Karim Akilal

Mawloud Omar
email: mawloud.omar@gmail.com

Hachem Slimani
email: haslimani@gmail.com

Characterizing and using gullibility, competence, and reciprocity in a very fast and robust trust and distrust inference algorithm for weighted signed social networks

Keywords: Online social network, Trust inference, Distrust, Trust metric, Social trait

HAL is

Introduction

Motivation

Let us face it, the open nature of online social networks (OSNs) is a double-edged sword. Indeed, billions of people share knowledge and socialize thanks to this nature. Yet, because of this openness, malicious users are also able to spread misinformation and, to some extent, harm others [START_REF] Shneiderman | Building trusted social media communities: A research roadmap for promoting credible content, in: Roles, trust, and reputation in social media knowledge markets[END_REF]. People should think twice before believing, downloading, or sharing something online. They should assess the trust they are willing to put in others, for, to quote [START_REF] Robbins | What is trust? a multidisciplinary review, critique, and synthesis[END_REF], "Trust matters". It always did, and perhaps even more so today where friendship is claimed with a click on a button. The user, seemingly surrounded by thousands of friends, is sorely alone when it comes to decide what to believe and whom to trust. In such a world where information flows 1. Accuracy : When a user X has to decide if he/she can safely share something with another user Y, or to believe what Y shares, the algorithm should provide a good estimation of Y's trustworthiness. The more accurate this estimation is, the easier and the more adequate would X's decision be. 2. Robustness : Prediction often relies on prior knowledge -The more the merrier.

Predicting trust relations depends on other previously known trust relations in the network. However, some (or most) of these relations may be hidden (for privacy concerns) or simply unavailable (because of technical difficulties). A trust prediction algorithm should perform equally well, even when prior knowledge is scarce. Simply stated, robustness to network sparsity is the ability of an algorithm to still make acceptably accurate predictions despite the scarcity of prior knowledge. 3. Speed : Social networks users are flooded with information to consume, and with events that require a quick action. A mistake is often a click away. Trust prediction algorithms should be as quick as possible to provide a prediction, because a false belief is often hard to correct, and a sent message is hard to recall. Indeed, preventing a user from downloading a malware, from taking a medical advice from an impostor, or from sending sensitive information to untrustworthy recipients, requires trust recommendations that are as fast as possible.

Of course, these criteria are hard to satisfy at once. To be accurate, algorithms might need to make intricate computations, therefore be slow to return a prediction. They might also require several known trust relations to accurately predict an unknown one, hence provide poor predictions when there is less known relations to infer from. Put simply, accuracy conflicts with speed and robustness.

We believe that the best answer to this dilemma is an approach that -by designdepends on as less prior knowledge as possible -an algorithm that would need the bare minimum of known trust relations to function. Such an algorithm, if able to provide accurate predictions, will also be fast and robust to networks sparsity.

Our proposed approach, which subscribes to this design, is based on localized nodes metrics. It consists in expressing and using metrics that describe social traits that affect the way we give or receive trust. Among these traits are gullibility, competence, and reciprocity. They, definitely, influence how we usually trust (or are trusted).

These traits can be simply computed without having to perform any graph traversal; because they only depend on the direct neighbors of the involved actors in a trust relation (the trustor and the trustee). Our main hypothesis is that the most prevailing trait would have more influence on the act of trust. We thus think of these traits as forces competing to affect trust. And, indeed, the satisfying results from our experiments on four realworld datasets show that this hypothesis stands.

In addition to its simplicity, the proposed approach is not subject to the limitations of propagative approaches such as:

Trust decay: When propagated along lengthy paths, trust indeed decays [START_REF] Liu | Trust transitivity in complex social networks[END_REF], and that is quite natural. In fact, most propagative approaches tend to limit their propagation horizons to a few hops, not only because of efficiency concerns, but because of accuracy that decreases beyond some hops (Golbeck, 2005a;[START_REF] Ziegler | Models for trust inference in social networks[END_REF].

Path dependence: When inferring trust using transitivity, there might be multiple paths from a source to a sink that share some segments. This is problematic in the sense that some individuals are consulted twice (or more) (Jiang et al., 2016a). For example, say that we are trying to predict how much would node s trust another one k in a trust graph with the following paths: (s, u, k), (s, v, k), and (s, v, u, k).

The problem, in this case, is were we to explore the three possible paths from s to k, then we would consider u's opinion twice, and v's opinion just once.

Opinion conflict: One of the main aspects of trust is its subjectivity. People often have different opinions regarding others [START_REF] Massa | Controversial users demand local trust metrics: An experimental study on epinions.com community[END_REF]. Therefore, when trying to predict trust using transitivity, one might encounter some conflicts of opinions [START_REF] Jøsang | Semantic constraints for trust transitivity[END_REF]. Which opinions should we favor in these cases? Resolving opinion conflicts is still an open problem in research, and according to Jiang et al. (2016a), research in other fields, such as sociology, can be introduced to solve this challenge.

Time complexity:

Trust prediction using path discovery is time-consuming. In fact, as argued by [START_REF] Ghavipour | Trust propagation algorithm based on learning automata for inferring local trust in online social networks[END_REF], using all paths in trust inference becomes impractical as social networks are usually massive in size.

Highlights of the proposed approach

The proposed approach aims to avoid these limitations by using social traits instead of transitivity. Indeed, rather than propagating trust along paths in a trust graph, our strategy is to try to understand what affects trust by exploring some social traits of the protagonists in a trust relation (the trustor and the trustee). As suggested by Jiang et al. (2016a), one way to solve opinion conflicts in trust inference is to fully understand personal biases and features of the trustor. The present work adheres to this vision, and extends it to trustees as well. More specifically, we believe that knowing everything that makes people trust (or be trusted) should allow us to predict unknown trust values more accurately.

Some of the advantages of the proposed approach may be summarized as follows:

• Ability to predict both trust and distrust, contrary to most prediction algorithms in the literature.

• Novelty: because it does not rely on the transitivity of trust and its limitations.

• Hight efficiency: since it operates on the very direct neighbors of the trustor and the trustee.

• Robustness to network sparsity: since it uses minimal set of prior knowledge for inference.

• intuitivy: it is easy to understand and extend.

• Simplicity: it is easy to implement since it boils down to calculating euclidean distances between vectors.

We believe that these properties of the proposed approach make it a very suitable solution for trust (and distrust) prediction in social networks, thus assisting users in known whom (and how much) to trust or distrust. Such a knowledge will ultimately allows these individuals to have a healthier online presence by taking advantage of the positive aspects of social networks, and avoiding their known drawbacks.

The rest of this paper is organized as follows. In Section 2, we give a brief review of some related work. In Section 3, we start by giving definitions and mathematical representations of the three social traits (gullibility, competence, and reciprocity), then we present a simple algorithm that uses these traits to predict trust. Next, to validate our approach, we conduct, in Section 4, some experiments to evaluate the performances, the efficiency, and the robustness of the proposed approach. We discuss the results of these experiments in Section 5, and conclude this paper in Section 6 with a summary and some perspectives of future work.

Related work

Several approaches have been proposed to predict trust in social networks, some focusing on trust only, others on both trust and distrust. These approaches also differ in the way they work. According to [START_REF] Tang | Trust in social media[END_REF], some are supervised (using machine learning techniques), others are unsupervised and need no prior training. Some are supported by additional information such as interaction data among users [START_REF] Kim | Trust, distrust and lack of confidence of users in online social media-sharing communities[END_REF][START_REF] Huang | Will triadic closure strengthen ties in social networks?[END_REF], interest similarity [START_REF] Mao | A cost-effective algorithm for inferring the trust between two individuals in social networks[END_REF], or emotions [START_REF] Beigi | Exploiting emotional information for trust/distrust prediction[END_REF]. Others operate on the sole trust graph with no additional information. Some are probabilistic [START_REF] Kuter | Using probabilistic confidence models for trust inference in web-based social networks[END_REF], others are subjective logic inspired [START_REF] Jøsang | Semantic constraints for trust transitivity[END_REF], etc. For the sake of brevity, we refer the reader to, some excellent surveys such as those by [START_REF] Ruan | A survey of trust management systems for online social communities -trust modeling, trust inference and attacks[END_REF]; Jiang et al. (2016a); [START_REF] Tang | A survey of signed network mining in social media[END_REF]; and we focus hereafter on some unsupervised graph-based methods that do not require any interaction data. These approaches operate on two types of metrics: local and global ones. Local metrics describe how would a node u trust another one v. Global metrics, for their part, answer how trustworthy, or leaning to trust, is a given node [START_REF] Massa | Trust metrics on controversial users: Balancing between tyranny of the majority[END_REF][START_REF] Tang | Trust in social media[END_REF]. These families of approaches have their merits and their flaws but they ultimately aim to answer, albeit differently, the same question: "How much should a user X trust another user Y".

Local metrics trust prediction

Most local metrics approaches use trust propagation rules that were enumerated by [START_REF] Guha | Propagation of trust and distrust[END_REF]. The most common of these rules is trust transitivity, which states that if a node u trusts another one v which itself trusts a third one w, then u may trust w to some extent (Golbeck, 2005b). Among these algorithms we can cite: Tidal-Trust (Golbeck, 2005a), MoleTrust [START_REF] Massa | Trust metrics on controversial users: Balancing between tyranny of the majority[END_REF], SWTrust [START_REF] Jiang | Generating trusted graphs for trust evaluation in online social networks[END_REF], GFTrust (Jiang et al., 2016b), DLATrust [START_REF] Ghavipour | Trust propagation algorithm based on learning automata for inferring local trust in online social networks[END_REF], and many others. These algorithms propagate trust through a trust graph from a source u to a sink v. Results from different paths are then aggregated to obtain a final value that would be an estimation of how much u would trust v. Applying these approaches as-is on signed networks (those with distrust relations) is, however, not straightforward. Indeed, empirical evidence by [START_REF] Gao | Star: semiring trust inference for trust-aware social recommenders[END_REF] has shown that distrust is not transitive.

Still, distrust should not be dismissed. The need to predict distrust, and the advantages that negative links bring to social networks analysis [START_REF] Papaoikonomou | The strength of negative opinions[END_REF][START_REF] Kunegis | What is the added value of negative links in online social networks?[END_REF]) make these challenges worth addressing. In fact, many efforts were taken in this direction. For instance, in Appleseed [START_REF] Ziegler | Trust Propagation Models[END_REF], a propagative algorithm inspired by spreading activation models, trust is considered as an energy passing from nodes to their trustees, and distrust is modeled as a negative energy. Another interesting propagative approach was proposed by [START_REF] Gao | Star: semiring trust inference for trust-aware social recommenders[END_REF]. In their STAR algorithm, the authors defined a semiring (an algebraic structure) that operates on 2D values: trust (or distrust) and certainty. This semiring favors arcs with bigger certainty values and circumvents the intransitivity of distrust by simply ignoring paths with two successive negative links. Taking a different approach that does not rely on trust transitivity, [START_REF] Akilal | A robust trust inference algorithm in weighted signed social networks based on collaborative filtering and agreement as a similarity metric[END_REF] proposed a collaborative filtering based algorithm using agreement as a similarity metric to infer both trust and distrust relations by using only information from the direct neighbors of the trustors and the trustees. In addition to their time complexity [START_REF] Ghavipour | Trust propagation algorithm based on learning automata for inferring local trust in online social networks[END_REF], and as noted by Jiang et al. (2016a), propagative approaches suffer from path dependence, trust decay, and opinion conflict.

Global metrics trust prediction

Several global metrics approaches were proposed in the literature. For example, the PageRank [START_REF] Page | The PageRank citation ranking: Bringing order to the web[END_REF] and the HITS [START_REF] Kleinberg | Authoritative sources in a hyperlinked environment[END_REF] algorithms that were initially proposed to rank web pages, have been adapted to social networks [START_REF] Hu | User influence analysis for github developer social networks[END_REF][START_REF] Zhao | Ranking users in social networks with higherorder structures[END_REF]. And the EigenTrust algorithm by [START_REF] Kamvar | The eigentrust algorithm for reputation management in p2p networks[END_REF] has also known many variants [START_REF] Chiluka | Personalizing eigentrust in the face of communities and centrality attack[END_REF][START_REF] Kurdi | Honestpeer: An enhanced eigentrust algorithm for reputation management in p2p systems[END_REF]. These metrics are designed for unsigned networks, and thus ignore negative links.

As for signed networks, [START_REF] Zolfaghar | Mining trust and distrust relationships in social web applications[END_REF] proposed some metrics like the popularity and the gregariousness of a node. While taking into account links signs, these metrics do not consider their weights. Later, [START_REF] Mishra | Finding the bias and prestige of nodes in networks based on trust scores[END_REF] introduced BIAS and DESERVE. These two global metrics respectively describe the bias of a trustor, and the prestige of a trustee. Computed iteratively, they describe more or less how trust is given and received. The PageRank and the HITS algorithms were also revisited to take into account negative links (de [START_REF] De Kerchove | The PageTrust algorithm: How to rank web pages when negative links are allowed[END_REF][START_REF] Shahriari | Ranking nodes in signed social networks[END_REF]. More recently, and in the spirit of what [START_REF] Mishra | Finding the bias and prestige of nodes in networks based on trust scores[END_REF] have proposed, [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF] defined two new global metrics: FAIRNESS and GOODNESS.

The authors state that we can infer how much should a node u (dis)trust another one v, by multiplying the fairness of u by the goodness of v.

The most common argument against global metrics, as argued by [START_REF] Massa | Controversial users demand local trust metrics: An experimental study on epinions.com community[END_REF] and [START_REF] Tang | Trust in social media[END_REF], is that trust is subjective. As such, global metrics cannot describe how would a specific node u trust another one v, for v may be controversial and thus likely to be trusted differently by different nodes of the network.

The limitations of the propagative and the global-metrics-oriented approaches inspired us to propose a different approach that consists in expressing some localized node metrics that affect trust. Taken separately, these metrics are often of little use, but when involved as forces that influence the act of trust, they allow us to design a very simple algorithm that is quite reliable, very fast, and robust to network sparsity.

Naturally, there are many social traits that affect trust such as popularity, social conformity [START_REF] Li | Socially-conforming cooperative computation in cloud networks[END_REF], confirmation bias [START_REF] Zollo | Misinformation spreading on facebook[END_REF], and many other user biases [START_REF] Pavleska | User bias in online trust systems: aligning the system designers' intentions with the users' expectations[END_REF][START_REF] Braga | Survey on computational trust and reputation models[END_REF]. For the time being, our work focuses on three traits: the gullibility, the competence, and the reciprocity of individuals in a social network. However, as we will see in the next section, the proposed trust prediction algorithm is easily extensible to more traits. The considered traits and our prediction algorithm are described in more details in the next section.

Our proposed approach

As stated earlier, our approach does not rely on trust propagation. Instead, it consists in characterizing some social traits that affect trust, and then confronting them in a tugof-war like game to predict trust (and distrust).

Although there are many social traits that affect trust, we consider in this study only three of them. This choice was mainly based on their simplicity and ease of comprehension (as the reader may see in what follows). We, nonetheless, consider adding more traits to the tug-of-war game in a future work.

Notation and preliminaries

We represent a social network by a weighted directed graph, where the nodes of the graph are individuals of the network, and the arcs are trust relations between said individuals. A trust relation from a node u (trustor) to another node v (trustee) is weighted using a real value t(u, v) in the interval I = [m, M] (where m < 0 and M > 0), such that the more u trusts v, the more t(u, v) is positive, and the more u distrusts v, the more t(u, v) is negative. Table 1 summarizes the adopted notation.

Notation

Meaning G(N , E, t) A weighted directed graph G with nodes in N connected by arcs in E that are weighted using the mapping t. t (u, v) Weight of the arc going from node u to node v.

-→ Γ (u)
Set of the trustees of the node u.

← -Γ (v)

Set of the trustors of the node v. m < 0

Minimal value of trust (extreme distrust). M > 0

Maximal value of trust (extreme trust).

I Trust interval, that is [m, M]. R Trust range. R = M -m. -→ m k The vector (m, m, • • • , m) in R k of which all k components are equal to m. -→ M The vector (M, M, • • • , M) in R of which all components are equal to M. d(u, v)
The Euclidean distance between vectors u and v. g + (u)

Positive gullibility (or gullibility for short) of the node u. g -(u)

Negative gullibility (or paranoia) of the node u. c + (u)

Positive competence (or competence for short) of the node v. c -(u)

Negative competence (or incompetence) of the node v. r(u)

Reciprocity of the node u. We use Iverson Brackets [START_REF] Knuth | Two notes on notation[END_REF][START_REF] Graham | Concrete mathematics a foundation for computer science[END_REF]. This notation makes an integer (0 or 1) from a logical statement P put between brackets as follows1 :

P = 1 if P is true,
0 if P is false.

Problem definition

Let G = (N , E, t) be a directed and weighted graph representing a social network, where N is the set of nodes, E the set of arcs between nodes of N , and t : E → [m, M] a mapping that associates to each arc (u, v) a weight t(u, v) that represents the trust (t(u, v) > 0) or distrust (t(u, v) < 0) that the node u puts in the node v. Our work aims to quickly predict how much would a node u (dis)trust another node v. And that when all, or only some, other trust values are known. To simplify our narrative, we will use trust to denote both states: trust (positive values) and distrust (negative values).

Localized metrics based on social traits

Before diving into the details of our algorithm, we define hereafter three metrics that describe some social traits of nodes; namely, the gullibility, the competence, and the propensity to reciprocate trust. Definition 3.1. We say that a node u is absolutely gullible if it extremely trusts all of its trustees. i.e., ∀ v ∈ -→ Γ (u), t(u, v) = M. Similarly, we say that a node u is absolutely paranoid, if it extremely distrusts all of its trustees. i.e.,

∀ v ∈ - → Γ (u), t(u, v) = m.
These extreme cases are unlikely to exist. We use them, however, as references for estimating the gullibility and the paranoia of a node u as follows:

Gullibility

Let u ∈ N be a node, and let

- → T (u) = t(u, v 1), t(u, v 2), • • • , t(u, v n) be a vector in I n comprised of the trust values that u puts in its trustees v i ∈ - → Γ (u), i = 1, . . . , n.
The gullibility of the node u is given by the function g + : N → [0, +1] defined as follows:

g + (u) = - → Γ (u) = ∅ 1 - d - → T (u), --→ M n R √ n , where n = - → Γ (u) .
(1)

Paranoia

Similarly, we define the paranoia of a node u ∈ N , using the function g -: N → [0, +1] that is defined as follows.

g -(u) = - → Γ (u) = ∅ 1 - d - → T (u), -→ m n R √ n , where n = - → Γ (u) . (2)
The idea behind Eq (1) and Eq (2) is illustrated in Fig. 1. Simply put, the closer

- → T (u) is to to --→ M n , the more gullible u is. And the closer - → T(u) is to -→ m n , the more paranoid u is.
Remark 1. In order to make g + (u) and g -(u) values in [0, +1], the distances in Equations (1) and (2) are divided by R √ n (which is the biggest distance between two points in a n-dimensional hypercube with an edge length equal to R).

1 -1 1 -1 (M, M) (m, m) - → T (u) (A) 1 -1 1 -1 (M, M) (m, m) - → T (u) (B) 1 -1 1 -1 (M, M) (m, m) - → T (u) (C) Figure 1.
Illustration of the gullibility and the paranoia of a node u for which -→ Γ (u) = n = 2. In the case (A), we can see that

-→ T (u) is closer to -→ M 2 = (1, 1) than it is to -→ m 2 = (-1, -1)
, we thus say that u is more gullible than paranoid. The inverse can be seen in the (C) case. The special case (B) illustrates a situation where

-→ T (u) is equidistant from both vectors -→ m 2 and -→ M 2 .
Definition 3.2. We say that a node v is absolutely competent if it is extremely trusted by all its trustors. i.e., ∀ u ∈ ← -Γ (v), t(u, v) = M. And absolutely incompetent if it is extremely distrusted by all its trustors. i.e., ∀ u ∈ ← -

Γ (v), t(u, v) = m.
Using the same idea of euclidean distances to extreme values that we used to define the gullibility g + (u) and the paranoia g -(u) of a node u, we define the competence and the incompetence of a node v as follows:

Competence

Let v ∈ N be a node, and let ← -

T (v) = t(u 1 , v), t(u 2 , v), • • • , t(u k , v) be a vector in I k made of the trust values t(u i , v) that its trustors u i ∈ ← - Γ (v), i = 1, . . . , k put in it.
We describe the competence of the node v using the function c + : N → [0, +1], that is defined as follows:

c + (v) = ← - Γ (v) = ∅ 1 - d ← - T(v), -→ M k R √ k ,
where k = ← -Γ (v) .

(3)

Incompetence

Taking this time the vector -→ m k as a reference, we describe the incompetence of a node v, using the function c -: N → [0, +1], that is defined as follows:

c -(v) = ← - Γ (v) = ∅ 1 - d ← - T(v), -→ m k R √ k , where k = ← - Γ (v) . (4
) Definition 3.3. A node u reciprocates trust from another node v, if t(u, v) = t(v, u).
The propensity-to-reciprocate trust (or reciprocity, for short) of the node u may be expressed by the distance between the vector

- → T (u) = t(u, v 1), t(u, v 2), • • • , t(u, v n) (
outgoing trust from u to its trustees) and the vector

← - R(u) = t(v 1 , u), t(v 2 , u), • • • , t(v n , u
) (incoming trust to u from its trustees). The reciprocity of the node u is described using the function r : N → [0, +1] that is defined as follows:

r(u) = - → Γ (u) = ∅ 1 - d - → T (u), ← - R(u) R √ n ,
where n = -→ Γ (u) .

(5)

Predicting trust using these metrics

Let u, v be two nodes in N . We consider that the value t(u, v) is influenced by these social traits that we have defined. This idea is supported by the following observations:

1. The more gullible u is, the more likely that t(u, v) will be equal to M.

2. The more paranoid u is, the more likely that t(u, v) will be equal to m.

3. The more competent v is, the more likely that t(u, v) will be equal to M.

4. The more incompetent v is, the more likely that t(u, v) will be equal to m.

5. The more u reciprocates trusts, the more likely that t(u, v) will be equal to t(v, u).

That t(u, v) value in observations 1-5 above seems, so to speak, torn between the traits of both u and v. An analogy that comes to mind is that of a tug of war game; where people pull on opposite ends of a rope to bring the handkerchief in the middle to their side. This analogy leads us to our main hypothesis: the prevailing trait, be it of the trustor or the trustee, would pull the trust value t(u, v) toward its associated extreme value (See illustration on Fig. 2.). We, therefore, formulate the predicted trust value t(u, v) as a mean of these extreme values (m, M, and t(v, u)) weighted by the values of the involved traits. That is, having:

         f + (u, v) = g + (u) + c + (v), f -(u, v) = g -(u) + c -(v), f = (u, v) = r(u) + r(v) t(v, u) = 0 , (6)
we estimate t(u, v) to be equal to:

t(u, v) ≈ M f + (u, v) + m f -(u, v) + t(v, u) f = (u, v) f + (u, v) + f -(u, v) + f = (u, v) . (7
) t(u, v) m t(v, u) M f - f = f + Figure 2.
Predicting trust with a three-way tug of way analogy. The trust value t(u, v) is affected by different forces that result from u's and v's traits. For instance, the gullibility of u and the competence of v, make t(u, v) converge toward the maximal value M. The paranoia of u and the incompetence of v make it converge toward m. And finally, the reciprocity of both u and v make t(u, v) converge toward t(v, u) if this value exists.

The time complexity of this algorithm, when trying to predict the trust that a node u would put in another one v, is O -→ Γ (u) + ← -Γ (v) .

Illustrative example

Consider the social graph illustrated in Figure 3. In this example, we take into consideration the direct neighbors of two nodes u and v, and try to predict how much would u trust (or distruct) v in a trust interval of [-1, +1]. In this example, we see that

u v 1 v 2 v 3 v u 1 u 2 t(u, v)
- → Γ (u) = {v 1 , v 2 , v 3 } (i.e., - → Γ (u) = 3
). Therefore, to compute g + (u) and g -(u) we use -→ M 3 = (1, 1, 1) and -→ m 3 = (-1, -1, -1) respectively. Using Equations (1), (2), and (5) we find that: the gullibility of u is g + (u) = 0.628, its paranoia is g -(u) = 0.364, and its reciprocity is r(u) = 0.836.

As for the node v, we see that ← -Γ (v) = {u 1 , u 2 } (i.e., ← -Γ (v) = 2). Thus, we use the vectors -→ M 2 = (1, 1) and -→ m 2 = (-1, -1). Applying the formulas in Equations (3), (4), and (5), we find that the competence of v is c + (v) = 0.842, its incompetence is c -(v) = 0.149, and its reciprocity is r(v) = 0.790.

Finally, in order to infer the trust that u would put in v, we refer to Equation (7) which gives us: t(u, v) ≈ 0.445.

In the next section, we put this approach to trial, and see if the proposed hypothesis stands with real-world datasets.

Experimental evaluation

Datasets description

In order to validate the pertinence of the proposed approach, we have used the following real-world datasets during our experiments. The first three datasets are from the Stanford Large Network Dataset Collection2 , and the last one is from Trustlet3 . Statistics about these datasets are given in Table 2.

Bitcoin Alpha and OTC : Bitcoin is an anonymous cryptocurrency used by people and organizations to sell and buy goods and services. However, anonymity is often associated with the risk of fraud. These risks instigated the creation of some websites where users rate each other based on the trust that they put in them. We use two datasets from two sites: Bitcoin-Alpha and Bitcoin-OTC that were collected and scaled by [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF] to fit trust (and distrust) in the interval [-1, +1].

Wikipedia-Rfa : Requests for adminship (Rfa) are the formal procedure for Wikipedia members to be elected as administrators. A member (or someone on their behalf) submits a Request for adminship (Rfa) and members of the community express theirs opinions about the Rfa with a rating (+1 positive, 0 neutral, or -1 negative) and a comment. For their work, [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF] analyzed these comments using the VADER sentiment engine [START_REF] Gilbert | Vader: A parsimonious rule-based model for sentiment analysis of social media text[END_REF] and generated a weighted and signed trust graph with weights in [-1, +1].

Robots.net : Robots.net is a community of robotics enthusiasts who rank each other using the levels observer, apprentice, journeyer, or master. We mapped these levels to real numbers (0.1, 0.4, 0.7, and 0.9 respectively). The generated dataset, while unsigned, allowed us to see how the studied algorithms perform on a trust-only dataset.

Network

Evaluated algorithms

To evaluate the merits of the proposed approach, we have compared the performances, the robustness, and the efficiency of the following algorithms that were also designed for weighted and signed networks.

Reciprocal (REC) is obviously the simplest. This algorithm is based on the assumption that if a node v trusts another node u, then u will probably trust v back as much as v trusts it. i.e., t(u, v) = t(v, u) if the arc from v back to u exists, and 0 otherwise.

Bias and Deserve (BaD) we took DESERVE(v) as the predicted trust value as described in [START_REF] Mishra | Finding the bias and prestige of nodes in networks based on trust scores[END_REF].

Fairness-Goodness (FxG) the trust from u to v is the product of the FAIRNESS of u by the GOODNESS of v as proposed by [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF].

STAR we took the inferred trust value as proposed by [START_REF] Gao | Star: semiring trust inference for trust-aware social recommenders[END_REF].

Trust by Agreement (AGR) we took the predicted trust value by agreement as described in [START_REF] Akilal | A robust trust inference algorithm in weighted signed social networks based on collaborative filtering and agreement as a similarity metric[END_REF].

Gullibility-Competence-Reciprocity (GCR) our own approach described in Section 3.

Performance evaluation metrics

Given a network G(N , E, t) with N = N , the performances of the above algorithms, were evaluated using the following metrics.

Mean Absolute Error (MAE)

is the mean of the absolute differences between the ground truth values x i and the inferred ones y i , i ∈ {1, . . . , N }:

MAE = 1 N N i=1 |x i -y i |.
Root Mean Squared Error (RMSE) is the root mean of the squared differences between the ground truth values x i and the inferred ones y i , i ∈ {1, . . . , N }:

RMSE = 1 N N i=1 (x i -y i) 2 .
Pearson Correlation Coefficient (PCC) which ranges between -1 and +1, indicates how the ground truth values x i correlate with the predicted ones y i . The more the PCC converges toward +1, the more the two values are correlated:

PCC = N i=1 (x i -x)(y i -ȳ) N i=1 (x i -x) 2 N i=1 (y i -ȳ) 2
, where x (resp. ȳ) is the arithmetic mean of the values x i (resp. y i), i ∈ {1, . . . , N }.

Experiments

Two scenarios, largely inspired by the work done by [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF], were studied during these experiments. In the first scenario, we are interested in predicting a yet-to-exist arc's weight knowing all other trust relations in the network. In the second, we remove a random batch of arcs and try to predict them all at once. That is, we try to predict trust relations with only some, or just a few, known relations from the network.

Leave-one-out predictions

This classic trust prediction task consists in removing an arc from the trust graph, and predicting its weight. It answers the question "How much would a node u (dis)trust another node v" knowing all other trust relations in the network.

The five algorithms were run on every arc of the used datasets. For every dataset, we remove one arc at a time, predict its weight, put it back in the graph, and repeat the experiment with another arc. To measure the performances of these algorithms, we have calculated the MAE, RMSE, and PCC metrics for every pair of algorithm and dataset.

13

The results of these experiments are reported in Table 3. They show that the proposed approach outperforms the REC, FxG, BaD, and STAR algorithms on every metric (MAE, RMSE, PCC), and on every dataset, and is very close to the AGR approach. Efficiency comparison. To study how fast are the studied algorithms, we have measured the time that they take to perform a leave-one-out experiment on every arc of the used datasets. All these tests were run on an intel R i5-2450M CPU with 8GB of RAM. As shown in Figure 4, the proposed approach is almost as fast as the reciprocal algorithm which, obviously, is the fastest since its time complexity on a single arc is literally O(1). In fact, apart from the reciprocal algorithm, our approach is up to two orders of magnitude faster than the other four algorithms. Specifically, while the AGR and GCR approaches are close in terms of accuracy, the present GCR approach is by far more efficient than AGR.

Bitcoin-Alpha

Leave-N %-out predictions

The purpose of this scenario, as explained by [START_REF] Kumar | Edge weight prediction in weighted signed networks[END_REF], is to study the robustness of prediction algorithms to network sparsity. By removing a random batch of arcs, prediction algorithms are expected to perform poorly since the trust relations that they would use for inferring others are no longer available.

For our experiments, we have randomly removed 10%, 20%, and so on, up to 90% arcs of every dataset, and have tried to predict their weights. For the sake of fairness, we have repeated these tests 100 times for every percent4 , dataset, and algorithm. We then calculated the average MAE, RMSE, and PCC for each algorithm, with N % removed arcs from every dataset. The results reported in Figure 5 show that, compared to the four other ones, the proposed GCR and AGR algorithms provide the best MAE, RMSE, and PCC in every case -in fact, their respective lines are even overlapping. These performances are, moreover, barely affected as we remove more arcs from the networks. In other words, our approach is reasonably robust to networks sparsity.

Discussion

Back in the introduction, we have enumerated three desirable qualities in a trust prediction algorithm; namely, 1) accuracy, 2) robustness to network sparsity, and 3) speed. In this section, we discuss how these properties hold for the studied algorithms.

Accuracy

As shown in the previous section, the results from both the leave-one-out and the leave-N %-out experiments show that, on the four used datasets, the proposed approach and the AGR one are the most accurate among the studied algorithms. The difference in accuracy between the AGR and the GCR approaches is quite negligible as shown in Table 3 and the plots in Figure 5. The GCR approach outperforms the AGR one on the Bitcoin-Alpha dataset, and is ex-aequo with it on the Wikipedia-RFA one. On the other hand, the AGR approach presents a gain of 0.02 in MAE and one of 0.01 in RMSE on the Bitcoin-OTC, and Robots.net datasets. These differences should be negligible in a trust range equal to 2 (the adopted trust interval being [-1, +1]).

A precision worth making is that the nature of the networks population and activities are inherent factors that define trust relations emergence and evolution. For instance, the performances of the proposed approach are close to those of the reciprocal algorithm (REC) on the Bitcoin datasets (and only on these two datasets). That is because the Bitcoin datasets, contrary to the other two datasets, present a high reciprocity ratio (See Table 2). A property that allowed the reciprocal algorithm to perform quite well on the Bitcoin datasets, and poorly on the other datasets. A possible explanation for this might be that the nature of trust relations are different in these networks. Indeed, we can argue that since the Bitcoin datasets are about trust in trade, one would expect the buyer and the seller, once satisfied, to rate each-other equally -out of courtesy, if for nothing else. However, networks like Wikipedia and Robots.net are about knowledge and authority. In these networks, a very knowledgeable node does not feel the need, nor is it supposed, to return the favor by rating back its trustors more than they actually deserve. The proposed algorithm acknowledges reciprocity as a fact in social interactions, but it also takes into account two other aspects: gullibility and competence. The association -or the competition-between these three traits is what makes it more accurate than the other approaches.

Robustness

The slope of the curves in Figure 5 show that the performances of the GCR and AGR approaches are satisfyingly stable. Indeed, the MAE and RMSE values for these approaches seem unaffected by the number of removed arcs. Moreover, compared to the results of the other four algorithms, these values are better (smaller) in all cases.

A possible explanation for this might be found in the design of the algorithms themselves. Put simply, the more an approach depends on more arcs, the more it is likely to be affected by the unavailability of said arcs. Take, for example, the REC algorithm. This one depends only on one arc (the reciprocal one), the plots show, indeed, a somewhat stable behavior for this algorithm, yet this stability also holds when the algorithm performs poorly. Second, the global-metrics oriented algorithms (BaD, FxG) are the ones that are more affected by network sparsity as shown in Figure 5. The reason for this is that to compute a node's global metrics (BIAS/DESERVE, and FAIRNESS/GOODNESS), these algorithms spread their computations to large areas of the networks. Therefore, as more arcs become unavailable, the reliability of these global metrics decreases, and so do the performances of these algorithms.

Interestingly, the STAR algorithm shows somewhat stable performances. At first, we expected that removing more arcs would break more trust paths, and since the STAR algorithm is propagative, its performances would decrease. However, the STAR algorithm actually sorts paths by their certainty. Thus, whenever a path is broken, another one is picked. With this said, a closer look at the plots in Figure 5 reveals that the performances of the GCR and AGR are, not only better than those of STAR, but are actually even better at 90% removed arcs than what STAR provides at 10% removed arcs. In summary, The GCR approach (and the AGR one) that we propose are more robust thanks to their main design choice: making prediction rely on the sole direct neighbors of the trustor, and those of the trustee.

Speed

Another desirable feature of trust prediction algorithms is speed. Without a doubt, the REC algorithm wins this race hands down. However, accuracy is more important than speed -A slightly delayed, yet wise, decision is always better than a hastened and bad one. Still, as shown in Figure 4, the proposed GCR approach is actually almost as fast as the reciprocal one, yet provides more accurate predictions than the other algorithms.

Again, the design of these algorithms is to thank (or to blame) for efficiency as well. The global-metrics oriented (BaD and FxG), and the STAR algorithms spread their calculations to larger areas of the networks and are hence slower. Whereas, the REC and the proposed GCR approaches are localized and thus faster. As for the AGR approach, although its performances and robustness are close to that of the proposed GCR approach, its efficiency seems poor in comparison. This lack of efficiency of the AGR algorithm is due to its heavy processing. Indeed, the time complexity of the AGR approach for computing a trust value from a node u to another one v is O(2 -→ Γ (u) ← -Γ (v)), whereas the time complexity of the GCR one, for the same task, is only of O(-→ Γ (u) + ← -Γ (v)). Another point worth highlighting is that social networks are humming with activity and changes in trust relations. These changes should they happen -and they domust be taken into account by trust prediction algorithms. Global-metrics-oriented and propagative approaches would require a lot of processing for every change, whereas localized approaches such as the REC, AGR, and GCR would only need to operate on the direct neighbors of the trust relation individuals.

As discussed in the introduction, speed is important. Yet, one might wonder how much accuracy can we sacrifice for speed. Indeed, the AGR algorithm presents a gain of about 0.02 in MAE, and about 0.01 in RMSE in two datasets (among four). We believe that these negligible gains pale in comparison to the big speed gains offered by the GCR approach (cf. Fig 4).

Storing and reusing the results of intermediate and heavy computations would probably be the best thing to do in a static trust graph with few to no activity or changes in topology and social relations. However, in the context of highly dynamic platforms such as social networks, where trust fluctuates, and where change is the constant rule, we believe that providing the most accurate, robustest, and quickest recommendations would require a real-time computation of trust using the freshest information available.

Closing remarks

We conclude this discussion with a few notes about some characteristics and limitations of the proposed GCR approach.

Trust properties

The novelty of the GCR approach makes us wonder whether the commonly known properties of trust hold for the proposed approach. Regarding the subjectivity property, the adoption of personal traits of both individuals is quite an admission (and use) of this aspect of trust. The approach stands on the idea that people are different (the "values" of their traits are) and that these traits affect trust. Furthermore, our work agrees with the directed aspect of trust since it considers trust graphs as wighted and directed ones, and does not take reciprocity for granted. Finally, the proposed approach is not transitivitybased. This aspect of trust as described by [START_REF] Guha | Propagation of trust and distrust[END_REF] and others is, therefore, not affected.

Traits choice

In our work, we have considered only three traits among the multitude of traits that affect trust. Our choice was in fact driven by the following reasons:

1. These traits (gullibility, competence, and reciprocity) are simple to comprehend and to formulate. They are commonly known and often easily noticeable. 2. The extreme values associated with these traits are known without any computation. Indeed, the values M and m are given, and the reciprocate trust value t(v, u), when known, requires no computation. 3. The effects of these traits on trust are known, as expressed in the 5 natural observations enunciated in Subsection 3.4 and that led to the proposed algorithm.

Otherwise, we profoundly think that there are many other traits that affect trust. As a matter of fact, we believe that if we know all these traits and their effects, then we should be able to predict trust with a very high accuracy. Therefore, we think that exploring more traits and including them in a future work would enhance even more the accuracy and the robustness of the proposed approach.

Traits dependence

Another aspect worth discussing about this approach is traits dependence. We should acknowledge that, for simplicity sake, the approach considered that the three traits were independent. Are they? First, the competence (or incompetence) of a trustee is indeed independent of the gullibility (or paranoia) of a trustor. A trait of a person barely affects a trait of another one from which he/she is socially distant. Someone being competent would not make another one (which he/she does not know) more gullible than he/she is, and vice versa.

However, the reciprocity of a trustor and his/her gullibility (or paranoia) are not proven to be independent. Even though the experimental results were satisfying, we still think that the accuracy of the algorithm could be improved by analyzing the relationship between these two traits in the same individual. In fact, this rises an interesting question: "Are gullible people more prone to reciprocate trust? How do gullibility and reciprocity correlate?" Statistical, and social, studies may shed more light on the subject, and their results would definitely help improve the proposed approach.

Conclusion

With the advent of social networks, predicting the amount of trust (or distrust) that a user should put in another one becomes a pressing need. Indeed, knowing how much should one trust or distrust someone else is essential for a better online presence. Unfortunately, in addition to their inability to properly handle distrust, most traditional prediction methods often suffer from some known limitations such as their inability to properly handle and predict distrust, their poor efficiency and robustness to network sparsity.

This paper presents a novel approach that aims to address these issues. Indeed, experimental evaluation on four real-world datasets have proven that the proposed algorithm is very efficient and satisfyingly accurate and robust to network sparsity. Its main strength is its astounding simplicity and intuitivity. Indeed, rather than opting for classical trust propagation, our algorithm involves some social traits in a kind of a tug of war game where the most prevailing social trait would have more influence on trust relations. This novel strategy does not inherit the limitations of most propagative approaches, as it is not subject to trust decay, opinion conflict, path dependence, and time complexity.

Furthermore, the proposed approach is easily extensible by taking into account more social traits that affect trust and involving them in the tug-of-war game that we have adopted. For instance, the popularity of a node, the partiality of a trustor, the bandwagon effect, to cite a few, are some social aspects worth investigating in a future work.

Figure 3 .

 3 Figure 3. Example of trust inference using the gullibility (and paranoia) of u, the competence (and incompetence) of v, and their reciprocity.

Figure 4 .

 4 Figure 4. The time (in milliseconds) taken by each algorithm to perform a leave-one-out prediction on every arc of the used datasets. Note that the y-axis is logarithmic (Durations are expressed in powers of 10 milliseconds.)

Figure 5 .

 5 Figure5. Leave-N %-out results. A grid of plots where: the x-axis are the percentage of removed arcs (going from 10% up to 90% in steps of 10%) from the datasets (rows). The three columns of plots show how the average MAE, RMSE, and PCC change as we remove more arcs from the datasets. Error bars (SEM) are too small to be seen.

Table 1 .

 1 Notation used throughout this paper.

Table 2 .

 2 Statistics

about the used datasets. The reciprocity ratio column indicates how much trust is reciprocated in the network. That is, the percentage of arcs such that t(u, v) = t(v, u).

Table 3 .

 3 Results from the leave-one-out tests. Inside each cell of this table is a tuple (MAE, RMSE, PCC) of the output of an algorithm (row) on a dataset (column). Lower MAE and RMSE, and higher PCC, are better. The best results being typeset in bold.

Note that we adopt the "strong zero" convention described by Knuth as follows: "In general, when an Iverson-bracketed statement is false, we want it to evaluate into a "very strong 0," namely a zero so strong that it annihilates anything it is multiplied by --even if that other factor is undefined."[START_REF] Knuth | Two notes on notation[END_REF].

http://snap.stanford.edu/data/

http://www.trustlet.org/datasets/

Note that the N % arcs removed in iteration i + 1 are different from those removed in iteration i. In every iteration, the arcs are randomly selected then removed from the graph.