevance of our Frame algorithm.

2012 ACM Subject Classification Theory of computation → Shortest paths; Applied computing →
Multi-criterion optimization and decision-making

Keywords and phrases Pareto set, multicriteria, shortest paths, approximation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.11

Funding This study has been supported by the ANR project DESCARTES (ANR-16-CE40-0023).

1 Introduction

1.1 Context and Motivation
Computing a shortest path is a classical problem and it has been widely studied for one
criterion. However, in a transportation network for example, one is often interested in
finding a path minimizing several criteria like the duration, the financial cost, or the physical
effort. The list of potentially interesting criteria gets even larger with the development of
multimodal and public transportation systems, when a traveler can walk, take a taxi, a plane,
a train within a journey. For instance, the number of connections [6] matters especially
when time tables are uncertain. Even time might have different facets: in temporal graphs,
it is different to minimize arrival time and traveling time [8, 25]. More generally, people
want to get personalized answers taking simultaneously into account several criteria, that
is handling several cost functions. For a given path of cost (c1, c2, . . . , cd), the first natural
approach consists in computing a linear combination of the costs, that is

∑
1≤i≤d αici, for

some coefficients αi. Then any algorithm dedicated to shortest path computation for one
criterion can be used. This approach has several drawbacks: how to set up the αi’s? Does
such a formula have a semantic meaning?

A first immediate property drops whenever a multiple cost function is considered: the
“smallest” cost is no more unique. Taking a helicopter to reach a destination is much quicker
than walking but it is also much more expensive! We can also think of other paths with

© Nicolas Hanusse, David Ilcinkas, and Antonin Lentz;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 11; pp. 11:1–11:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.ATMOS.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


11:2 Approximate Multicriteria Shortest Paths

other transportation vehicles that are all incomparable for the two criteria time and price.
A set of paths representing all incomparable “best” costs is called a set of Pareto paths1
and reflects the variety of smallest costs. A Pareto set can be exponentially large even for
bounded degree graphs and two criteria [10]. As a consequence, the computation may take a
lot of time and require an significant amount of space. Besides, in practical settings, users
do not want to get thousands of propositions. To reduce the size of a Pareto set, the notion
of (1 + ε)-Pareto set1 has been proposed and proved to always exist even with the constraint
of having a polynomial size in n [18].

Dijkstra-based algorithms for multiple criteria, called in this paper MC Dijkstra, also
called Multicriteria Label Setting (MLS)2, have been proposed in order to compute exact
Pareto sets for two [10] or more dimensions [15]. Whenever the criteria are correlated and
the distance between the source and the destination is small, Pareto sets tend to be small.
For instance, for 10K vertices, using as criteria time and distance, the existing solutions are
practical.

However, these algorithms are not scalable in practice: without any preprocessing, it
takes a few seconds to solve a query in a network of 18 millions vertices modeling western
Europe [2] for queries with only one criterion. Informally, even for a city like Prague with
65K nodes, for a given pair of source and destination, an exact Pareto set often contains
thousands of paths for three criteria [11] and its computation may take around 10 minutes.
Since a query can require to store all the incomparable paths for one source, the amount of
memory can be a thousand times larger than the storage of the graph itself.

In order to compute queries on large graphs and to limit the number of optimal paths
proposed to users, the approximation of Pareto sets is promising. The main difficulty is that,
even if the output may be quite small, the existing algorithms require a large working memory,
and very little is known about the time and the memory of computing (1 + ε)-approximations
of Pareto sets. To speed up the queries for one criterion, preprocessing algorithms are
presented in the survey [2] but it is not obvious that all of these techniques can be efficient
for multicriteria queries.

1.2 Problem Description and State of the Art

1.2.1 Exact and Approximated Pareto Sets
The input of our problem is a weighted directed graph G = (V,A) of n vertices and m arcs
defined on d criteria, and a source vertex s. The graph may contain multiple arcs and loops.
The weight w(a) of an arc a is a d-dimensional vector whose values belong to the range
{0} ∪ [1, C], the components of the arc weights being normalized and bounded by some
common value C. The cost c(P ) = (P1, . . . , Pd) of a k-hop path P = a1, . . . , ak is the vector
sum

∑
1≤i≤k w(ai).

A path P dominates a path P ′ if Pi ≤ P ′i for every i ∈ {1, . . . , d}. A Pareto set of a set T
of paths is a set of incomparable3 paths from T , that are not dominated by any other path
from T with a different cost, and which is maximal by inclusion. In particular, if several
paths of T have the same cost, then at most one is kept in a Pareto set of T . Notice that
if S is a Pareto set of some set T , then the Pareto set of S is S itself. The Multicriteria

1 A formal definition will be given in Section 1.2.1.
2 The letters M and S may also stand for “Multiobjective” and “Scheme” respectively.
3 w.r.t. dominance
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(a) {B, D} is a 2-Pareto set. (b) Regions containing the incomparable paths
2-covering B.

Figure 1 Pareto sets and Covering.

Shortest Path problem consists in finding, for each vertex v ∈ V , a Pareto set Sv of the set of
all paths from s to v. We use the notations Sv = |Sv| and S =

∑
v∈V Sv. The values Sv and

S do not depend on the actual choices of the sets Sv, since these values derive from the size
of the unique Pareto set of the path costs.

A path P (1 + ε)-covers a path P ′ if Pi ≤ (1 + ε)P ′i for every i ∈ {1, . . . , d}. A (1 + ε)-
Pareto set of a set T is a set Sε of incomparable paths from T , such that any path of T is
(1 + ε)-covered by a path in Sε. In particular, a 1-Pareto set is a Pareto set and vice versa.
Then, the (1 + ε)-approximated Multicriteria Shortest Path problem consists in finding, for
each vertex v ∈ V , a (1 + ε)-Pareto set Sv,ε of the set of all paths from s to v.

A solution (Sv,ε)v∈V to the (1 + ε)-approximated Multicriteria Shortest Path problem
is said to be Pareto compatible if and only if Sv,ε is a subset of a Pareto set Sv, for every
vertex v. This property is useful since it guarantees that the size Sε of the output of an
approximation algorithm is always at most S. In Fig. 1a, S = {A,B,C,D,E, F} is a Pareto
set of all the paths, whereas {B,D} is a 2-Pareto set. The two quadrants bounded by the
dashed lines represent the areas 2-covered by B and D. Note that there may be various
(1 + ε)-Pareto sets when ε > 0. For example the set {G,D} is also a 2-Pareto set even though
G /∈ S.

To solve the Multicriteria Shortest Paths problem, Hansen [10] proposes a generalization
of Dijkstra’s algorithm with two criteria. This algorithm has then been generalized to
any number of criteria in [15]. The bicriteria algorithm proposed by Hansen operates in
O(mnC log(nC)) time. In [3], it is proved that the standard MC Dijkstra for the one-to-all
query in dimension d has time complexity O(nS2) and uses O(nS) space when there are no
multiple arcs. Although S can reach Θ(n(nC)d−1), it is very unlikely in practice to get such
a size.

It is also interesting to observe that exact Pareto sets are not always large in practice,
especially if the criteria are correlated. In [17], Pareto sets sizes are often smaller than 100
for real graphs and synthetic graphs with a random weight assignment. However, when
the number of criteria grows and some are negatively correlated, Pareto set sizes can be
unpractical. Some examples can be found in [1]. An experimental comparison of methods
are presented in [19] on grids and road networks up to 300K nodes. It does not exhibit which
algorithm is the best in practice for exact Pareto sets.

ATMOS 2020



11:4 Approximate Multicriteria Shortest Paths

Papadimitriou and Yannakakis show that for any multiobjective optimization problem,
there exists a (1+ε)-Pareto set (Sv,ε)v∈V of polynomial size in n even if C is exponential in n.

In our context, they show that Sv,ε can be in O
((

log(nC)
ε

)d−1
)
. It means that the output

can be quite small but the difficulty is still to limit the time and the memory space during the
computation. For d = 2, Hansen [10] proposes a solution applying m times MC Dijkstra
on the initial graph. In a similar fashion, Warburton [24] gives an algorithm for any d, calling
an exact algorithm several times. This algorithm could require less MC Dijkstra iterations
than Hansen’s, but this number is still claimed in [4] to be too huge in order to be competitive
in practice. Wang et al. develop in [23] a new algorithm called α-Dijkstra, pruning path
with a variable severity, depending on the number of best paths kept at a certain stage of
the algorithm. This algorithm is limited to d = 2. Tsaggouris and Zariolagis [21] propose

a Bellman-Ford-based algorithm TZ operating in O

(
nm

(
n log(nC)

ε

)d−1
)

time. Inspired

from TZ, Breugem et al.[3] proposed a Dijkstra-based algorithm, called Hydrid, running

in O
(
n3
(

n log(nC)
ε

)2d−2
)

time. They made an experimental comparison between the two

approximated Pareto sets computations and the standard MC Dijkstra. The new hybrid
algorithm is efficient and sometimes outperforms MC Dijkstra whenever Pareto sets are
very large. It is also interesting to notice that TZ does not prune a lot of explored paths. It
means that it can be much worse than MC Dijkstra for small Pareto sets. An attempt
to unify Djikstra and Bellman-Ford-based algorithms is addressed by Bökler et al. in [4],
containing TZ, Hydrid and new variants.

If we allow a light preprocessing, NAMOA* [13, 14] is a generalization of the well-known
A* search algorithm to the multicriteria setting, meaning that it is dedicated to one-to-one
requests. The difficulty here is the estimation of a guaranteed lower bound h(v) for the
d dimensions. For large and real graphs, the computation time of the algorithms with
guarantee can be too long. Some heuristics have been proposed and speed up drastically the
computation time [11] but without any guarantee.

Other attempts have been done to summarize Pareto sets [1, 20]. A linear path skyline,
defined as a subset of conventional Pareto sets, is a set of paths optimal under a linear
combination of their cost values. Multicriteria being especially relevant in a multimodal
setting, a different approximation definition has been proposed in [5]. This paper proposes
to summarize a Pareto set by the paths such that their projection on two specific criteria
(arrival time and number of trips) are additively not far from an optimal one.

1.3 Contributions

In this article, we propose two algorithms, called Sector and Frame, computing guaranteed
(1 + ε)-Pareto sets Sε =

⋃
v∈V Sv,ε. Frame is a variant of Sector optimized in dimension 2.

It guarantees the Pareto compatibility property and thus outputs a set which cannot be
larger than the exact Pareto set size, while having a worst case time complexity lower than
or equal to MC Dijkstra’s one.

In Table 1, we focus on the one-to-all query in simple graphs, and the computation time
is expressed in the output sensitive complexity, ∆ being the maximal degree.

In approximation algorithms, Sε denotes the size of the output, which is a (1 + ε)-Pareto
set. It can be much larger than S∗ε , the minimum cardinality of a (1 +ε)-Pareto set. However,
starting from Sε, a linear time algorithm can output S ′ε ⊆ Sε such that S′ε = O(S∗ε ).
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Table 1 Our results.

Output sensitive complexity O(·) Pareto compatible Ref.
MC Dijkstra ∆S2 X [10, 3]
Sector ∆Sε logd−1(∆Sε) Theorem 8
TZ n∆Sε [21]
Hydrid ? [3]
MC Dijkstra (d = 2, 3) ∆S log(∆S) X Proposition 1
Frame (d = 2) ∆Sε log(∆Sε) X Theorem 18
Hydrid (d = 2) nS2

ε ≤ n2S3 [3]

Since Frame is Pareto compatible, we have Sε ≤ S for that algorithm. Thus we can hope
that its computation time is in practice significantly smaller than the one of the best MC
Dijkstra algorithm in 2D. Hybrid [3] and TZ [21] are not Pareto compatible. However, for
d = 2, Sε(Hydrid) ≤ nS. More generally, for d ≥ 3, it is a priori impossible to claim what
is the smallest output among Sε(Sector), Sε(Hydrid), Sε(TZ) and S(MC Dijkstra).

For integer arc weights, the output size Sε of Sector is in O
(
d(nC)d−1 log1+ε(nC)

)
.

We can observe that whenever C is moderate, Sector provides smaller upper bounds on the
time complexity than TZ. To make a simple comparison with ∆ = Θ(1), if C ≤

(
n

d2εd−2

) 1
d

then Sector has a smaller known upper bound on its time complexity than TZ. For instance,
if d = 2, it is the case if C = O(

√
n). Furthermore, if C = Θ(1), then TZ upper bound is

Ω(n2) times Sector’s one.

2 Preliminaries

Notations and Remarks

A path is a sequence of arcs a1, . . . , ak such that, for all 1 ≤ i < k, the destination of ai is the
source of ai+1. The source of a path P = a1, . . . , ak is the source of a1 and its destination is
that of ak. In this paper, all paths have the same source s. Notice that if P = a1, . . . , ak is a
path and ak+1 is an arc whose source is the destination of ak, notation P · ak+1 stands for
the path a1, . . . , ak, ak+1, defined by the extension of P by ak+1.

For a path P of cost c(P ) = (P1, P2, . . . , Pd), its rank is defined as rank(P ) =
∑

1≤i≤d Pi.
For legibility reasons, each arc rank is strictly positive in our algorithms descriptions.

Let P = a1, . . . , ak and P ′ = a′1, . . . a
′
k′ be two paths sharing the same source and

destination. If rank(P ) > rank(P ′) then P cannot dominate P ′. Depending on ε > 0,
P could however (1 + ε)-cover P ′. In Fig. 1a, rank(G) = 21 and rank(B) = 18 but G
2-covers B.

Pareto Set Computation

Depending on the context, maximal or minimal vectors, Pareto sets (mathematics) or Skylines
(data-mining) are different names of the same notion. In the offline setting, the whole set
of n points on which we want to compute a Pareto set is given at the beginning. If S is
the Pareto set size, the computation can be done in O(nS) time and can drop to O(n logn)
for d = 2 and O(n logd−2 n) for d > 2 [12]. However, these methods cannot be used in an
online setting, i.e., if the points are processed one by one. As explained later in Section 3.1,
it means that these methods are not relevant for MC Dijkstra.

ATMOS 2020



11:6 Approximate Multicriteria Shortest Paths

Domination and Covering Checking

Checking if a given point P is (1 + ε)-covered by a point in a set S, not necessarily being a
Pareto set, can be done using range queries in dimension d.

Given a cartesian product of intervals I = [x1, x
′
1]× [x2, x

′
2]× . . .× [xd, x

′
d] and a point

set S, RangeQuery(I,S) reports every point Q in S ∩ I. We use such queries to test (1 + ε)-
coverings or finer properties. Note that in our case, we do not require to report every point in
the subspace specified by the intervals but just to learn if there is at least one point. A point
set S of n points can be preprocessed in O(n logd−1 n) time so that any range query and

thus any (1 + ε)-covering (or similar) checking can be done in O
((

log n
log log n

)d−1
)

time [16].

3 General Algorithms

3.1 Reminder on MC Dijkstra
MC Dijkstra overview

The MC Dijkstra algorithm follows Dijkstra’s one, adapted to the case of multiple criteria.
In that case, the goal is to obtain a Pareto set from s to v for each vertex v. For this reason,
the algorithm maintains a set T of paths rather than vertices. This set is initialized with the
empty path from s to s. Also, for each vertex v, the algorithm maintains a candidate Pareto
set Sv, initialized to the empty set.

Similarly as in the single-criterion case, MC Dijkstra selects at each step the minimum
of T . More precisely, MC Dijkstra selects the path P in T which has the lexicographically
minimum cost. If v is the destination of P , then P is added to the set Sv. Again similarly,
all paths P ′ which consist of P plus one arc from the destination of P are considered. Let
w be the destination of P ′. If P ′ is dominated by a path in Sw or by a path in T with the
same destination, P ′ is discarded. Otherwise, P ′ is added to T , and any path P ′′ ∈ T with
the same destination as P ′ which is dominated by it is removed from T .

The algorithm terminates when T is empty at the end of a step. At that time, the sets
Sv contain Pareto sets from s to every vertex v. The following proposition is more or less
an agglomeration of existing results, with small adjustments in order to obtain a consistent
statement.

MC Dijkstra pseudo code

A more formal description of MC Dijkstra is given in Algorithm 1. In this algorithm, we
use the following two functions:

IsNotDominated(P,S) takes a path P and a Pareto set S as input. It returns True if
the path P is not dominated by any path in S, and False otherwise.
InsertAndClean(P,S) takes a path P and a Pareto set S as input and returns a Pareto
set of S ∪ {P}.

Correctness and complexity

MC Dijkstra algorithm solves the Multicriteria Shortest Paths problem (see [15] and [9]).
Its complexity depends in particular heavily on the parts removing dominated paths, i.e. on
the functions IsNotDominated and InsertAndClean. Nevertheless, existing papers simply
use a naive algorithm for these functions, except for dimension 2, for which [10] claims a
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Algorithm 1 MC Dijkstra overview.

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Su for every vertex u

1 begin Initialization
2 foreach u ∈ V do
3 Su ← ∅ ; Tu ← ∅ ;
4 Ts ← {empty path from s to s} ;
5 while

⋃
u∈V Tu 6= ∅ do

6 let P of destination v be the lexmin of
⋃

u∈V Tu ;
7 Tv ← Tv \ {P} ;
8 Sv ← Sv ∪ {P} ;
9 foreach (v, w) ∈ A do

10 if IsNotDominated(P · (v, w),Sw) then
11 Tw ← InsertAndClean(P · (v, w), Tw) ;

logarithmic complexity. In order to lower the complexity of MC Dijkstra, we may use the
algorithms described in Section 2 to remove paths that are dominated. For d = 2 and d = 3,
we can use online algorithms since MC Dijkstra processes elements in lexicographic order.

I Proposition 1. [partially from [10] and [3]] Let µ be the maximal number of parallel arcs
between a pair of vertices, and S be the Pareto set size. The output-sensitive time complexity
of MC Dijkstra is O(∆S log(∆S)) for d ≤ 3, and O(µ∆S2) for d > 3.

Proof. In all cases, the size of a set Tu (the subset of paths from T having the same
destination u) is upper-bounded by µS, since any path is an extension of an optimal one (a
path in some Sv), and there exists at most µ extensions of a path having the same destination.
The same reasoning leads to the fact that the union of all the sets Tu has cardinality at most
∆S.

Besides, the repeated application of Line 6 requires to efficiently store the sets Tu. The
used data structure keeps the elements in

⋃
u∈V Tu sorted. This hidden sorting in Lines 7

and 11 leads to a complexity in O(log(∆S)) when inserting or removing a vertex.
Therefore, in each of the at most ∆S iterations of the while loop, the time complexity

is upper-bounded by O(log(∆S)) (the sorting time) plus the time needed to execute the
functions IsNotDominated and InsertAndClean.

For d = 2, the proof is essentially the same as in [10]. Since in MC Dijkstra the path P
is lexicographically larger than any element in S, the function IsNotDominated(P,S) can be
computed in constant time with the algorithm in [12], instead of time O(log(µS)) by using
a tree as proposed in [10]. However, the function InsertAndClean(P, T ) has an amortized
complexity of O(log |T |) to keep the structure sorted, amortized since it may remove a lot of
paths during one call but a path can be removed only once. Anyway, the complexity in this
case is dominated by the sorting time, leading to the overall complexity O(∆S log(∆S)).

For d = 3, using the algorithm proposed in [12] and the same reasoning as in the d = 2
case, the functions IsNotDominated and InsertAndClean can be computed in logarithmic
time, leading to the same overall complexity as in the case d = 2.

For d > 3, we extend the proof for µ = 1 (simple graph) given in [3]: the dominance
relation of the current path is iteratively tested with each element of the sets Su and Tu for
some u. The latter being upper-bounded by µS, we obtain the overall time complexity in
O(µ∆S2). J

ATMOS 2020



11:8 Approximate Multicriteria Shortest Paths

3.2 Meta Rank Algorithm
Unfortunately, the efficient methods from Section 2 are not suitable in dimensions larger
than 3, since those are offline. Yet, if the paths are processed in subsets, we could apply an
offline method to each subset. For this purpose, we may group paths by rank, allowing to
have several paths with the same destination in the same group. We will then process groups
in increasing rank order, so that we keep the nice property that the “smallest” elements of
T incorporated in S cannot be dominated by paths that are discovered later. This idea to
process paths in increasing rank order is already used in [22] to compute Pareto sets.

Using this method, it is much easier to test dominance when paths are leaving the set T
rather than when they enter it, because the paths are leaving the set T in increasing rank
order, while this is not the case for their entering. Furthermore, we may take advantage of
this dominance pruning step by group to also remove some optimal paths in order to output
a smaller approximated Pareto Set. In order to implement this versatility, we propose a
meta-algorithm Meta Rank (see Algorithm 2) which uses a blackbox function called Sample.
If this function simply removes paths dominated by permanent solutions, Meta Rank solves
the exact Multicriteria Shortest Paths problem. In the following, additional properties on
Sample are defined in order to ensure that Meta Rank solves the (1 + ε)-approximated
Multicriteria Shortest Paths problem. Later on, instanciations of Sample are provided.

Algorithm 2 Meta Rank overview.

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Sv for every vertex v

1 Initialization: (∀u ∈ V Su ← ∅ ; Tu ← ∅ ) ; Ts ← {empty path from s to s} ;
2 while

⋃
u∈V Tu 6= ∅ do

3 let r be the minimum rank in
⋃

u∈V Tu ;
4 foreach v ∈ V do
5 let R be the paths of destination v and of rank r in

⋃
u∈V Tu ;

6 R′ ← Sample(R,Sv, ε) ;
7 Tv ← Tv \ R ; Sv ← Sv ∪R′ ;
8 foreach P ∈ R′ do
9 foreach (v, w) ∈ A do

10 Tw ← Tw ∪ {P · (v, w)} ;

The following theorem gives the complexity of Meta Rank, depending on Sample’s one.

I Theorem 2. Let Sε be the size of Meta Rank’s output and CSample(n, Sε,∆) be the
complexity of the repeated usage of Sample during Meta Rank. Then Meta Rank time
complexity is CSample(n, Sε,∆)+O(∆Sε log(∆Sε)). If the weights are in J1, CK, the complexity
is CSample(n, Sε,∆) +O(∆dn(nC)d−1 log(∆nC)).

Proof. In order to justify precisely the claimed complexity, we provide details about the
chosen data structures. For a better legibility, we introduce the notations T (r) (resp. T (r)

u )
as the subset of T (resp. Tu) of paths having a rank r.

The set T is a priority queue and its elements are the sets T (r). The priority is given
by r (the smaller r, the higher priority). We use a strict Fibonacci heap, guaranteeing
a constant time complexity for insertion and a O(log(∆Sε)) complexity to remove the
highest priority element.
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For a given rank r, T (r) is an array. In order to do that, a unique identifier J0, n− 1K
is given to each vertex. If the identifier of u is iu, T (r)[iu] = T (r)

u , guaranteeing a
constant worst case time complexity for accessing or removing a T (r)

u set. Whereas this
implementation is interesting in a theoretical point of view, a hash table would be more
relevant in practice for memory purpose, since T may contains only a fragment of V at
the same time. This choice would only guarantee a constant mean time complexity. A
key would be a vertex and the associated value to a key u would be T (r)

u .
The sets T (r)

u are represented as chained lists in order to obtain a constant time insertion.
S is also an array and the sets Sv are chained lists.

Given these data structures, the lines 10 and 11 (Alg. 2) are in O(log(∆Sε)), thus their
repetition are in O(∆Sε log(∆Sε)). Line 13 has an overall O(Sε) complexity. The repetition
of the loop at line 14 has an overall complexity of O(∆Sε) since the number of added path
in some Tw is upper-bounded by ∆Sε. J

3.3 Algorithms Based on Sectors

3.3.1 Elimination Criterion
It turns out that the framework provided by Algorithm Meta Rank (Alg. 2) can compute
(1 + ε)-Pareto paths, by defining an appropriate Sample function. To guarantee Algorithm
Meta Rank to output a (1 + ε)-approximated Pareto set, we require the following ε-weak
framing property.

I Definition 3 (ε-Weak framing property). A function Sample outputting R′ ⊆ R on input
(R,S, ε) satisfies the ε-weak framing property if, for every path P ∈ R \ R′, there exists
d representative paths Q(1), . . . , Q(d) in S ∪ R′ such that, for every i, Q(i)

i ≤ (1 + ε)Pi and
∀j 6= i, Q

(i)
j ≤ Pj. Furthermore, S ∪R′ is a set of incomparable paths.

Notice that if P ∈ R is dominated by Q ∈ S, it is sufficient to set Q(i) = Q for all i.
Overall, this ε-weak property guarantees that the output of Meta Rank is a (1 + ε)-Pareto
set.

I Theorem 4. With a function Sample satisfying the ε-weak framing property, Meta Rank
algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.

Proof. Let S be a Pareto set and Sa be the output of the algorithm. It is sufficient to show
that for any path P ∈ S, there exists a path Q ∈ Sa such that P is (1 + ε)-covered by Q and
rank(Q) ≤ rank(P ). By contradiction, let P ′ ∈ S be a minimal rank path not (1+ε)-covered
by any Q ∈ Sa such that rank(Q) ≤ rank(P ′). P ′ cannot be an empty path since the only
one the algorithm can process is the one from the source to itself, and being the first one to
leave T , it is inserted in S. Thus, we can write P ′ = P · e, with P a path and e the last arc
of P ′. P having an inferior rank than P · e, there exists a path Q ∈ Sa (1 + ε)-covering P .
If P is kept in Sa, then P · e is inserted in T and is either kept in Sa or removed because
of some representatives. In either cases, it is (1 + ε)-covered, which is absurd. Otherwise,
P is not kept in Sa and in particular, P 6= Q. Since rank(Q) ≤ rank(P ), there exists a
dimension i such that Pi ≤ Qi. Furthermore, Q ∈ Sa implies that it is extended and that
Q · e is inserted in T . However, Q (1 + ε)-covers P , thus Q · e (1 + ε)-covers P · e and:{

Qi + ei ≤ Pi + ei

∀j 6= i, Qj + ej ≤ (1 + ε)(Pj + ej)
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That is why Q · e cannot be in Sa. This means that Q · e is removed because of some
representative paths, among which a path R ∈ Sa, with rank(R) ≤ rank(Q · e), that satisfies:{

Ri ≤ (1 + ε)(Qi + ei)
∀j 6= i, Rj ≤ Qj + ej

Then:{
Ri ≤ (1 + ε)(Qi + ei) ≤ (1 + ε)(Pi + ei)
∀j, Rj ≤ Qj + ej ≤ (1 + ε)(Pj + ej)

Which means that P ·e is (1+ε)-covered by R. Since R is in Sa, we obtain a contradiction.
J

Two caracteristics of Sample are of particular interest: the time complexity and the
number of paths the function removes. Naive greedy algorithms are not efficient for either
of these metrics. Thus, we propose a sample algorithm guaranteeing the ε-weak framing
property, achieving a good tradeoff for the two caracteristics. Given a d-dimensional space,
we define d sectors for every path P .

I Definition 5. The i-th sector of P contains every point Q with Qj ≤ Pj for j 6= i.
Given ε, the boolean function coverSector(P,Q, i, ε) is True if Q belongs to the i-th sector
and (1 + ε)-covers P .

In Figure 1b, the two rectangles represent the incomparable part of the two sectors 2-covering
B, i.e., the points Q not dominating B satisfying coverSector(B,Q, 1, 1) = True (for instance
C, D and E), and coverSector(B,Q, 2, 1) = True respectively (such as A). For three criteria,
the Figure 2 depicts the three sectors covering a point P .

3.3.2 Sample Sector
We propose Sample Sector, an algorithm implementing the Sample function. It considers
each dimension i independently to compute a set of paths R′i ⊆ R and the output of the
algorithm is R′ =

⋃d
i=1R′i.

Let r be the rank of all paths in R, and let i be a dimension. We partition R into strips
R(l)

i , for l ∈ J0, dlog1+ε re+ 1K. R(0)
i (resp. R(1)

i ) contains the paths such that Pi = 0 (resp.
Pi = 1). For l ≥ 2, P ∈ R belongs toR(l)

i if its i-th coordinate Pi is in
(
(1 + ε)l−2, (1 + ε)l−1].

Our algorithm Sample Sector proceeds as follows: R∪ S is first preprocessed to answer
quickly range queries. Then, for every path P ∈ R(l)

i , we add P to R′i if P is not (1 + ε)-
covered in its i-th sector by a path of R∪ S in the same strip R(l)

i . This can be done using
RangeQuery([0, P1]× [0, P2]×· · ·× [0, Pi−1]× [Pi, (1 + ε)l−1]× [0, Pi+1]×· · ·× [0, Pd],R∪S).

In Figure 2, the grey z-strip contains only 6 points, the other one in the sector cannot be
used to represent P since it is outside the grey zone.

I Definition 6. Algorithm Sector is the Meta Rank algorithm (Alg. 2) using Sample
Sector.

As mentioned in the introduction, Sector solves the (1 + ε)-Multicriteria shortest path
problem. Combined with Theorem 4, the following theorem confirms that.

I Theorem 7. Sample Sector satisfies the ε-weak property when R and S are both Pareto
sets such that any path of R has a larger rank than any path of S.



N. Hanusse, D. Ilcinkas, and A. Lentz 11:11

Proof. In both Sample functions, we have to prove that if a path P of rank r has been
removed, S ∪R′ contains d paths guaranteeing the ε-weak framing property. Let us focus on
one dimension i.

If the range query returns a non empty set Q for the P ’s i-th sector of its strip, we have
two cases: (1) the corresponding subspace contains at least a permanent path in S or (2)
only contains paths of same rank. In the first case, we are sure that path P will have a
representative path in its i-th sector whereas in the second case, these paths might be not
kept in R′i. This case is not possible since the path in Q with the highest value for its i-th
coordinate is added in R′i. In both cases, if a path does not belong to R′i, then there is at
least one path in R′i ∪ S that (1 + ε)-covers P in its i-th sector.

By construction, any path P kept in Sample Sector has no representative path in at
least one of its sector in the same strip. J

The following theorem states the output-sensitive time complexity of Sector given
in Table 1, along with the space complexity and the time complexity in the special case
where weights are integers. In order to conclude, it is sufficient to compute the sum of the
complexities of the Sample Sector calls in Sector, and then to use Theorem 2.

I Theorem 8. If the arc weights are integers, the output Sε of Sector is of size Sε =
O
(
dnC(nC)d−2 log1+ε(nC)

)
. The time complexity of Sector is O(∆Sε logd−1(∆Sε)) and

the space complexity is Θ(∆Sε logd−1(∆Sε)).

Proof. Assume first that the weights are integers. Given a current rank r and a strip
R(l)

i , Sample Sector stores at most one path for every x ∈ Zd−2. Thus for every i,
|R′(l)

i | = O(rd−2). Since we have at most d2 + log1+ε re strips and d dimensions, |R′|
is smaller than or equal to d(r + 1)d−2(d2 + log1+ε re). Since we have dnC ranks, Sε =
O(d(dnC)d−1 log1+ε(dnC)).

To get bounds on CSample Sector, we have to build data structures dedicated to range
queries. The number of insertions to do before the queries is bounded by O(∆Sε). Each of

these insertions takes O(logd−1 ∆Sε) and a range query takes O
((

logSε

log logSε

)d−1
)

[16]. Then

the number of range queries is at most d∆Sε. Thus CSample Sector = O(∆Sε logd−1 ∆Sε).
From Theorem 2, we have to add O(∆Sε log(∆Sε)) time steps to get the complexity of

both algorithms assuming d is constant. Whenever the arc weights are integers we also have
∆Sε ≤ dnC. J

4 Frame (dimension 2)

4.1 Elimination Criterion
Sector could potentially return non optimal solutions. In order to guarantee the Pareto
compatibility property, we introduce a stronger property, based on the idea that the repre-
sentatives of a path have to cover themselves too. However, we will restrict the definition for
d = 2 because it is not giving satisfying results in higher dimensions.

We start by giving the formal definition of what we call being framed between two paths.
This definition is commented and illustrated afterwards.

I Definition 9 (Frame). For any paths A,P,B s.t. rank(A) ≤ rank(P ) and rank(B) ≤
rank(P ), we say that A and B frame P , or that P is framed between A and B if:

(i) A1 ≤ P1
(ii) B2 ≤ P2

(iii) A2 ≤ (rank(P )−B1)(1 + ε)
(iv) B1 ≤ (rank(P )−A2)(1 + ε)

We will note this property frame(A,P,B, ε).
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Figure 2 In 3D, the three sectors covering P

at distance at most (1 + ε) are depicted in green,
red and blue. Only 6 points are within the grey
z-strip of P .
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Figure 3 Sample Frame. The paths
P (3), P (4), P (5) and P (6) are framed by A and
B for ε = 1 (see colored regions) but not for
ε = 0.5. In this latter case, the algorithm
keeps the middle point P (5).

In the particular case where the two paths A and B have the same rank as the path P , if
frame(A,P,B, ε), then A and B match the Q(1) and Q(2) representatives of P in the ε-weak
framing property, with the additional constraint that A and B (1 + ε)-cover each other. This
definition is extended for A and B having lower ranks than rank(P ), projecting those into
the line of paths having the same rank as P . A is projected on the second dimension, B
on the first one. These projections of A and B are depicted in Figure 3 as A′ and B′. The
blue (resp. green) zone corresponds to the paths 2-covered by A′ (resp. B′). Notice that the
frame property requires the projections A′ and B′ to cover each other, but not necessarily A
and B. Thus, in this example, for 3 ≤ i ≤ 6, frame(A,P (i), B, ε) since frame(A′, P (i), B′, ε).

We define the ε-strong framing property as a particular case of the ε-weak framing
property for which the representatives of a path are framing it according to Def. 9.

I Definition 10 (ε-Strong framing property). A function Sample outputting R′ on input
(R,S, ε) satisfies the ε-strong framing property if:
∀P ∈ R \ R′, ∃A,B ∈ S ∪R′, frame(A,P,B, ε),
R′ is minimal by inclusion,
S ∪R′ is a Pareto set.

As the name suggests, the strong property is stronger than the weak one since it requires
some conditions between the representatives, as well as the minimality of the output.

I Proposition 11. The ε-strong framing property implies the ε-weak framing property.

Proof. Let Sample verifying the ε-strong framing property on inputs (R,S, ε). Let P ∈ R\R′.
There exists A,B ∈ S ∪R′ such that frame(A,P,B, ε). Since S ∪R′ is a Pareto set, we only
need to show that there exists two representatives Q(1), Q(2) ∈ S ∪R′, such that:{

Q
(1)
1 ≤ (1 + ε)P1

Q
(1)
2 ≤ P2

{
Q

(2)
2 ≤ (1 + ε)P2

Q
(2)
1 ≤ P1

Unfortunately, setting Q(1) = B and Q(2) = A is not always sufficient. We consider three
cases:

if A2 ≤ P2, then Q(1) = Q(2) = A is correct,
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if B1 ≤ P1, then Q(1) = Q(2) = B is correct,
otherwise, we take Q(1) = B and Q(2) = A. Indeed:
Q

(2)
1 = A1 ≤ P1 and Q(1)

2 = B2 ≤ P2 by (i) and (ii) (cf Def. 9),
Q

(1)
1 = B1 ≤ (1 + ε) · (rank(P )−A2) = (1 + ε) · (P1 + P2 −A2) ≤ (1 + ε)P1 by (iv)

Q
(2)
2 ≤ (1 + ε)P2 using symmetric arguments. J

The following theorem is a direct corollary of Theorem 4 and the previous proposition.

I Theorem 12. With a function Sample satisfying the ε-strong framing property, Meta
Rank algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.

Proof. Corollary of Theorem 4 and Proposition 11. J

4.2 Pareto Compatible Property
During a Meta Rank execution, a path P could be framed, then removed. Furthermore,
the extensions of the representatives could be themselves framed and removed, and so on.
We show that the extensions of P are nevertheless still framed by kept paths in the ε-strong
setting.

I Lemma 13. Let Sε be the output of Meta Rank (Alg. 2) using a Sample function
satisfying the ε-strong property. Any path P is framed by some paths A,B ∈ Sε.

Proof. For paths A,B and P , if P is framed by A and B, we note: α(P ) = A, β(P ) = B

(beware that α and β are not functions, A and B not being necessarily unique). By
contradiction, let us assume that there exist paths in the Pareto Set that are not framed by
the output. Let P ′ be such a path of minimal rank. If P ′ is an empty path, then it is the
first path seen by the algorithm, and it is kept, giving directly a contradiction. Otherwise,
we can write P ′ = P · e, with e being the last arc of P ′. We have rank(P )<rank(P · e), thus
P is framed by two paths α(P ), β(P ) ∈ Sε framing P . Notice that if P is kept, we can say
that P is framed by (P, P ). We will note: A = α(P ) · e and B = β(P ) · e. Since α(P ) and
β(P ) are kept, A and B will be considered by the algorithm but not necessarily kept.

We consider three cases:
1. If the algorithm keeps both A and B, then they frame P · e, since they have inferior ranks

and:
(i) A1 = α(P )1 + e1 ≤ P1 + e1
(ii) B2 = β(P )2 + e2 ≤ P2 + e2
(iii) A2 = α(P )2 + e2

≤ (1 + ε)(rank(P )− β(P )1) + e2
≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)e2
≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)(rank(e)− e1)
≤ (1 + ε)(rank(P ) + rank(e)− β(P )1 − e1)
≤ (1 + ε)(rank(P · e)−B1)

(iv) B1 ≤ (rank(P · e)−A2)(1 + ε) by a reasoning similar to (iii)
2. The algorithm keeps only one. W.l.o.g., we can consider that A is kept. B being removed,

it is framed by α(B) and β(B).
Either α(B)1 ≤ P1 + e1, in which case, P ′ is framed by α(B) and β(B) too. Indeed,
we have β(B)2 ≤ B2 ≤ P2 + e2 = P ′2 giving (ii). And (iii), (iv) are given by the fact
that rank(B) ≤ rank(P ′).
Otherwise A and α(B) frame P ′. Indeed,

(i) A1 = α(P )1 + e1 ≤ P1 + e1 = P ′1
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(ii) α(B)2 = rank(α(B))− α(B)1 ≤ rank(P · e)− (P1 + e1) ≤ P2 + e2 = P ′2
(iii) A2 ≤ (1 + ε)(rank(P )− β(P )1) + e2 ≤ (1 + ε)(rank(P · e)−B1) ≤ (1 + ε)(rank(P ·

e)− α(B)1)
(iv) α(B)1 ≤ B1 ≤ (1 + ε)(rank(P )− α(P )2) + e1 ≤ (1 + ε)(rank(P · e)−A2)

3. The last case corresponds to removing both A and B. As in the previous case, if
α(B)1 ≤ P1 + e1, P is framed by α(B) and β(B). Otherwise, A and α(B) frame P ′ and
we can use the same reasoning than before, replacing B by α(B).

We have proved that P ′ is framed, leading to a contradiction. J

The idea is, by contradiction, to consider, among the paths not framed, one with minimum
rank. This path cannot be empty, thus it can be written P · e, with P a path and e an arc.
By definition of P · e, P is framed. Using paths A and B framing P , we can show that their
extentions A · e and B · e are framing P · e. These extentions are either kept in Sε or in turn
framed by some paths of Sε framing P · e too.

It can be deduced from this lemma that the ε-strong property implies the Pareto compat-
ibility.

I Theorem 14. Meta Rank (Alg. 2) using a Sample function satisfying the ε-strong
property is Pareto compatible property.

Proof. By contradiction, we assume that some P ∈ Sε is dominated by some path Q. If
Q ∈ Sε, then P cannot be kept since it is processed after Q and is dominated. Therefore,
Q /∈ Sε. According to Lemma 13, there exists A,B ∈ Sε framing Q. Thus, A,B frame P ,
which would mean that P is not kept since Sε is minimal. J

4.3 Frame Algorithm
We provide an efficient algorithm for Sample: Sample Frame. The algorithm is first
presented in a simplified version, which is generalized afterwards. Let R = {P (1), · · · , P (k)}
be a set of paths of rank r. We assume the paths P (i) to be sorted in lexicographic order.

The simplified algorithm consists in finding the maximal index j such that P (1) and
P (j) cover each other. Then, ∀ 1 < i < j, frame(P (1), P (i), P (j), ε) holds, and those paths
in-between are removed. Next, the algorithm is repeated recursively on R′ = {P (j), · · · , P (k)}
until R′ contains at most two paths. The output of the simplified algorithm consists of the
set of paths from R that were not removed. See Alg. 3 for a more formal description of the
simplified algorithm.

Algorithm 3 Sample Frame Same Rank.

Input: k paths (P (1), · · · , P (k)) sorted in lexicographic order, ε > 0
1 imin ← 1 ;
2 for i = 2 to k − 1 do
3 if frame(P (imin), P (i), P (i+1), ε) then
4 Remove P (i) ;
5 else
6 imin ← i ;

In order to improve the pruning capability, paths from lower ranks are actually used
to frame current rank paths. Assume that A and B are two paths of rank lower than r

such that ∀P ∈ R, A1 ≤ P1 ≤ B1 and B2 ≤ P2 ≤ A2. Then Sample Frame performs the
following three steps:
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1. Paths from R dominated by A are removed.
2. Let A′ = (r −A2, A2) and B′ = (B1, r −B1) be projections of A and B on the current

rank r. If P (i), · · · , P (j) are the paths from R non dominated by A or B, and sorted in
lexicographic order, then the simplified algorithm is applied on {A′, P (i), · · · , P (j), B′}.

3. Paths from R dominated by B are removed.

An example of this case is depicted in Figure 3 for ε = 0.5. The first step removes P (1)

and P (2) since they are dominated by A. Then the second step computes the fact that A′
and P (5) cover each other but not A′ and P (6). Thus, P (3) and P (4) are removed too. Since
P (5) and B′ cover each other, P (6) is removed. Finally, during the third step, P (7) is removed
because B dominates it. Sample Frame’s output is {P (5)}.

Sample Frame Algorithm

In a general setting, an unordered set R = {P (1), · · · , P (k)} of paths of rank r is given as
input to Sample Frame, along with a Pareto set S of paths of rank lower than r. Algorithm
Sample Frame proceeds as follows. First, R is sorted in lexicographic order. Then, let
A = arg max

Q∈S
{Q1|Q1 ≤ P

(1)
1 } and B = arg min

Q∈S
{Q1|Q1 > P

(1)
1 }. Note that B is the path

following A in S in lexicographic order. Let j be the maximal index such that P (j)
1 < B1.

Intuitively, the paths P (1), · · · , P (j) are the paths between A and B as in the previously
described situation. Sample Frame applies the corresponding three steps to these paths.
Then, this algorithm is recursively applied on {P (j+1), · · · , P (k)}.

If A is not defined, then A′ = P (1) and the algorithm is applied to R = {P (2), · · · , P (k)}.
Symmetrically, if B is not defined, then B′ = P (k) and the algorithm is applied to
R = {P (1), · · · , P (k−1)}.

To search A and B among S efficiently, S is a balanced search tree allowing a logarithmic
time search. Similarily to Sector using Sample Sector, we can now define our algorithm
Frame using Sample Frame.

I Definition 15. Algorithm Frame is the Meta Rank algorithm (Alg. 2) using Sample
Frame.

In order to confirm that Frame is Pareto compatible, it is sufficient to verify that Sample
Frame satisfies the ε-strong property thanks to Theorem 14. Intuitively, one can see on the
example depicted in Figure 3 that any removed path is either between two consecutive (in
lexicographic order) kept paths, or dominated, thus framed by the dominating path.

I Theorem 16. Sample Frame algorithm satisfies the ε-strong framing property.

Proof. Deleted paths are always framed by kept paths. Furthermore, the output is minimal
since the algorithm is framing the largest interval possible. Finally, for A and B fixed, steps
1 and 3 remove dominated paths, guaranteeing to have a Pareto Set as output. J

Sample Frame(S,R, ε) is efficient since it processes sequencially the paths from R, and
potentially for each one of those, performs a logarithmic search through S.

I Proposition 17. Let R (resp. S) be the number of paths of rank r (resp. inferior to r).
The complexity of the Sample Frame algorithm is O(R(logR+ logS)}).

Proof. Paths of rank r are sorted in O(R logR) time. Then these paths are considered only
once and each one may require to search for A and B in O(logS) time. J
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With the previous proposition and Theorem 2, the time complexity of Frame, claimed
in Table 1, is computable by summing the complexities of each call to Sample Frame.

I Theorem 18. Let Sε be the size of the output of Frame. The time complexity of Frame
is in O (∆Sε log(∆Sε)).

Proof. For each vertex u and rank r, let T r
u be the size of the first parameter of Sample, and

S<r
u be the size of the second parameter of Sample. Then the complexity of Sample using

Sample Frame is O(T r
u(logS<r

u +log T r
u)) which is in O(T r

u(log(∆Sε))) since T r
u ≤ ∆Sε. Re-

peating this operation over each vertex and rank gives CSample(n, Sε,∆) = O(∆Sε log(∆Sε).
Furthermore, recall that adding an optimal path to the set of permanent paths costs O(logSε),
therefore the overall complexity for the line 13 of Meta Rank (Alg. 2) is O(Sε logSε). Ap-
plying Theorem 2 allows us to conclude. J

5 Is the Pareto-compatible property practically relevant ?

Although Frame is Pareto compatible, it is interesting to check whenever Sε given by Frame
is really smaller than S in practice. We run shortest path queries for d = 2 for two types of
graphs: small synthetic graphs but with large exact Pareto sets and large real-life graphs, up
to 1 millions arcs with relatively small exact Pareto sets. For these experiments, we take
ε = 1. Then, we study the impact of the variation of ε on the size of Sε. S is computed
using an optimized version of MC Dijkstra dedicated to d = 2.

Algorithms have been implemented in C++, using data structures which guarantee the
desired complexities for dimension 2. Temporary and permanent solution sets (Tu and Su)
are implemented using std::set class template. For MC Dijkstra, a global temporary
solution is used to store the minimum path of each Tu. It is also a set, and the priority list of
Meta Rank is implemented using std::map class template. The program is compiled with
g++-8 and the option -o2, since the used space can be huge. It is executed on a computer
running Ubuntu 18.04.3, having 16GB RAM and an Intel Core i7-6700 processor.

Oriented complete graphs. We use the graphs construction proposed by Breugem et al.
(see [3] for the exact description) to get oriented complete graphs −→Kn with large exact Pareto
sets (2n−2 for n vertices), and, for given n (n = 19 for us), to generate intermediate graphs
between −→Kn and the standard Erdös-Renyi random graphs. Parameter p defines the closeness
to these two extreme graphs: every arc of −→Kn is changed (removed or redirected) with
probability p. Whenever p = 0, we get −→Kn, and for p = 1, we have a pure random graph.

For this extreme case, Sε is much smaller than S for small values of p. Figure 6 shows
that Frame is at least 105 times quicker than MC Dijkstra for −−→K19 (p = 0). For p < 0, 5,
Frame is still several orders of magnitude faster than MC Dijkstra. However, MC
Dijkstra performance improves whenever p increases and that of Frame remains stable.
This is explained by S being small for p close to 1.

Real-life graphs. The previous graphs are small and dense. We now study the impact of
the number of vertices for sparse graphs. We take the graphs given by the 9th challenge of
DIMACS [7]. It offers bicriteria (distance and edge traversal time) datasets on road networks
for different USA states. On these graphs, 100 shortest path queries are performed randomly
and we report the average Pareto set size S̄u for a random destination u. We remark that
for small S̄u, Frame and MC Dijkstra performs similarly (Tab. 2), whereas for larger S̄u,
Frame has a gain of 30%.
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Su,ε.

Table 2 MC Dijkstra vs Frame on DIMACS (time in ms).

Graph Vertices Arcs MC Dijkstra Time Frame Time S̄u S̄u,1(Frame)
DC 9559 14909 79.34 76.02 4.84 4.22
RI 53658 69213 154.78 148.49 5.24 4.37
WY 253077 304014 309.18 253.28 7.73 5.31
NM 467529 567084 1333.5 1209.93 22.09 14.92
VA 630639 714809 10943.98 7475.28 62.87 48.84
NC 887630 1009846 25206.34 17637.98 66.78 49.93

Impact of ε. Up to now, we set up ε to 1. We now introduce the variation of ε = 10k

with k ∈ J−3, 1K on square grids of 10000 sommets. The arcs weights are randomly drawn
between 1 and 100. The sources and the destinations are also randomly chosen. We observe
in Figure 6 that whenever ε goes to 0, the output of Frame converges to S. For ε larger
than 1, Sε is almost constant (around 60) whereas two paths are enough to cover S. It shows
the limitation of the Pareto compatibility property of Frame.

6 Conclusion

In the current description of Meta Rank, we assume that the rank of each edge is non-null.
We can easily handle this limitation: in order to be able to consider at once all paths having
the same rank, we can add a step before applying Sample. It consists simply in extending
recursively every path with null rank arcs whenever it is possible.

In this article, we get the first approximated algorithm being Pareto compatible. It would
be interesting to provide other algorithms with this property but in dimension ≥ 3. Moreover,
Frame and Sector are promising from a practical point of view. Experiments comparing
them with the best exact and approximated algorithms would be an interesting future work.
In our experiments, we observed that Frame is always competitive with respect to MC
Dijkstra in various situations. The bigger the Pareto set, the better Frame. However,
even if Sε < S, it can be far from S∗ε . We let open the question of getting a constant
approximation of S∗ε with a polynomial time algorithm whenever C is bounded. Another
question is to get an efficient algorithm in 3 dimensions. Algorithm Sector is promising
but is not Pareto compatible, limiting the theoritical gain.
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