
HAL Id: hal-03034577
https://hal.science/hal-03034577

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Very Fast and Robust Trust Inference Algorithm in
Weighted Signed Social Networks using Controversy,

Eclecticism, and Reciprocity
Karim Akilal, Hachem Slimani, Mawloud Omar

To cite this version:
Karim Akilal, Hachem Slimani, Mawloud Omar. A Very Fast and Robust Trust Inference Algorithm
in Weighted Signed Social Networks using Controversy, Eclecticism, and Reciprocity. Computers &
Security, 2019. �hal-03034577�

https://hal.science/hal-03034577
https://hal.archives-ouvertes.fr


A Very Fast and Robust Trust Inference Algorithm in
Weighted Signed Social Networks using Controversy,

Eclecticism, and Reciprocity.

Karim Akilala,∗, Hachem Slimania,, Mawloud Omarb,
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Abstract

The importance of trust in social networks instigated many research efforts to understand
it and predict it. However, the complex nature of trust and its counterpart; distrust;
makes these tasks challenging. While early trust inference approaches ignore distrust, it
seems that this concept gained much attention in recent years. Surely, knowing whom
to distrust is as important as knowing whom to trust. We show in this paper that trust
and distrust can be quickly predicted using some social traits of the trustor and the
trustee. Using a “tug of war” analogy involving these traits, we have devised an intuitive
approach that uses only the direct neighbors of the trustor and those of the trustee to
predict both trust and distrust. Experiments on four real-world social networks show that
our algorithm is very fast, provides good predictions, and is robust to network sparsity.
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1. Introduction

Online social networks are a prominent fact of our modern life. Billions of people
all over the world interact, produce, and consume information everyday thanks to these
networks. However, these advantages come with some downsides. Indeed, dangers exist,
as noted by Huang et al. (2013), because of malicious actors who take advantage of the
open nature of these social networks to mislead, or even harm, others. How, and why,
should a user trust another one with information they may share with, or receive from,
them? Organizational mechanisms, such as moderation, may be of some help, but they
are prone to corruption (Shneiderman, 2015), and may become inefficient as data flows
become voluminous. We thus need, as suggested by Matei et al. (2015), tools that can
support timely, effective, and efficient knowledge extraction processes from such data, to
help users by predicting and recommending how much should they trust each other.

Furthermore, as suggested by Massa and Avesani (2005), predicting distrust is as im-
portant as predicting trust. Indeed, social networks users should be able to discern whom
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to trust, and whom to —not passively ignore, but— actively distrust. Unfortunately, as
noted by Ziegler (2013), most early approaches completely ignore distrust or consider
it as the absence of trust (neutrality). In the real world, however, to distrust someone
is definitely different from being neutral toward them. Distrust, as Cho (2006); Haw-
ley (2013) put it, is not mere absence of trust. It is fundamentally characterized by a
sentiment of unease, pessimism, and, to some extent, fear as explained by Lewicki et al.
(1998); Lewicki and Brinsfield (2012). These aspects are not present when being neutral
toward others. Distrust calls for precautions to be taken. Therefore, alerting users and
recommending precaution by predicting distrust is important. In fact, we can argue, as
did DuBois et al. (2011), that predicting distrust is often more important than predicting
trust, because actually knowing whom to distrust —and to which extent— is the key to
mitigate the very risk of trust: betrayal (and harm in some cases) (Jones, 1996; Mayer
et al., 1995).

Unfortunately, incorporating distrust into most early approaches is often impractical
or even impossible (Guha et al., 2004; Chiang et al., 2014; Tang et al., 2016b). Therefore
the need for novel solutions that are able to process and predict both trust and distrust.
Additionally, we consider that these solutions should satisfy three more conditions:

1. Accuracy: provide the best possible prediction as to how much a user should trust
or distrust another one.

2. Robustness: the accuracy of the algorithm should not be very affected by the un-
availability or invisibility of some, or most, regions of the network.

3. Speed: we expect the algorithm to provide a trust prediction very quickly as the
user’s –often fast– (re)actions will depend on it.

Satisfying these conditions at once is a tough challenge. Indeed, algorithms may need
to make costly computations to predict trust accurately, therefore lack the desired speed
that we expect. They may also need to use most of the network edges, thus produce
inaccurate predictions when these edges are not available. These are, in fact, some limi-
tations of propagative trust prediction methods that also suffer from path dependences,
trust decay on long paths, opinion conflict (Jiang et al., 2016a), and somewhat fail to
handle distrust because of its lack of transitivity (Ziegler and Lausen, 2005; DuBois et al.,
2011; Tang et al., 2014).

To tackle these issues, we think that trust prediction algorithms should opt for a more
localized approach. They should extensively use the direct neighbors of the trustor and
those of the trustee. By doing so, these algorithms will not have to use expensive graphs
traversals, nor depend on edges that may be unavailable due to technical or privacy
concerns.

Trust is often seen from the viewpoint of the trustor. For instance, in a quest for
a cross-disciplinary definition of trust, Rousseau et al. (1998) concluded that a widely
held definition is that “Trust is a psychological state comprising the intention to accept
vulnerability based upon positive expectations of the intentions or behavior of another”. It
is also stated as “the evaluation by a trustor u of the willingness and/or ability of a trustee
v to perform a task x” (Faulkner, 2014; Robbins, 2016; Bauer, 2017). This construct,
while sound, understandably considers that u is the subject and v is the object of the verb
trust. Such a characterization of trust gives the whole decision power to the trustor, and
makes the trustee undergo it.
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In this work, we take a different approach that considers that the act of trust (or
distrust) is a joint decision made by both parties (the trustor and the trustee). Our
reasoning was inspired by a recent TED talk by El Ghalid (2017). The speaker explains
how fungi locate, grow toward, and infect a tomato plant using sensors that react to
molecular signals emitted by the plant. One would think that the plant is a victim of
fungi. But in light of this work, it is clear that the tomato plant is actually responsible
of —or at least accomplice in— its own sad fate. Likewise, we think that trustees are
not mere bystanders objects of trust; but real actors that take part in the decision to
be (dis)trusted. Therefore, instead of seeing trust as a thing that flows from the trustor
to the trustee (and thus instinctively try to propagate it), we see it as a thing that both
individuals fight over.

Such a model makes the act of trust look like a tug of war game. A game where both
opponents (the trustor and the trustee) try to pull the other to its side. We show that
by considering three social traits, namely: controversy, eclecticism, and reciprocity, we
are able to devise a simple and very fast algorithm that produces good predictions. Our
algorithm operates only on the direct neighbors of the trustor and the trustee instead of
propagating trust along paths of the network. Being localized is, indeed, what makes it
fast and robust to network sparsity.

The remainder of this paper is organized as follows. In Section 2, we give a brief
review of some related work. Next, in Section 3, we describe our approach, by first
defining and formalizing the three social traits (controversy, eclecticism, and reciprocity),
then explaining how these traits may be used in predicting trust. In Section 4, we conduct
some experiments to evaluate the performances, the efficiency, and the robustness of
the proposed approach. We discuss the results of these experiments in Section 5, and
conclude this paper in Section 6 with a summary and some perspectives of future work.

2. Related work

As noted by Kramer and Cook (2004), contributions from various disciplines con-
verge to the conclusion that trust often constitutes an important resource within social
systems. However, while trust as a concept makes some consensus among scholars and
disciplines (Rousseau et al., 1998), distrust still divides them. For instance, Guo et al.
(2017) cite three major camps each with its own vision of distrust. The first camp con-
siders trust and distrust as the opposite ends of the same continuum, with distrust and
complete lack of trust being the same thing (Schoorman et al., 2007). The second camp
also views distrust as the opposite of trust, but considers the existence of a middle region
in the spectrum where an individual neither trusts nor distrusts another one, i.e., a state
of neutrality (Robbins, 2016). The third camp considers distrust as a separate concept
from trust. Their argument is that these two concepts have different antecedents and
outcomes, and that both trust and distrust can —and often do— coexist in the same re-
lation between two individuals (Lewicki et al., 1998; McKnight and Choudhury, 2006).
A coexistence that, according to Schoorman et al. (2007), is not enough to separate the
two concepts, and that they attribute to relations being multifaceted or multiplex. For
their part, Cho (2006), Hawley (2013), Robbins (2016) among other scholars disagree
with Schoorman et al. (2007) on the idea that distrust is the lack of trust. To quote Cho
(2006): “Distrust is not just the absence of trust but the active expectation that the other
party will behave in a way that violates one’s welfare and security”.
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The debate is still ongoing, and so are efforts to predict trust and distrust. Indeed,
according to Tang and Liu (2015), there are many ways to predict trust. Some are
supervised, some are not. Some make use of interaction data (Jones et al., 2013; Huang
et al., 2018) or emotions (Beigi et al., 2016), some make do with only trust relations in
the network. For the sake of brevity, and to better position our work, we invite the reader
to some interesting surveys like those by Jiang et al. (2016a) and Tang et al. (2016b),
and focus hereafter on some unsupervised graph-based trust prediction approaches.

Unsupervised graph-based trust inference itself can be carried out in two different
ways. First, using local metrics which answer how would a node u trust another one
v. Second, using global metrics which answer how trustworthy, or leaning to trust, is
a given node (Massa and Avesani, 2007; Tang and Liu, 2015). That is, the first family
of methods operates at the edge-level, while the second family operates at the node-
level. In what follows, we give a brief review of some works on the subject. We start
with local and global approaches that were designed for unsigned networks (trust only),
then extend our review to some other methods that apply for signed networks (trust and
distrust).

2.1. Trust prediction in unsigned networks
As stated earlier, most early trust inference approaches tend to ignore distrust or

simply consider it as the mere absence of trust. Among the most known graph-based
local approaches there are TidalTrust (Golbeck, 2005a), MoleTrust (Massa and Avesani,
2007), SWTrust (Jiang et al., 2014), GFTrust (Jiang et al., 2016b), TiSoN (Hamdi et al.,
2016), and many other algorithms all based on the transitive aspect of trust. A principle
that states that if a node u trusts another node v that trusts a third one w, then the node
u may trust w to some extent (Golbeck, 2005b). These algorithms are often two-phased
processes. The first phase is that of propagation of which Guha et al. (2004) defined
the four atomic operations: direct propagation (transitivity), transpose, co-citation, and
trust coupling. This phase consists in exploring different paths from a source node to
a sink node in order to estimate how would the source trust the sink using these prop-
agation rules. The second phase consists in aggregating the different results obtained
from different paths into a single final value. As noted by Jiang et al. (2016a), these
approaches suffer from path dependence, trust decay, and opinion conflict. As for global
approaches, many metrics have been proposed in the literature. For example, the PageR-
ank (Page et al., 1999) and the HITS (Kleinberg, 1999) algorithms that were proposed to
rank web pages, are often considered for social networks as well (Hu et al., 2018; Zhao
et al., 2018). Similarly, the EigenTrust algorithm by Kamvar et al. (2003) has also known
many variants (Chiluka et al., 2012; Kurdi, 2015). Note that, as argued by Tang and Liu
(2015), trust is a subjective matter, and global metrics fail to to describe how would a
specific node u trust another one v, for v is likely to be trusted differently by nodes of
the network. Moreover, these metrics were devised for unsigned networks, and can not
be used as-is on signed networks, unless we choose to ignore the negative edges (Tang
et al., 2016b). Such a choice means that the precious information conveyed by negative
links will be lost, and accuracy would decline as such.
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2.2. Trust prediction in signed networks
As empirically confirmed by Tang et al. (2014) and later by Gao et al. (2016), while

trust may be transitive, distrust is often not. Indeed, Gao et al. (2016) have reported that
in an Epinions dataset, if a node u distrusts another one v which also distrusts a third
one w, then there are about 50% of cases where u trusts w, and about as much cases
where u distrusts w. This uncertainty makes applying propagative approaches on signed
networks even more challenging.

Still, the advent of signed social networks, and the benefits that negative links bring
to network analytics (Papaoikonomou et al., 2013; Kunegis et al., 2013; Tang et al.,
2016a) have instigated many efforts to predict trust in signed networks. In their work,
Zolfaghar and Aghaie (2010) introduced some metrics such as the popularity and the
gregariousness of a node. These metrics, while including negative links, do not consider
edges’ weights. For weighted and signed networks (WSNs), Mishra and Bhattacharya
(2011) introduced two global metrics: BIAS and DESERVE. These two metrics respectively
describe the bias of a trustor, and the prestige of a trustee. Some other efforts were
devoted to adapt the PageRank and the HITS algorithms to take into account negative
links (de Kerchove and Dooren, 2008; Shahriari and Jalili, 2014) . More recently,
Kumar et al. (2016) defined two new global metrics: FAIRNESS and GOODNESS, and a
way to infer local trust simply by multiplying the fairness of the trustor by the goodness
of trustee. Speaking of local trust, an interesting approach based on subjective logic
algebra (Jøsang, 1999), built on opinions being represented by triplets of (trust, distrust,
uncertainty), was proposed by Jøsang and Pope (2005), which also discussed trust and
distrust transitivity and proposed a set of semantic requirements for trust transitivity that
were later detailed in (Jøsang, 2016). Ziegler and Lausen (2005) proposed Appleseed,
a propagative algorithm that is inspired by spreading activation models which roughly
considers trust as an energy passing from nodes to their trustees. Appleseed handles
distrust by passing it as a negative energy. Another interesting propagative approach was
recently proposed by Gao et al. (2016). In their STAR algorithm, the authors defined a
semiring (an algebraic structure) that operates on 2D values: trust and certainty. The
trust that a node u puts in another one v is expressed by a pair of values (tuv, cuv), where
tuv ∈ [−1,+1] is the amount of trust/distrust, and cuv ∈ [0,+1] is the certainty value of
tuv. To assess the certainty dimension, the authors used the path length to a target node,
and the degree of that target node. The semiring that they defined favors arcs with
bigger certainty values and circumvent the intransitivity of distrust by simply ignoring
paths with two successive negative links.

In summary, the dilemma of predicting trust and distrust is twofold: 1) In addition
the their forecited downsides, propagative approaches also fail to completely embrace
distrust because of its lack of transitivity. 2) Global metrics fail to describe how precisely
should a given node u trust another node v, because v may in fact be controversial (Massa
and Avesani, 2005).

Faced with this situation, we have decided to abandon the propagation route. We
propose that local trust may still be predicted using three simple node-level metrics:
controversy, eclecticism, and reciprocity. These metrics when used together, or more
precisely one against the others, provide very fast, good, and robust trust and distrust
predictions. Details of this approach are given in the next section.
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3. Our proposed approach

3.1. Notation and preliminaries
Our approach is graph-based. It treats social networks as weighted and signed di-

rected networks (WSN). Nodes of these WSNs are individuals and arcs are trust relations
between these individuals. We consider trust and distrust as two continuous and oppo-
site states represented by real values in the interval [−1,+1]. The more a node u trusts
another node v, the more this value is positive. And the more u distrusts v the more the
value is negative. Table 1 summarizes the adopted notation.

Notation Meaning
G(N , E,W) A weighted directed graph G with nodes in N connected by arcs in E that are weighted

using the mappingW.
W(u, v) Weight of the arc going form node u to node v.
−→
Γ (u) Set of the trustees of the node u.
←−
Γ (v) Set of the trustors of the node v.
R Trust range. R = max(W)−min(W).
←−µ (v) Mean of trust received by v from its trustors.
−→µ (u) Mean of trust put by u in its trustees.
←−σ (v) Controversy of the trustee v.
−→σ (u) Eclecticism of the trustor u.
ρ(u) Reciprocity of the trustor u.

Table 1. Notation used throughout this paper.

3.1.1. Iverson brackets
To simplify mathematical writing, while keeping it rigorous, we use Iverson Brack-

ets (Knuth, 1992). This notation makes an integer (0 or 1) from a logical statement P
put between brackets as follows:

[
P
]

=

{
1 if P is true,
0 if P is false.

Note that we use the “strong zero” convention adopted by Knuth (1992), Graham
et al. (1994), and others; and that states that if P is false then

[
P
]
f(x) would be equal

to 0 even if f(x) is undefined. To quote Donald E. Knuth:

In general, when an Iverson-bracketed statement is false, we want it to evalu-
ate into a “very strong 0,” namely a zero so strong that it annihilates anything
it is multiplied by –—even if that other factor is undefined (Knuth, 1992).

3.2. Problem definition
Let G = (N , E ,W) be a directed graph representing a social network, where N is a

set of nodes, E a set of arcs between nodes of N , and W : E 7→ [−1,+1] a mapping
that associates to each arc (u, v) a weightW(u, v) that represents the trust (W(u, v) > 0)
or distrust (W(u, v) < 0) that the node u puts in the node v. The present work aims
to quickly predict how much would a node u (dis)trust another node v. In addition to
accuracy and speed, our approach needs to be robust to network sparsity. To simplify
our narrative, we will use trust to denote both states: trust (positive values) and distrust
(negative values).
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3.3. Metrics based on social traits
We define hereafter the three social traits that we use to characterize the nodes,

namely: controversy, eclecticism, and reciprocity. Right after this, we describe how trust
can be predicted using these traits.

Definition 3.1. A node v is said to be controversial if its trustors do not share the same
opinion about it. That is, the more diversified the trust values that its trustors put in it,
the more controversial v is. Formally, we define the controversy ←−σ (v) of a node v using
the standard deviation of the trust values that v receives from its trustors. That is:

←−σ (v) =
2
[←−

Γ (v) 6= ∅
]

R

√√√√ 1∣∣←−Γ (v)
∣∣ ∑

u∈
←−
Γ (v)

(
W(u, v)−←−µ (v)

)2
. (1)

Definition 3.2. A node u is said to be eclectic if it is willing to evaluate different kinds
of nodes. This difference being stated by u itself. Similarly to controversy, the eclecticism−→σ (u) of a node u is described by the standard deviation of the trust that u puts in its
trustees. i.e,

−→σ (u) =
2
[−→

Γ (u) 6= ∅
]

R

√√√√ 1∣∣−→Γ (u)
∣∣ ∑

v∈
−→
Γ (u)

(
W(u, v)−−→µ (u)

)2
. (2)

Remark. The values of←−σ (v) and −→σ (u) are in [0,+1]. This is because the standard devi-
ation is always in the interval [0,R/2] (Al-Saleh and Yousif, 2016). The bigger←−σ (v) is,
the more controversial v is. The bigger −→σ (u) is, the more eclectic u is.

Definition 3.3. A node u is said to be acting with reciprocity if it reciprocates the trust
that it receives from its trustors. The reciprocity ρ(u) of a node u is calculated as follows:

ρ(u) =
[−→

Γ (u) 6= ∅
](

1−
∑

v∈
−→
Γ (u)

∣∣W(u, v)−W(v, u)
∣∣

R
∣∣−→Γ (u)

∣∣ )
. (3)

The reader can easily verify that ρ(u) ∈ [0,+1]. The more u reciprocates trust, the
more ρ(u) converges toward +1. The less it does, the more ρ(u) converges toward 0.

3.4. Trust prediction as a tug of war game
We consider that the decision to trust is influenced by these social traits that we have

defined. The rationale behind this idea is summarized by the following observations:

1. The less controversial v is, the more likely thatW(u, v) will be equal to←−µ (v).

2. The less eclectic u is, the more likely thatW(u, v) will be equal to −→µ (u).

3. The more u acts with reciprocity, the more likely thatW(u, v) will be equal toW(v, u).
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As illustrated in Figure 1, each of these three traits is trying to pull the valueW(u, v)
toward its respective extreme value. These forces apply only when their respective ex-
treme values are meaningful. Therefore, we define:

←−ς (v) = (1−←−σ (v))
[←−

Γ (v) 6= ∅
]

−→ς (u) = (1−−→σ (u))
[−→

Γ (u) 6= ∅
]

%(u, v) = ρ(u)
[
W(v, u) 6= 0

] (4)

W(u, v)

←−µ (v)−→µ (u)

W(v, u)

←−ς (v
)

−→
ς (u)

%
(u
,v
)

Figure 1. Trust as a three-way tug of war. The decision to trust/distrust is a struggle between three traits
of the two actors: controversy (trustee), eclecticism (trustor), and reciprocity (trustor). Each
one of these traits is a force that pulls the trust value W(u, v) toward its associated extreme
value. For instance, the absence of controversy of v pullsW(u, v) toward←−µ (v), the absence of
eclecticism of u pulls this value toward −→µ (u), and the reciprocity of u pulls it towardW(v, u).
These forces and their associated extreme values can be simply and quickly computed. Other
forces and extreme values (gray squares in the figure) may also apply but they would be more
complex and slower to compute.

To predict the trustW(u, v) that the node u would put in v, we weight each of these
extreme possible values (←−µ (v), −→µ (u), and W(v, u)) by their respective forces: ←−ς (v),−→ς (u), and %(u, v). That is:

W(u, v) =
←−ς (v)←−µ (v) +−→ς (u)−→µ (u) + %(u, v)W(v, u)

←−ς (v) +−→ς (u) + %(u, v)
. (5)

The time complexity of this algorithm when trying to predict the trust that a node u
would put in another one v is O(

∣∣−→Γ (u)
∣∣+
∣∣←−Γ (v)

∣∣).
8



4. Experimental evaluation

4.1. Datasets description
Following are the four datasets that we have used in our experiments. The first three

originate from the Stanford Large Network Dataset Collection1, and the last one from
Trustlet2. Table 2 summarizes some statistics of these datasets.

Bitcoin Alpha and OTC : Bitcoin is an anonymous cryptocurrency which is used by peo-
ple around the globe to trade goods and services. Unfortunately, anonymity has
some serious drawbacks such as the risk of fraud. These risks led to the emergence
of some websites where users rate each other based on the trust that they put in
them. We use two datasets from two sites: Bitcoin-Alpha and Bitcoin-OTC that
were collected and scaled by Kumar et al. (2016) to fit in the interval [−1,+1].

Wikipedia-Rfa : To be elected as a Wikipedia administrator, a user (or another member
of the community on his behalf) submits a Request for adminship (Rfa). Members
of the community cast their votes on the Rfa by a rating (+1 positive, 0 neutral, or
−1 negative) and a comment. Kumar et al. (2016) analyzed these comments using
the VADER sentiment engine (Gilbert, 2014) and generated a WSN with weights
in [−1,+1].

Robots.net : Robots.net is a community of robotics enthusiasts who certify each other
using the levels observer, apprentice, journeyer, or master. We mapped these levels
to real numbers (0.1, 0.4, 0.7, and 0.9 respectively). We ended up with a dataset,
that while unsigned, allowed us to see how the studied algorithms behave with
such data.

Network Nodes Arcs Reciprocity Ratio
Bitcoin-Alpha 3783 24186 59.57%
Bitcoin-OTC 5881 35592 56.89%
Wikipedia-Rfa 9654 104554 0.07%
Robots.net 1725 3596 7.78%

Table 2. Statistics about the used datasets. The reciprocity ratio column indicates how much trust is
reciprocated in the network. That is, the percentage of arcs such thatW(u, v) =W(v, u).

4.2. Evaluated algorithms
To evaluate the performances and the efficiency of the proposed approach, we con-

duct various tests using the following algorithms:

Reciprocal the easiest to implement for it relies on the assumption that if a node u
trusts another node v, then v will probably trust u back as much as it trusts it. i.e.,
W(u, v) =W(v, u) if the arc from v back to u exists, and 0 otherwise.

1http://snap.stanford.edu/data/
2http://www.trustlet.org/datasets/

9



Bias and Deserve (BaD) we took DESERVE(v) as the inferred trust value as described
in Mishra and Bhattacharya (2011).

Fairness-Goodness (FxG) the trust from u to v is the product of the FAIRNESS of u by
the GOODNESS of v as proposed by Kumar et al. (2016).

STAR we took the inferred trust value as proposed by Gao et al. (2016).

Tug of War (ToW) our own approach described in Section 3.

4.2.1. Performance evaluation metrics
Given a network G(N , E ,W) with

∣∣N ∣∣ = N . To compare the performances of the
above algorithms, we have used the following metrics:

Mean Absolute Error (MAE) is the mean of the absolute differences between the actual
trust values xi and the inferred ones yi, i ∈ [1 · · ·N ]:

MAE =
1

N

N∑
i=1

|xi − yi|.

Root Mean Squared Error (RMSE) is the root mean of the squared differences between
the actual trust values xi and the inferred ones yi, i ∈ [1 · · ·N ]:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2.

Pearson Correlation Coefficient (PCC) ranges between −1 and +1 and indicates how
the actual trust values xi correlate with the predicted ones yi. The more the PCC
converges toward +1, the more the two values are correlated:

PCC =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

,

where x̄ and ȳ are the arithmetic means of xi and yi respectively, and i ∈ [1 · · ·N ].

4.3. Experiments
Inspired by the work done by Kumar et al. (2016), we studied two scenarios during

these experiments. First, we wanted to see how the evaluated algorithms would predict a
yet-to-exist arc’s weight given the rest of the network’s arcs weights. Second, we studied
how these algorithms behave when some, or most, of the network arcs are invisible (or
unavailable). Note that unlike Kumar et al. (2016) who did weight prediction of edges
that already exist, we are trying to predict weights of arcs that do not exist yet. Following
are the details and the results of these experiments.
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4.3.1. Leave-One-Out predictions
This is a classic trust prediction task in social networks. It consists in hiding an arc

from the trust graph, and predicting its weight. It answers the question “How much would
a node u (dis)trust another node v” given all the other trust values in the network.

We have run the five algorithms on every arc of the used datasets. For every dataset,
we have removed one arc at a time, and have predicted its weight. We then calculated
the MAE, RMSE, and PCC metrics for every pair of algorithm and dataset. As shown in
Table 3, the proposed approach outperforms all the other algorithms on every metric
(MAE, RMSE, PCC), and on every dataset.

Bitcoin-Alpha Bitcoin-OTC Wikipedia-Rfa Robots.net
Reciprocal (0.12, 0.27, 0.47) (0.15, 0.32, 0.46) (0.56, 0.63, 0.071) (0.50, 0.60, 0.01)
FxG (0.19, 0.33; 0.24) (0.22, 0.38, 0.31) (0.18, 0.24, 0.43) (0.28, 0.33, -0.04)
BaD (0.20, 0.34, 0.24) (0.23, 0.40, 0.32) (0.18, 0.23, 0.44) (0.21, 0.31, 0.15)
STAR (0.21, 0.32, 0.25) (0.23, 0.35, 0.22) (0.24, 0.32, 0.22) (0.43, 0.50, 0.44)
ToW (0.12, 0.24, 0.60) (0.14, 0.27, 0.66) (0.17, 0.22, 0.54) (0.16, 0.22, 0.48)

Table 3. Results from the leave One-Out tests. Inside each cell of this table is a tuple (MAE, RMSE, PCC)
of the output of an algorithm (row) on a dataset (column). Lower MAE and RMSE, and higher
PCC, are better.

Efficiency comparison. While doing the previous experiment, we took the opportunity
to study the efficiency of the five algorithms. We measured the time they take to do a
leave-one-out prediction on every arc of the four used datasets. These tests were per-
formed on an intel(R) i5-2450M CPU with 8GB of RAM. Figure 2 summarizes the time
taken by these algorithms on the four datasets. It clearly demonstrates that the proposed
approach is very close in terms of speed to the reciprocal algorithm which, obviously, is
the fastest since its time complexity on a single arc is literally O(1). In fact, apart from
the reciprocal algorithm, our approach is two orders of magnitude faster than the other
three algorithms.
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ToW Reciprocal FxG BaD STAR

Figure 2. The time taken by each studied algorithm to perform a leave-one-out prediction on every arc of
the used datasets. The y-axis is logarithmic and the durations are expressed in powers of 10
milliseconds.
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4.3.2. Leave N% Out predictions
How good would be trust predictions when some, or most, of the network’s arcs

are not available? Reasons for such cases are various. They may range from privacy
concerns to technical and performances limitations —especially for very large networks.
Compared to the previous experiments, the quality of trust predictions in sparse networks
may degrade as there is not much prior information to infer from.

In order to understand how these algorithms are affected by sparsity, we randomly
remove N% arcs at once, and try to predict them. Specifically, we have taken out 10%,
20%, and so on, up to 90% arcs of every dataset, and have tried to predict their weights.
We have repeated these tests 100 times for every percent, dataset, and algorithm. We
then calculated the average MAE, RMSE, and PCC for each algorithm, on each dataset with
N% hidden arcs. As reported in Figure 3, compared to the four other ones, the proposed
approach provides the best MAE, RMSE, and PCC in every case, and is barely affected by the
number of removed arcs. That is, our approach is sufficiently robust to networks sparsity.
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Figure 3. Leave-N%-Out results. A grid of plots where: the x-axis are the percentage of removed edges
(going from 10% up to 90% in steps of 10%). The three rows of plots describe how the MAE,
RMSE, and PCC respectively change as we remove more edges from the datasets. Each column
represents the results for a given dataset.
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5. Discussion

Apart from handling distrust, we have considered in the introduction that trust pre-
diction algorithms should be 1) as accurate as possible, 2) as robust to sparsity as possi-
ble, and 3) as fast as possible. In what follows, we discuss how these properties hold for
the investigated methods.

5.1. Accuracy
Results from the two types of experiments show that the proposed approach outper-

forms the other studied ones. As shown in Table 3, it is the most accurate one among the
investigated methods in a leave-one-out scenario. We should, however, highlight the fact
that with the bitcoin datasets, the proposed and the reciprocal algorithms are very close
in terms of MAE, and RMSE in a leave-one-out setting. This is explained by the fact that
these two networks present a higher trust reciprocity compared to the Wikipedia-RFA and
Robots.net networks (cf. Table 2). This difference may be due to the very nature of these
networks. Indeed, the bitcoin networks are all about trust in trade. When a transaction
goes as expected, both parties are generally satisfied and this leads to reciprocal ratings.
On the other hand, networks like Wikipedia-RFA and Robots.net are about authority and
skills. A highly rated expert has not to reciprocate the rating from a less-knowing node.
With this said, in terms of PCC, our approach is clearly better. That is, the predicted trust
values and the original ones are more correlated. A possible explanation of this result
is that the proposed algorithm considers reciprocity and two other traits which the re-
ciprocal algorithm does not take into account. When a node does not act with enough
reciprocity, this trait will not weight a lot in Eq. (5). Therefore, the proposed algorithm
will rely more on controversy and eclecticism.

5.2. Robustness
As revealed by the plots in Figure 3, our approach shows a very slow increase of MAE

and RMSE and a slow decrease of PCC as we remove more arcs from the datasets. By
contrast, other algorithms seem to be more sensitive to network sparsity. This may be
explained by the design of these algorithms. For instance, the reciprocal algorithm relies
on the hypothesis that a node likely reciprocates received trust. However, as we remove
more links, reciprocal links are also removed and the inferred value is null. As for the
STAR algorithm, one would think that links removal would break trust paths, but to our
surprise, this algorithm shows a somewhat stable behavior. This may be attributed to
the fact that arcs that were not considered when better ones (those with higher certainty
values) were available are used when the better ones are removed. Still, its accuracy is
inferior to that of the proposed approach. In fact, if we take a closer look at the plots
in Figure 3, we notice that the proposed approach provides more accurate predictions at
90% removed arcs than what STAR provides at 10% removed arcs. Finally, approaches
that rely on global metrics (BaD and FxG) need most, if not all, of the network to be
visible to accurately calculate the nodes’ characteristics. Indeed, the pairs of metrics in
these algorithms (BIAS/DESERVE, FAIRNESS/GOODNESS for the BaD and FxG algorithms
respectively) depend mutually on each other. Their incremental calculation spreads to
large portions of the networks. On the other hand, the proposed metrics are more local
since they depend only on the direct neighbors of the trustor and those of the trustee.
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5.3. Speed
The previous observation leads us to the last point: speed. The reciprocal algorithm’s

complexity for predicting a single arc is obviously O(1). The other algorithms are slower
in comparison. However, while the global metrics ones spread to larger portions of the
network, and while the STAR algorithm performs a graph traversal, our approach does
not and is, hence, faster. Furthermore, knowing that trust fluctuates a lot in networks
with high activity, it is worth mentioning that updates to global metrics will encompass
most of the network. Updates to the proposed metrics, on the other hand, are limited to
the trustor and the trustee neighborhoods, and are therefore faster.

Note also that the three proposed metrics can be independently calculated. As such,
trust can be easily predicted using these metrics in parallel or in a distributed setting. By
contrast, the other studied algorithms are harder to parallelize because of their design.

5.4. Final thoughts and perspectives
These experimental results prompt us to discuss trust prediction in general. Trust

transitivity, as described by Guha et al. (2004) and others, states that if an individual u
trusts another one v which itself trusts a third one w, then u might trust w to some extent.
The emphasis on “might” and “to some extent” is important in this context and hints that
this transitivity is hypothetical and not guaranteed. In fact, trust transitivity should ad-
here to some semantic requirements to be meaningful (Jøsang and Pope, 2005). This,
and knowing that 1) trust itself is known to decay on long paths (which is understand-
able) (Liu et al., 2011), and 2) that multiple paths from a source to a sink may provide
conflicting predictions (Jøsang and Pope, 2005), make transitivity-based predictions sub-
ject to a lot of uncertainty. In short, predicting trust by transitivity builds on intermediary
and uncertain predictions to produce a final (and often more uncertain) one 3. Actually,
this aspect is why most propagative trust prediction approaches limit their processing to
a small number of hops. It is not just about efficiency, but about accuracy (that decreases
beyond some hops) (Golbeck, 2005a; Ziegler and Golbeck, 2015).

Now, compared to transitivity, local metrics such as the ones that we propose have
more truth to them. They are computed locally using known relations from the inner
circle of an individual. More specifically, the proposed approach has no dependence on
transitivity nor on a hypothetical aspect of trust other than it being the result of struggle
between social traits of the involved nodes in a trust relation. Such an aspect is not
subject to decay nor conflicts, as opposed to transitivity. To put it briefly, we believe that
there is more to know about, and from, the direct neighbors of an individual than we
can gather from distant and not directly-related individuals. Naturally, that is not to say
that we should ditch transitivity altogether, but that we should extensively explore the
direct neighborhoods of the individuals in a trust relation, and look for more social traits
and biases that affect trust. And this is, in fact, the essence of the proposed approach
that, rather than propagating trust along paths from a trustor u to a trustee v, is built on
the assumption that if we know everything trust-related about these individuals, then we
should be able to know how one of them would trust the other.

3As argued by Jøsang (2016), if ωB
X is the opinion of B about X, and ωA

B is the opinion of A about B,

then the opinion of A about X (denoted as ω[A;B]
X = ωA

B ⊗ ω
B
X) typically gets increased uncertainty mass,

compared to the original opinion advised by B.
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Despite the satisfying results, and the simplicity, of the proposed approach, there are
some limitations that we should acknowledge, and that would be worth addressing in
a future work. First and foremost, we considered only three traits in our work, how-
ever the whole truth about the involved individuals in a trust relation —and the relation
itself— cannot be contained in these three traits. There should be more traits that decide
on how we give and receive trust. Sure enough, the three traits that we have used gave
competitively reliable, robust, and efficient predictions on the four used datasets, but we
do think that there is still room for a lot of improvement in terms of accuracy by investi-
gating other traits; all while keeping the balance between performances, robustness, and
efficiency.

Another limitation of this work is the assumption that the three social traits that
we have considered are equally important across all social networks. Indeed, finding out
that the Bitcoin networks —by their nature— present a high reciprocity ratio compared to
the other used two, makes us wonder whether associating various degrees of importance
to each trait (depending on the network) would give even more accurate results. In
other words, if social traits are forces that compete to affect trust, then these degrees
of importance would be the properties of the ground where this struggle takes place,
and that favors some traits over others. Statistical methods may be used to calculate
these importance degrees, and thus describe the nature of the network more precisely
than what we already did with the “reciprocity ratio” column in Table 2. In summary,
characterizing a social network as a whole —not only its members— is, in our opinion,
worth investigating.

6. Conclusion

We have explored in this paper the possibility of using some nodes traits such as
controversy, eclecticism, and reciprocity as forces that affect the act of trust. Our intuition
was to picture trust (and distrust) as a tug of war game where both the trustor and the
trustee have their say. Where each one of them tries to pull the other opponent to their
side by using their own traits.

Our mathematical description of these social traits allowed us to design a very fast
and robust algorithm to predict trust and distrust in weighted signed social networks.
Indeed, experimental evaluation of two scenarios (leave-one-out, and leave-N%-out)
show that our approach presents good and stable performances. Being localized, rather
than propagative, turned out to be an advantage both in terms of speed and robustness.
In addition to these benefits, it is worth noting that the proposed algorithm is absurdly
easy to implement since it consists in calculating means and standard deviations.

As a future work, we would like to explore more traits that can affect trust. Or, to
carry on with the adopted tug of war analogy, we would like to add more ropes to the
game as illustrated in Figure 1. Some of these new traits may require complex and slower
computations, but we think that they are still worth exploring in order to improve the
accuracy and the robustness of our approach. Also worth investigating are the properties
that characterize social networks as a whole. These properties might indeed improve the
accuracy of the proposed approach, by giving various degrees of importance to the used
social traits that affect trust relations.
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