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Abstract

Predicting trust is a classic problem in social networks analysis. Furthermore, while
most early approaches ignore distrust, recent works seem to consider it as important,
if not more important, than trust itself. In this paper, we present a novel approach to
predict both trust and distrust in Weighted Signed Social Networks very efficiently and
in a satisfyingly accurate and robust way. Therefore allowing people to have healthier
online presence and interactions.

Being a local metric that does not rely on trust propagation, the proposed approach
does not suffer from some serious limitations like trust decay, opinions conflict, path de-
pendence, and time complexity. Moreover, our experiments on four real-world datasets
show that, in addition to its simplicity and extensibility, this algorithm is robust to net-
work sparsity, and provides satisfyingly accurate and very fast predictions.

Keywords: Online social network, Trust inference, Distrust, Trust metric, Social trait

1. Introduction

1.1. Motivation
Let us face it, the open nature of online social networks (OSNs) is a double-edged

sword. Indeed, billions of people share knowledge and socialize thanks to this nature.
Yet, because of this openness, malicious users are also able to spread misinformation and,
to some extent, harm others (Shneiderman, 2015). People should think twice before
believing, downloading, or sharing something online. They should assess the trust they
are willing to put in others, for, to quote Robbins (2016), “Trust matters”. It always did,
and perhaps even more so today where friendship is claimed with a click on a button.
The user, seemingly surrounded by thousands of friends, is sorely alone when it comes
to decide what to believe and whom to trust. In such a world where information flows
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quickly and incessantly, we, therefore, need tools that are able to assist users in deciding
how much should they trust (or distrust) others.

Often, the problem that these solutions aim to solve is stated in a single question:
“How much should a user X (trustor) trust or distrust another user Y (trustee)?” As simple
as it may seem, this question carries with it at least another question: “What is distrust?”

While scholars seem to agree on the meaning of trust (Rousseau et al., 1998), distrust
fails to bring them to a consensus (Guo et al., 2017). As noted by Kim and Ahmad (2013);
and Ziegler (2013), most early trust prediction approaches simply ignore distrust or con-
sider it as the absence of trust. However, as argued by Hawley (2013) and others, distrust
is not the mere absence of trust. Distrust means pessimism, and even fear (Lewicki et al.,
1998). It calls for vigilance and precautions whereas neutrality, in this context, may
be assimilated to indifference. These precautions that have to be taken are the reason
why authors like DuBois et al. (2011) rightly suggest that knowing whom to distrust is
equally, if not more, important than knowing whom to trust.

1.2. Challenges
Unfortunately, adapting most trust-only approaches to consider distrust is impractical

and often impossible (Guha et al., 2004; Chiang et al., 2014; Tang et al., 2016). For
instance, algorithms that rely on the transitivity aspect of trust fail to properly handle
distrust, because distrust is not transitive, as empirically shown by Tang et al. (2014)
and later by Gao et al. (2016).

In addition to handling distrust, trust prediction algorithms have to address other
important challenges that we summarize in the following criteria:

1. Accuracy : When a user X has to decide if he/she can safely share something with
another user Y, or to believe what Y shares, the algorithm should provide a good
estimation of Y’s trustworthiness. The more accurate this estimation is, the easier
and the more adequate would X’s decision be.

2. Robustness : Prediction often relies on prior knowledge —The more the merrier.
Predicting trust relations depends on other previously known trust relations in the
network. However, some (or most) of these relations may be hidden (for privacy
concerns) or simply unavailable (because of technical difficulties). A trust predic-
tion algorithm should perform equally well, even when prior knowledge is scarce.
Simply stated, robustness to network sparsity is the ability of an algorithm to still
make acceptably accurate predictions despite the scarcity of prior knowledge.

3. Speed : Social networks users are flooded with information to consume, and with
events that require a quick action. A mistake is often a click away. Trust prediction
algorithms should be as quick as possible to provide a prediction, because a false
belief is often hard to correct, and a sent message is hard to recall. Indeed, pre-
venting a user from downloading a malware, from taking a medical advice from
an impostor, or from sending sensitive information to untrustworthy recipients,
requires trust recommendations that are as fast as possible.

Of course, these criteria are hard to satisfy at once. To be accurate, algorithms might
need to make intricate computations, therefore be slow to return a prediction. They
might also require several known trust relations to accurately predict an unknown one,
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hence provide poor predictions when there is less known relations to infer from. Put
simply, accuracy conflicts with speed and robustness.

We believe that the best answer to this dilemma is an approach that —by design—
depends on as less prior knowledge as possible —an algorithm that would need the bare
minimum of known trust relations to function. Such an algorithm, if able to provide
accurate predictions, will also be fast and robust to networks sparsity.

Our proposed approach, which subscribes to this design, is based on localized nodes
metrics. It consists in expressing and using metrics that describe social traits that affect
the way we give or receive trust. Among these traits are gullibility, competence, and
reciprocity. They, definitely, influence how we usually trust (or are trusted).

These traits can be simply computed without having to perform any graph traversal;
because they only depend on the direct neighbors of the involved actors in a trust relation
(the trustor and the trustee). Our main hypothesis is that the most prevailing trait would
have more influence on the act of trust. We thus think of these traits as forces competing
to affect trust. And, indeed, the satisfying results from our experiments on four real-
world datasets show that this hypothesis stands.

In addition to its simplicity, the proposed approach is not subject to the limitations of
propagative approaches such as:

Trust decay: When propagated along lengthy paths, trust indeed decays (Liu et al.,
2011), and that is quite natural. In fact, most propagative approaches tend to
limit their propagation horizons to a few hops, not only because of efficiency con-
cerns, but because of accuracy that decreases beyond some hops (Golbeck, 2005a;
Ziegler and Golbeck, 2015).

Path dependence: When inferring trust using transitivity, there might be multiple paths
from a source to a sink that share some segments. This is problematic in the sense
that some individuals are consulted twice (or more) (Jiang et al., 2016a). For
example, say that we are trying to predict how much would node s trust another
one k in a trust graph with the following paths: (s, u, k), (s, v, k), and (s, v, u, k).
The problem, in this case, is were we to explore the three possible paths from s to
k, then we would consider u’s opinion twice, and v’s opinion just once.

Opinion conflict: One of the main aspects of trust is its subjectivity. People often have
different opinions regarding others (Massa and Avesani, 2005). Therefore, when
trying to predict trust using transitivity, one might encounter some conflicts of opin-
ions (Jøsang and Pope, 2005). Which opinions should we favor in these cases? Re-
solving opinion conflicts is still an open problem in research, and according to Jiang
et al. (2016a), research in other fields, such as sociology, can be introduced to solve
this challenge.

Time complexity: Trust prediction using path discovery is time-consuming. In fact, as
argued by Ghavipour and Meybodi (2018), using all paths in trust inference be-
comes impractical as social networks are usually massive in size.

1.3. Highlights of the proposed approach
The proposed approach aims to avoid these limitations by using social traits instead

of transitivity. Indeed, rather than propagating trust along paths in a trust graph, our
3



strategy is to try to understand what affects trust by exploring some social traits of the
protagonists in a trust relation (the trustor and the trustee). As suggested by Jiang
et al. (2016a), one way to solve opinion conflicts in trust inference is to fully understand
personal biases and features of the trustor. The present work adheres to this vision, and
extends it to trustees as well. More specifically, we believe that knowing everything that
makes people trust (or be trusted) should allow us to predict unknown trust values more
accurately.

Some of the advantages of the proposed approach may be summarized as follows:

• Ability to predict both trust and distrust, contrary to most prediction algorithms in
the literature.

• Novelty: because it does not rely on the transitivity of trust and its limitations.

• Hight efficiency: since it operates on the very direct neighbors of the trustor and
the trustee.

• Robustness to network sparsity: since it uses minimal set of prior knowledge for
inference.

• intuitivy: it is easy to understand and extend.

• Simplicity: it is easy to implement since it boils down to calculating euclidean
distances between vectors.

We believe that these properties of the proposed approach make it a very suitable
solution for trust (and distrust) prediction in social networks, thus assisting users in
known whom (and how much) to trust or distrust. Such a knowledge will ultimately
allows these individuals to have a healthier online presence by taking advantage of the
positive aspects of social networks, and avoiding their known drawbacks.

The rest of this paper is organized as follows. In Section 2, we give a brief review
of some related work. In Section 3, we start by giving definitions and mathematical
representations of the three social traits (gullibility, competence, and reciprocity), then
we present a simple algorithm that uses these traits to predict trust. Next, to validate our
approach, we conduct, in Section 4, some experiments to evaluate the performances, the
efficiency, and the robustness of the proposed approach. We discuss the results of these
experiments in Section 5, and conclude this paper in Section 6 with a summary and some
perspectives of future work.

2. Related work

Several approaches have been proposed to predict trust in social networks, some fo-
cusing on trust only, others on both trust and distrust. These approaches also differ in the
way they work. According to Tang and Liu (2015), some are supervised (using machine
learning techniques), others are unsupervised and need no prior training. Some are sup-
ported by additional information such as interaction data among users (Kim and Ahmad,
2013; Huang et al., 2018), interest similarity Mao et al. (2019), or emotions (Beigi et al.,
2016). Others operate on the sole trust graph with no additional information. Some are
probabilistic (Kuter and Golbeck, 2010), others are subjective logic inspired (Jøsang and
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Pope, 2005), etc. For the sake of brevity, we refer the reader to, some excellent surveys
such as those by Ruan and Durresi (2016); Jiang et al. (2016a); Tang et al. (2016); and
we focus hereafter on some unsupervised graph-based methods that do not require any
interaction data. These approaches operate on two types of metrics: local and global
ones. Local metrics describe how would a node u trust another one v. Global metrics,
for their part, answer how trustworthy, or leaning to trust, is a given node (Massa and
Avesani, 2007; Tang and Liu, 2015). These families of approaches have their merits and
their flaws but they ultimately aim to answer, albeit differently, the same question: “How
much should a user X trust another user Y”.

2.1. Local metrics trust prediction
Most local metrics approaches use trust propagation rules that were enumerated

by Guha et al. (2004). The most common of these rules is trust transitivity, which
states that if a node u trusts another one v which itself trusts a third one w, then u may
trust w to some extent (Golbeck, 2005b). Among these algorithms we can cite: Tidal-
Trust (Golbeck, 2005a), MoleTrust (Massa and Avesani, 2007), SWTrust (Jiang et al.,
2014), GFTrust (Jiang et al., 2016b), DLATrust (Ghavipour and Meybodi, 2018), and
many others. These algorithms propagate trust through a trust graph from a source u
to a sink v. Results from different paths are then aggregated to obtain a final value that
would be an estimation of how much u would trust v. Applying these approaches as-is on
signed networks (those with distrust relations) is, however, not straightforward. Indeed,
empirical evidence by Gao et al. (2016) has shown that distrust is not transitive.

Still, distrust should not be dismissed. The need to predict distrust, and the advan-
tages that negative links bring to social networks analysis (Papaoikonomou et al., 2013;
Kunegis et al., 2013) make these challenges worth addressing. In fact, many efforts were
taken in this direction. For instance, in Appleseed (Ziegler, 2013), a propagative algo-
rithm inspired by spreading activation models, trust is considered as an energy passing
from nodes to their trustees, and distrust is modeled as a negative energy. Another inter-
esting propagative approach was proposed by Gao et al. (2016). In their STAR algorithm,
the authors defined a semiring (an algebraic structure) that operates on 2D values: trust
(or distrust) and certainty. This semiring favors arcs with bigger certainty values and
circumvents the intransitivity of distrust by simply ignoring paths with two successive
negative links. Taking a different approach that does not rely on trust transitivity, Akilal
et al. (2019) proposed a collaborative filtering based algorithm using agreement as a
similarity metric to infer both trust and distrust relations by using only information from
the direct neighbors of the trustors and the trustees. In addition to their time complex-
ity (Ghavipour and Meybodi, 2018), and as noted by Jiang et al. (2016a), propagative
approaches suffer from path dependence, trust decay, and opinion conflict.

2.2. Global metrics trust prediction
Several global metrics approaches were proposed in the literature. For example,

the PageRank (Page et al., 1999) and the HITS (Kleinberg, 1999) algorithms that were
initially proposed to rank web pages, have been adapted to social networks (Hu et al.,
2018; Zhao et al., 2018). And the EigenTrust algorithm by Kamvar et al. (2003) has also
known many variants (Chiluka et al., 2012; Kurdi, 2015). These metrics are designed
for unsigned networks, and thus ignore negative links.
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As for signed networks, Zolfaghar and Aghaie (2010) proposed some metrics like the
popularity and the gregariousness of a node. While taking into account links signs, these
metrics do not consider their weights. Later, Mishra and Bhattacharya (2011) introduced
BIAS and DESERVE. These two global metrics respectively describe the bias of a trustor,
and the prestige of a trustee. Computed iteratively, they describe more or less how trust
is given and received. The PageRank and the HITS algorithms were also revisited to
take into account negative links (de Kerchove and Dooren, 2008; Shahriari and Jalili,
2014). More recently, and in the spirit of what Mishra and Bhattacharya (2011) have
proposed, Kumar et al. (2016) defined two new global metrics: FAIRNESS and GOODNESS.
The authors state that we can infer how much should a node u (dis)trust another one v,
by multiplying the fairness of u by the goodness of v.

The most common argument against global metrics, as argued by Massa and Avesani
(2005) and Tang and Liu (2015), is that trust is subjective. As such, global metrics cannot
describe how would a specific node u trust another one v, for v may be controversial and
thus likely to be trusted differently by different nodes of the network.

The limitations of the propagative and the global-metrics-oriented approaches in-
spired us to propose a different approach that consists in expressing some localized node
metrics that affect trust. Taken separately, these metrics are often of little use, but when
involved as forces that influence the act of trust, they allow us to design a very simple
algorithm that is quite reliable, very fast, and robust to network sparsity.

Naturally, there are many social traits that affect trust such as popularity, social con-
formity (Li et al., 2018), confirmation bias (Zollo and Quattrociocchi, 2018), and many
other user biases (Pavleska and Blažič, 2016; Braga et al., 2018). For the time being,
our work focuses on three traits: the gullibility, the competence, and the reciprocity of
individuals in a social network. However, as we will see in the next section, the proposed
trust prediction algorithm is easily extensible to more traits. The considered traits and
our prediction algorithm are described in more details in the next section.

3. Our proposed approach

As stated earlier, our approach does not rely on trust propagation. Instead, it consists
in characterizing some social traits that affect trust, and then confronting them in a tug-
of-war like game to predict trust (and distrust).

Although there are many social traits that affect trust, we consider in this study only
three of them. This choice was mainly based on their simplicity and ease of comprehen-
sion (as the reader may see in what follows). We, nonetheless, consider adding more
traits to the tug-of-war game in a future work.

3.1. Notation and preliminaries
We represent a social network by a weighted directed graph, where the nodes of the

graph are individuals of the network, and the arcs are trust relations between said indi-
viduals. A trust relation from a node u (trustor) to another node v (trustee) is weighted
using a real value t(u, v) in the interval I = [m,M] (where m < 0 and M > 0), such that
the more u trusts v, the more t(u, v) is positive, and the more u distrusts v, the more
t(u, v) is negative. Table 1 summarizes the adopted notation.
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Notation Meaning
G(N , E , t) A weighted directed graph G with nodes in N connected by arcs in E that are

weighted using the mapping t.
t(u, v) Weight of the arc going from node u to node v.−→
Γ (u) Set of the trustees of the node u.←−
Γ (v) Set of the trustors of the node v.
m < 0 Minimal value of trust (extreme distrust).
M > 0 Maximal value of trust (extreme trust).
I Trust interval, that is [m, M].
R Trust range. R = M−m.
−→mk The vector (m,m, · · · ,m) in Rk of which all k components are equal to m.−→
M` The vector (M,M, · · · ,M) in R` of which all ` components are equal to M.
d(u,v) The Euclidean distance between vectors u and v.
g+(u) Positive gullibility (or gullibility for short) of the node u.
g-(u) Negative gullibility (or paranoia) of the node u.
c+(u) Positive competence (or competence for short) of the node v.
c-(u) Negative competence (or incompetence) of the node v.
r(u) Reciprocity of the node u.

Table 1. Notation used throughout this paper.

We use Iverson Brackets (Knuth, 1992; Graham et al., 1994). This notation makes an
integer (0 or 1) from a logical statement P put between brackets as follows 1:

[
P
]

=

{
1 if P is true,
0 if P is false.

3.2. Problem definition
Let G = (N , E , t) be a directed and weighted graph representing a social network,

where N is the set of nodes, E the set of arcs between nodes of N , and t : E 7→ [m,M]
a mapping that associates to each arc (u, v) a weight t(u, v) that represents the trust
(t(u, v) > 0) or distrust (t(u, v) < 0) that the node u puts in the node v. Our work aims
to quickly predict how much would a node u (dis)trust another node v. And that when
all, or only some, other trust values are known. To simplify our narrative, we will use
trust to denote both states: trust (positive values) and distrust (negative values).

3.3. Localized metrics based on social traits
Before diving into the details of our algorithm, we define hereafter three metrics that

describe some social traits of nodes; namely, the gullibility, the competence, and the
propensity to reciprocate trust.

1Note that we adopt the “strong zero” convention described by Knuth as follows: “In general, when an
Iverson-bracketed statement is false, we want it to evaluate into a “very strong 0,” namely a zero so strong that it
annihilates anything it is multiplied by –—even if that other factor is undefined.” (Knuth, 1992).
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Definition 3.1. We say that a node u is absolutely gullible if it extremely trusts all of its
trustees. i.e., ∀ v ∈

−→
Γ (u), t(u, v) = M. Similarly, we say that a node u is absolutely

paranoid, if it extremely distrusts all of its trustees. i.e., ∀ v ∈
−→
Γ (u), t(u, v) = m.

These extreme cases are unlikely to exist. We use them, however, as references for
estimating the gullibility and the paranoia of a node u as follows:

3.3.1. Gullibility
Let u ∈ N be a node, and let

−→
T(u) =

(
t(u, v1), t(u, v2), · · · , t(u, vn)

)
be a vector in

In comprised of the trust values that u puts in its trustees vi ∈
−→
Γ (u), i = 1, . . . , n. The

gullibility of the node u is given by the function g+ : N 7→ [0,+1] defined as follows:

g+(u) =
[−→

Γ (u) 6= ∅
](

1−
d
(−→
T(u),

−−→
Mn

)
R
√
n

)
, where n =

∣∣−→Γ (u)
∣∣. (1)

3.3.2. Paranoia
Similarly, we define the paranoia of a node u ∈ N , using the function g- : N 7→ [0,+1]

that is defined as follows.

g-(u) =
[−→

Γ (u) 6= ∅
](

1−
d
(−→
T(u), −→mn

)
R
√
n

)
, where n =

∣∣−→Γ (u)
∣∣. (2)

The idea behind Eq (1) and Eq (2) is illustrated in Fig. 1. Simply put, the closer
−→
T(u)

is to to
−−→
Mn, the more gullible u is. And the closer

−→
T(u) is to −→mn, the more paranoid u is.

Remark 1. In order to make g+(u) and g-(u) values in [0,+1], the distances in Equations
(1) and (2) are divided by R

√
n (which is the biggest distance between two points in a

n-dimensional hypercube with an edge length equal to R).

1

-1

1-1

(M, M)

(m, m)

−→
T(u)

(A)
1

-1

1-1

(M, M)

(m, m)

−→
T(u)

(B)
1

-1

1-1

(M, M)

(m, m)

−→
T(u)

(C)

Figure 1. Illustration of the gullibility and the paranoia of a node u for which
∣∣−→Γ (u)

∣∣ = n = 2. In the

case (A), we can see that
−→
T(u) is closer to

−→
M2 = (1, 1) than it is to −→m2 = (−1,−1), we thus

say that u is more gullible than paranoid. The inverse can be seen in the (C) case. The special
case (B) illustrates a situation where

−→
T(u) is equidistant from both vectors −→m2 and

−→
M2.

Definition 3.2. We say that a node v is absolutely competent if it is extremely trusted
by all its trustors. i.e., ∀u ∈

←−
Γ (v), t(u, v) = M. And absolutely incompetent if it is

extremely distrusted by all its trustors. i.e., ∀u ∈
←−
Γ (v), t(u, v) = m.
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Using the same idea of euclidean distances to extreme values that we used to define
the gullibility g+(u) and the paranoia g-(u) of a node u, we define the competence and
the incompetence of a node v as follows:

3.3.3. Competence
Let v ∈ N be a node, and let

←−
T(v) =

(
t(u1, v), t(u2, v), · · · , t(uk, v)

)
be a vector in

Ik made of the trust values t(ui, v) that its trustors ui ∈
←−
Γ (v), i = 1, . . . , k put in it. We

describe the competence of the node v using the function c+ : N 7→ [0,+1], that is defined
as follows:

c+(v) =
[←−

Γ (v) 6= ∅
](

1−
d
(←−
T(v),

−→
Mk

)
R
√
k

)
, where k =

∣∣←−Γ (v)
∣∣. (3)

3.3.4. Incompetence
Taking this time the vector −→mk as a reference, we describe the incompetence of a

node v, using the function c- : N 7→ [0,+1], that is defined as follows:

c-(v) =
[←−

Γ (v) 6= ∅
](

1−
d
(←−
T(v), −→mk

)
R
√
k

)
, where k =

∣∣←−Γ (v)
∣∣. (4)

Definition 3.3. A node u reciprocates trust from another node v, if t(u, v) = t(v, u). The
propensity-to-reciprocate trust (or reciprocity, for short) of the node u may be expressed by
the distance between the vector

−→
T(u) =

(
t(u, v1), t(u, v2), · · · , t(u, vn)

)
(outgoing trust

from u to its trustees) and the vector
←−
R(u) =

(
t(v1, u), t(v2, u), · · · , t(vn, u)

)
(incoming

trust to u from its trustees). The reciprocity of the node u is described using the function
r : N 7→ [0,+1] that is defined as follows:

r(u) =
[−→

Γ (u) 6= ∅
](

1−
d
(−→
T(u),

←−
R(u)

)
R
√
n

)
, where n =

∣∣−→Γ (u)
∣∣. (5)

3.4. Predicting trust using these metrics
Let u, v be two nodes in N . We consider that the value t(u, v) is influenced by these

social traits that we have defined. This idea is supported by the following observations:

1. The more gullible u is, the more likely that t(u, v) will be equal to M.

2. The more paranoid u is, the more likely that t(u, v) will be equal to m.

3. The more competent v is, the more likely that t(u, v) will be equal to M.

4. The more incompetent v is, the more likely that t(u, v) will be equal to m.

5. The more u reciprocates trusts, the more likely that t(u, v) will be equal to t(v, u).

That t(u, v) value in observations 1–5 above seems, so to speak, torn between the
traits of both u and v. An analogy that comes to mind is that of a tug of war game;
where people pull on opposite ends of a rope to bring the handkerchief in the middle
to their side. This analogy leads us to our main hypothesis: the prevailing trait, be it of

9



the trustor or the trustee, would pull the trust value t(u, v) toward its associated extreme
value (See illustration on Fig. 2.). We, therefore, formulate the predicted trust value
t(u, v) as a mean of these extreme values (m, M, and t(v, u)) weighted by the values of
the involved traits. That is, having:

f+(u, v) = g+(u) + c+(v),

f-(u, v) = g-(u) + c-(v),

f=(u, v) =
(
r(u) + r(v)

)[
t(v, u) 6= 0

]
,

(6)

we estimate t(u, v) to be equal to:

t(u, v) ≈ M f+(u, v) + m f-(u, v) + t(v, u) f=(u, v)

f+(u, v) + f-(u, v) + f=(u, v)
. (7)

t(u, v)

m

t(v, u)

M

f
−

f=

f +

Figure 2. Predicting trust with a three-way tug of way analogy. The trust value t(u, v) is affected by
different forces that result from u’s and v’s traits. For instance, the gullibility of u and the
competence of v, make t(u, v) converge toward the maximal value M. The paranoia of u and
the incompetence of v make it converge toward m. And finally, the reciprocity of both u and v
make t(u, v) converge toward t(v, u) if this value exists.

The time complexity of this algorithm, when trying to predict the trust that a node u

would put in another one v, is O
(∣∣−→Γ (u)

∣∣+
∣∣←−Γ (v)

∣∣).
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3.5. Illustrative example
Consider the social graph illustrated in Figure 3. In this example, we take into con-

sideration the direct neighbors of two nodes u and v, and try to predict how much would
u trust (or distruct) v in a trust interval of [−1,+1].

u

v1

v2

v3

v

u1

u2

t(u, v)

0.40.
10.

6

0.4

0.5

0.
3

0.
2

0.6

0.5

0.8

0.2

Figure 3. Example of trust inference using the gullibility (and paranoia) of u, the competence (and
incompetence) of v, and their reciprocity.

In this example, we see that
−→
Γ (u) = {v1, v2, v3} (i.e.,

∣∣−→Γ (u)
∣∣ = 3). Therefore, to

compute g+(u) and g-(u) we use
−→
M3 = (1, 1, 1) and −→m3 = (−1,−1,−1) respectively.

Using Equations (1), (2), and (5) we find that: the gullibility of u is g+(u) = 0.628, its
paranoia is g-(u) = 0.364, and its reciprocity is r(u) = 0.836.

As for the node v, we see that
←−
Γ (v) = {u1, u2} (i.e.,

∣∣←−Γ (v)
∣∣ = 2). Thus, we use the

vectors
−→
M2 = (1, 1) and −→m2 = (−1,−1). Applying the formulas in Equations (3), (4),

and (5), we find that the competence of v is c+(v) = 0.842, its incompetence is c-(v) =
0.149, and its reciprocity is r(v) = 0.790.

Finally, in order to infer the trust that u would put in v, we refer to Equation (7)
which gives us: t(u, v) ≈ 0.445.

In the next section, we put this approach to trial, and see if the proposed hypothesis
stands with real-world datasets.

4. Experimental evaluation

4.1. Datasets description
In order to validate the pertinence of the proposed approach, we have used the fol-

lowing real-world datasets during our experiments. The first three datasets are from the
Stanford Large Network Dataset Collection2, and the last one is from Trustlet3. Statistics
about these datasets are given in Table 2.

2http://snap.stanford.edu/data/
3http://www.trustlet.org/datasets/
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Bitcoin Alpha and OTC : Bitcoin is an anonymous cryptocurrency used by people and
organizations to sell and buy goods and services. However, anonymity is often as-
sociated with the risk of fraud. These risks instigated the creation of some websites
where users rate each other based on the trust that they put in them. We use two
datasets from two sites: Bitcoin-Alpha and Bitcoin-OTC that were collected and
scaled by Kumar et al. (2016) to fit trust (and distrust) in the interval [−1,+1].

Wikipedia-Rfa : Requests for adminship (Rfa) are the formal procedure for Wikipedia
members to be elected as administrators. A member (or someone on their behalf)
submits a Request for adminship (Rfa) and members of the community express
theirs opinions about the Rfa with a rating (+1 positive, 0 neutral, or −1 negative)
and a comment. For their work, Kumar et al. (2016) analyzed these comments
using the VADER sentiment engine (Gilbert, 2014) and generated a weighted and
signed trust graph with weights in [−1,+1].

Robots.net : Robots.net is a community of robotics enthusiasts who rank each other
using the levels observer, apprentice, journeyer, or master. We mapped these levels
to real numbers (0.1, 0.4, 0.7, and 0.9 respectively). The generated dataset, while
unsigned, allowed us to see how the studied algorithms perform on a trust-only
dataset.

Network Nodes Arcs Reciprocity Ratio
Bitcoin-Alpha 3783 24186 59.57%
Bitcoin-OTC 5881 35592 56.89%
Wikipedia-Rfa 9654 104554 0.07%
Robots.net 1725 3596 7.78%

Table 2. Statistics about the used datasets. The reciprocity ratio column indicates how much trust is
reciprocated in the network. That is, the percentage of arcs such that t(u, v) = t(v, u).

4.2. Evaluated algorithms
To evaluate the merits of the proposed approach, we have compared the perfor-

mances, the robustness, and the efficiency of the following algorithms that were also
designed for weighted and signed networks.

Reciprocal (REC) is obviously the simplest. This algorithm is based on the assumption
that if a node v trusts another node u, then u will probably trust v back as much as
v trusts it. i.e., t(u, v) = t(v, u) if the arc from v back to u exists, and 0 otherwise.

Bias and Deserve (BaD) we took DESERVE(v) as the predicted trust value as described
in Mishra and Bhattacharya (2011).

Fairness-Goodness (FxG) the trust from u to v is the product of the FAIRNESS of u by
the GOODNESS of v as proposed by Kumar et al. (2016).

STAR we took the inferred trust value as proposed by Gao et al. (2016).

12



Trust by Agreement (AGR) we took the predicted trust value by agreement as described
in Akilal et al. (2019).

Gullibility-Competence-Reciprocity (GCR) our own approach described in Section 3.

4.3. Performance evaluation metrics
Given a network G(N , E , t) with

∣∣N ∣∣ = N , the performances of the above algorithms,
were evaluated using the following metrics.

Mean Absolute Error (MAE) is the mean of the absolute differences between the ground
truth values xi and the inferred ones yi, i ∈ {1, . . . , N}:

MAE =
1

N

N∑
i=1

|xi − yi|.

Root Mean Squared Error (RMSE) is the root mean of the squared differences between
the ground truth values xi and the inferred ones yi, i ∈ {1, . . . , N}:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2.

Pearson Correlation Coefficient (PCC) which ranges between−1 and +1, indicates how
the ground truth values xi correlate with the predicted ones yi. The more the PCC
converges toward +1, the more the two values are correlated:

PCC =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
,

where x̄ (resp. ȳ) is the arithmetic mean of the values xi (resp. yi), i ∈ {1, . . . , N}.

4.4. Experiments
Two scenarios, largely inspired by the work done by Kumar et al. (2016), were stud-

ied during these experiments. In the first scenario, we are interested in predicting a
yet-to-exist arc’s weight knowing all other trust relations in the network. In the second,
we remove a random batch of arcs and try to predict them all at once. That is, we try to
predict trust relations with only some, or just a few, known relations from the network.

4.4.1. Leave-one-out predictions

This classic trust prediction task consists in removing an arc from the trust graph,
and predicting its weight. It answers the question “How much would a node u (dis)trust
another node v” knowing all other trust relations in the network.

The five algorithms were run on every arc of the used datasets. For every dataset,
we remove one arc at a time, predict its weight, put it back in the graph, and repeat
the experiment with another arc. To measure the performances of these algorithms, we
have calculated the MAE, RMSE, and PCC metrics for every pair of algorithm and dataset.
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The results of these experiments are reported in Table 3. They show that the proposed
approach outperforms the REC, FxG, BaD, and STAR algorithms on every metric (MAE,
RMSE, PCC), and on every dataset, and is very close to the AGR approach.

Bitcoin-Alpha Bitcoin-OTC Wikipedia-Rfa Robots.net

REC (0.12, 0.27, 0.47) (0.15, 0.32, 0.46) (0.56, 0.63, 0.071) (0.50, 0.60, 0.01)

FxG (0.19, 0.33; 0.24) (0.22, 0.38, 0.31) (0.18, 0.24, 0.43) (0.28, 0.33, -0.04)

BaD (0.20, 0.34, 0.24) (0.23, 0.40, 0.32) (0.18, 0.23, 0.44) (0.21, 0.31, 0.15)

STAR (0.21, 0.32, 0.25) (0.23, 0.35, 0.22) (0.24, 0.32, 0.22) (0.43, 0.50, 0.44)

AGR (0.14, 0.24, 0.56) (0.14, 0.26, 0.69) (0.17, 0.22, 0.53) (0.14, 0.21, 0.55)

GCR (0.12, 0.23, 0.61) (0.14, 0.27, 0.67) (0.17, 0.22, 0.53) (0.16, 0.22, 0.46)

Table 3. Results from the leave-one-out tests. Inside each cell of this table is a tuple (MAE, RMSE, PCC) of
the output of an algorithm (row) on a dataset (column). Lower MAE and RMSE, and higher PCC,
are better. The best results being typeset in bold.

Efficiency comparison. To study how fast are the studied algorithms, we have measured
the time that they take to perform a leave-one-out experiment on every arc of the used
datasets. All these tests were run on an intel R© i5-2450M CPU with 8GB of RAM. As
shown in Figure 4, the proposed approach is almost as fast as the reciprocal algorithm
which, obviously, is the fastest since its time complexity on a single arc is literallyO(1). In
fact, apart from the reciprocal algorithm, our approach is up to two orders of magnitude
faster than the other four algorithms. Specifically, while the AGR and GCR approaches are
close in terms of accuracy, the present GCR approach is by far more efficient than AGR.
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Figure 4. The time (in milliseconds) taken by each algorithm to perform a leave-one-out prediction on
every arc of the used datasets. Note that the y-axis is logarithmic (Durations are expressed in
powers of 10 milliseconds.)

4.4.2. Leave-N%-out predictions
The purpose of this scenario, as explained by Kumar et al. (2016), is to study the

robustness of prediction algorithms to network sparsity. By removing a random batch of
arcs, prediction algorithms are expected to perform poorly since the trust relations that
they would use for inferring others are no longer available.

For our experiments, we have randomly removed 10%, 20%, and so on, up to 90%
arcs of every dataset, and have tried to predict their weights. For the sake of fairness, we
have repeated these tests 100 times for every percent4, dataset, and algorithm. We then
calculated the average MAE, RMSE, and PCC for each algorithm, with N% removed arcs
from every dataset. The results reported in Figure 5 show that, compared to the four
other ones, the proposed GCR and AGR algorithms provide the best MAE, RMSE, and PCC in
every case —in fact, their respective lines are even overlapping. These performances are,
moreover, barely affected as we remove more arcs from the networks. In other words,
our approach is reasonably robust to networks sparsity.

4Note that the N% arcs removed in iteration i + 1 are different from those removed in iteration i. In every
iteration, the arcs are randomly selected then removed from the graph.
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Figure 5. Leave-N%-out results. A grid of plots where: the x-axis are the percentage of removed arcs
(going from 10% up to 90% in steps of 10%) from the datasets (rows). The three columns
of plots show how the average MAE, RMSE, and PCC change as we remove more arcs from the
datasets. Error bars (SEM) are too small to be seen.
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5. Discussion

Back in the introduction, we have enumerated three desirable qualities in a trust
prediction algorithm; namely, 1) accuracy, 2) robustness to network sparsity, and 3)
speed. In this section, we discuss how these properties hold for the studied algorithms.

5.1. Accuracy
As shown in the previous section, the results from both the leave-one-out and the

leave-N%-out experiments show that, on the four used datasets, the proposed approach
and the AGR one are the most accurate among the studied algorithms. The difference in
accuracy between the AGR and the GCR approaches is quite negligible as shown in Table 3
and the plots in Figure 5. The GCR approach outperforms the AGR one on the Bitcoin-
Alpha dataset, and is ex-æquo with it on the Wikipedia-RFA one. On the other hand, the
AGR approach presents a gain of 0.02 in MAE and one of 0.01 in RMSE on the Bitcoin-OTC,
and Robots.net datasets. These differences should be negligible in a trust range equal to
2 (the adopted trust interval being [−1,+1]).

A precision worth making is that the nature of the networks population and activities
are inherent factors that define trust relations emergence and evolution. For instance,
the performances of the proposed approach are close to those of the reciprocal algorithm
(REC) on the Bitcoin datasets (and only on these two datasets). That is because the
Bitcoin datasets, contrary to the other two datasets, present a high reciprocity ratio (See
Table 2). A property that allowed the reciprocal algorithm to perform quite well on the
Bitcoin datasets, and poorly on the other datasets. A possible explanation for this might
be that the nature of trust relations are different in these networks. Indeed, we can argue
that since the Bitcoin datasets are about trust in trade, one would expect the buyer and
the seller, once satisfied, to rate each-other equally —out of courtesy, if for nothing else.
However, networks like Wikipedia and Robots.net are about knowledge and authority. In
these networks, a very knowledgeable node does not feel the need, nor is it supposed,
to return the favor by rating back its trustors more than they actually deserve. The
proposed algorithm acknowledges reciprocity as a fact in social interactions, but it also
takes into account two other aspects: gullibility and competence. The association —or the
competition— between these three traits is what makes it more accurate than the other
approaches.

5.2. Robustness
The slope of the curves in Figure 5 show that the performances of the GCR and AGR

approaches are satisfyingly stable. Indeed, the MAE and RMSE values for these approaches
seem unaffected by the number of removed arcs. Moreover, compared to the results of
the other four algorithms, these values are better (smaller) in all cases.

A possible explanation for this might be found in the design of the algorithms them-
selves. Put simply, the more an approach depends on more arcs, the more it is likely
to be affected by the unavailability of said arcs. Take, for example, the REC algorithm.
This one depends only on one arc (the reciprocal one), the plots show, indeed, a some-
what stable behavior for this algorithm, yet this stability also holds when the algorithm
performs poorly. Second, the global-metrics oriented algorithms (BaD, FxG) are the ones
that are more affected by network sparsity as shown in Figure 5. The reason for this is
that to compute a node’s global metrics (BIAS/DESERVE, and FAIRNESS/GOODNESS), these
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algorithms spread their computations to large areas of the networks. Therefore, as more
arcs become unavailable, the reliability of these global metrics decreases, and so do the
performances of these algorithms.

Interestingly, the STAR algorithm shows somewhat stable performances. At first, we
expected that removing more arcs would break more trust paths, and since the STAR

algorithm is propagative, its performances would decrease. However, the STAR algorithm
actually sorts paths by their certainty. Thus, whenever a path is broken, another one is
picked. With this said, a closer look at the plots in Figure 5 reveals that the performances
of the GCR and AGR are, not only better than those of STAR, but are actually even better at
90% removed arcs than what STAR provides at 10% removed arcs. In summary, The GCR

approach (and the AGR one) that we propose are more robust thanks to their main design
choice: making prediction rely on the sole direct neighbors of the trustor, and those of
the trustee.

5.3. Speed
Another desirable feature of trust prediction algorithms is speed. Without a doubt,

the REC algorithm wins this race hands down. However, accuracy is more important than
speed —A slightly delayed, yet wise, decision is always better than a hastened and bad
one. Still, as shown in Figure 4, the proposed GCR approach is actually almost as fast as
the reciprocal one, yet provides more accurate predictions than the other algorithms.

Again, the design of these algorithms is to thank (or to blame) for efficiency as well.
The global-metrics oriented (BaD and FxG), and the STAR algorithms spread their calcu-
lations to larger areas of the networks and are hence slower. Whereas, the REC and the
proposed GCR approaches are localized and thus faster. As for the AGR approach, although
its performances and robustness are close to that of the proposed GCR approach, its ef-
ficiency seems poor in comparison. This lack of efficiency of the AGR algorithm is due
to its heavy processing. Indeed, the time complexity of the AGR approach for computing
a trust value from a node u to another one v is O(2

∣∣−→Γ (u)
∣∣∣∣←−Γ (v)

∣∣), whereas the time

complexity of the GCR one, for the same task, is only of O(
∣∣−→Γ (u)

∣∣+
∣∣←−Γ (v)

∣∣).
Another point worth highlighting is that social networks are humming with activity

and changes in trust relations. These changes should they happen —and they do—
must be taken into account by trust prediction algorithms. Global-metrics-oriented and
propagative approaches would require a lot of processing for every change, whereas
localized approaches such as the REC, AGR, and GCR would only need to operate on the
direct neighbors of the trust relation individuals.

As discussed in the introduction, speed is important. Yet, one might wonder how
much accuracy can we sacrifice for speed. Indeed, the AGR algorithm presents a gain of
about 0.02 in MAE, and about 0.01 in RMSE in two datasets (among four). We believe
that these negligible gains pale in comparison to the big speed gains offered by the GCR

approach (cf. Fig 4).
Storing and reusing the results of intermediate and heavy computations would prob-

ably be the best thing to do in a static trust graph with few to no activity or changes
in topology and social relations. However, in the context of highly dynamic platforms
such as social networks, where trust fluctuates, and where change is the constant rule,
we believe that providing the most accurate, robustest, and quickest recommendations
would require a real-time computation of trust using the freshest information available.
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5.4. Closing remarks

We conclude this discussion with a few notes about some characteristics and limita-
tions of the proposed GCR approach.

5.4.1. Trust properties
The novelty of the GCR approach makes us wonder whether the commonly known

properties of trust hold for the proposed approach. Regarding the subjectivity property,
the adoption of personal traits of both individuals is quite an admission (and use) of this
aspect of trust. The approach stands on the idea that people are different (the “values” of
their traits are) and that these traits affect trust. Furthermore, our work agrees with the
directed aspect of trust since it considers trust graphs as wighted and directed ones, and
does not take reciprocity for granted. Finally, the proposed approach is not transitivity-
based. This aspect of trust as described by Guha et al. (2004) and others is, therefore,
not affected.

5.4.2. Traits choice
In our work, we have considered only three traits among the multitude of traits that

affect trust. Our choice was in fact driven by the following reasons:

1. These traits (gullibility, competence, and reciprocity) are simple to comprehend
and to formulate. They are commonly known and often easily noticeable.

2. The extreme values associated with these traits are known without any computa-
tion. Indeed, the values M and m are given, and the reciprocate trust value t(v, u),
when known, requires no computation.

3. The effects of these traits on trust are known, as expressed in the 5 natural obser-
vations enunciated in Subsection 3.4 and that led to the proposed algorithm.

Otherwise, we profoundly think that there are many other traits that affect trust.
As a matter of fact, we believe that if we know all these traits and their effects, then
we should be able to predict trust with a very high accuracy. Therefore, we think that
exploring more traits and including them in a future work would enhance even more the
accuracy and the robustness of the proposed approach.

5.4.3. Traits dependence
Another aspect worth discussing about this approach is traits dependence. We should

acknowledge that, for simplicity sake, the approach considered that the three traits were
independent. Are they? First, the competence (or incompetence) of a trustee is indeed
independent of the gullibility (or paranoia) of a trustor. A trait of a person barely affects
a trait of another one from which he/she is socially distant. Someone being competent
would not make another one (which he/she does not know) more gullible than he/she
is, and vice versa.

However, the reciprocity of a trustor and his/her gullibility (or paranoia) are not
proven to be independent. Even though the experimental results were satisfying, we still
think that the accuracy of the algorithm could be improved by analyzing the relationship
between these two traits in the same individual. In fact, this rises an interesting question:
“Are gullible people more prone to reciprocate trust? How do gullibility and reciprocity
correlate?” Statistical, and social, studies may shed more light on the subject, and their
results would definitely help improve the proposed approach.
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6. Conclusion

With the advent of social networks, predicting the amount of trust (or distrust) that
a user should put in another one becomes a pressing need. Indeed, knowing how much
should one trust or distrust someone else is essential for a better online presence. Un-
fortunately, in addition to their inability to properly handle distrust, most traditional
prediction methods often suffer from some known limitations such as their inability to
properly handle and predict distrust, their poor efficiency and robustness to network
sparsity.

This paper presents a novel approach that aims to address these issues. Indeed, exper-
imental evaluation on four real-world datasets have proven that the proposed algorithm
is very efficient and satisfyingly accurate and robust to network sparsity. Its main strength
is its astounding simplicity and intuitivity. Indeed, rather than opting for classical trust
propagation, our algorithm involves some social traits in a kind of a tug of war game
where the most prevailing social trait would have more influence on trust relations. This
novel strategy does not inherit the limitations of most propagative approaches, as it is
not subject to trust decay, opinion conflict, path dependence, and time complexity.

Furthermore, the proposed approach is easily extensible by taking into account more
social traits that affect trust and involving them in the tug-of-war game that we have
adopted. For instance, the popularity of a node, the partiality of a trustor, the bandwagon
effect, to cite a few, are some social aspects worth investigating in a future work.
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