
HAL Id: hal-03034538
https://hal.science/hal-03034538

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Construction of Structured Argumentation
Systems

Bruno Yun, Nir Oren, Madalina Croitoru

To cite this version:
Bruno Yun, Nir Oren, Madalina Croitoru. Efficient Construction of Structured Argumentation Sys-
tems. COMMA 2020 - 8th International Conference on Computational Models of Argument, Sep
2020, Perugia, Italy. pp.411-418, �10.3233/FAIA200525�. �hal-03034538�

https://hal.science/hal-03034538
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Construction of Structured
Argumentation Systems

Bruno YUN a,1, Nir OREN a and Madalina CROITORU b

a University of Aberdeen, Scotland
b University of Montpellier, France

Abstract. We address the problem of efficient generation of structured argumen-
tation systems. We consider a simplified variant of an ASPIC argumentation sys-
tem and provide a backward chaining mechanism for the generation of structured
argumentation graphs. We empirically compare the efficiency of this new approach
with existing approaches (based on forward chaining) and characterise the benefits
of using backward chaining for argumentation-based query answering.

Keywords. Argumentation, Backward chaining

1. Introduction

Logic-based argumentation is a powerful approach to reasoning with conflicting pieces
of information. While argumentation traditionally generates arguments, most other ap-
proaches take a defeasible theory (DT) as input, together with a query. The output of the
reasoning process is whether the query is, or is not, accepted by justified conclusions of
the saturated DT, taking the interactions between conflicting facts into account. Most
approaches to argumentation first compute all arguments, and detect conflicts between
the arguments, thereby generating an argumentation graph [14, 19, 17]. Abstract argu-
mentation semantics [8, 6] are then used to compute sets of justified arguments (called
extensions), whose conclusions are compared to the query [7]. This follows the intuitions
of what is known as forward chaining (FC) [15, 1]. The departure point of this work is
the observation that FC is inappropriate for certain applications. Generating the entire
set of arguments and identifying its extensions is computationally expensive [19, 18, 9],
and one might want to answer a single query, in which case only arguments relevant to it
should be generated. Here, we propose instead to use backward chaining (BC), focusing
on an argumentation system (AS) based on a variant of ASPIC [4].

The focus of our approach is computational efficiency, though we recognise that in
the worst case, the entire set of arguments may need to be generated to answer a query.
However, we show in our empirical evaluation that this rarely occurs. We also analyse
how the rules interact, proposing sufficient conditions to determine when, for a specific
set of rules, fewer arguments will be generated by our approach.

1Corresponding Author: bruno.yun@abdn.ac.uk.

Computational Models of Argument
H. Prakken et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200525

411

Our contributions are (1) the introduction of a new BC mechanism for ASPIC-like
arguments; (2) a combinatorial structure that characterises the benefits of using BC over
FC; and (3) an empirical evaluation demonstrating the potential impact of our approach.

The paper is structured as follows. In Section 2, we introduce the background no-
tions. In Section 3, we introduce the Graph of Rule Interaction, a structure which cap-
tures how rules trigger each other. In Section 4, we describe how to generate arguments
with BC. In Section 5, we show that the AS obtained via BC satisfies desirable properties
and confirm them using an empirical evaluation. Section 6 summarises our approach.

2. Background

We begin by providing a brief overview of ASs built upon DTs. The notions presented
here are used in the remainder of the paper. An argumentation formalism is usually
built around an underlying logical language L . We assume that L is made up of a
set of literals and that we possess classical negation, i.e., we have a function “¬” s.t.
¬ψ = φ iff ψ = ¬φ and ¬ψ = ¬φ iff ψ = φ . A strict rule is then an expression
μ : φ1, . . . ,φn → ψ and a defeasible rule is an expression μ : φ1, . . . ,φn ⇒ ψ with n ≥ 0
and {φ1, . . . ,φn,ψ} ⊆ L . For a rule r = φ1, . . . ,φn� ψ , where�∈ {→,⇒}, we denote
by Body(r),Head(r),Name(r) and Imp(r) the set {φ1, . . . ,φn}, the literal ψ , the literal
μ , and� respectively. A rule φ1, . . . ,φn� ψ is said to be applicable on a set of literals
P ⊆L iff Body(r)⊆P . A set P ⊆L is said to be consistent iff there is no φ ,ψ ∈P
s.t. φ = ¬ψ . The closure of P under a set of strict rules S , denoted by ClS (P), is the
minimal set s.t. (1) P ⊆ClS (P) and (2) for all strict rules r = φ1, . . . ,φn → ψ in S s.t.
r is applicable to ClS (P), it holds that ψ ∈ClS (P). A DT is T = (S ,D) where S
is a set of strict rules and D is a set of defeasible rules 2.

Example 1. We consider a DT containing the following information about John, a pa-
tient in a hospital: r1 : “John has a prostate cancer” (→ c); r2 : “John is following
a treatment for his cancer” (→ t); r3 : “John is a male patient” (→ m); r4 : “Studies
show that there is no correlation between treating prostate cancer and bowel disorders”
(→¬r7); r5 : “John does not have abdominal pains” (⇒ a); r6 : “If John does not have
abdominal pain then he may not suffer from bowel disorder” (a ⇒¬b); r7 : “A patient
with prostate cancer that is under treatment may suffer from bowel disorders” (c, t ⇒ b).
The DT is modelled by T = (S ,D) s.t. S = {r1,r2,r3,r4} and D = {r5,r6,r7}.

Our AS is based on a version of ASPIC [4]. Here, an argument are formed by apply-
ing deductive rules [3], built upon other arguments. Given T = (S ,D), an argument A
is of the form A1, . . . ,An� ψ , where {A1, . . .An} is a minimal set of arguments s.t. there
exists an r ∈S ∪D , where r is applicable to {Conc(A1), . . . ,Conc(An)},�= Imp(r) and
ψ = Head(r). Let A = A1, . . . ,An� ψ . Then the conclusion of A, denoted by Conc(A),
is ψ and the set of sub-arguments of A is Sub(A) = Sub(A1)∪ ·· · ∪ Sub(An)∪ {A}.
The top rule of A is T R(A) = Conc(A1), . . . ,Conc(An) � ψ . Given T = (S ,D),
Name : S ∪D → L returns the name of each rule and provides a handle for rules to
prevent other rule applications.

2Please note that in our formalism, axioms (resp. ordinary premises) [14] are represented using strict (resp.
defeasible) rules with empty bodies (c.f., ASPIC- [5])

B. Yun et al. / Efficient Construction of Structured Argumentation Systems412

Example 2 (Cont’d). There are 7 arguments: A1 =→ c, A2 =→ t, A3 =→ m, A4 =⇒ h,
A5 =→¬r7, A6 = A1,A2 ⇒ b and A7 = A4 ⇒¬b. Note that Name(c,d ⇒ b) = r7.

We consider that we are given a binary, total, reflexive and transitive preference
relation � over arguments that reflects the quality of its underlying elements. One way
of computing such a relation is to consider the type of rules (defeasible or strict) that are
used in an argument and/or that defeasible rules have an associated strength, and lifting
these preferences from rules to arguments [14], but we do not consider these aspects
here. We write A ≺ B iff A � B and B
� A, and A ∼ B iff A � B and B � A.

A defeats B iff B � A and at least one of the following conditions is satisfied:
(Rebutting) there exists B′ ∈ Sub(B) such that Conc(B′) = ¬Conc(A) and Imp(T R(B′))
is ⇒3 or (Undercutting) Conc(A) = ¬Name(T R(B))

An AS for a T , denoted AST , is (A ,DEF) where A is the set of arguments gener-
ated and DEF ⊆A ×A is the defeat relation introduced above. Let AS= (A ,DEF), we
say that AS′ = (A ′,DEF′) is a sub-system of AS iff A ′ ⊆ A ,DEF′ = A ′ ×A ′ ∩DEF.

Example 3 (Cont’d). If we assume that A7 ≺ A6 and A6 � A5 then A6 is defeated by A5
(undercutting) and A6 defeats (rebutting) A7 but A7 does not defeat A6. The AS corre-
sponding to T is AST = ({A1, . . . ,A7},{(A5,A6),(A6,A7}).

3. The Graph of Rule Interaction

We define a new combinatorial structure over a DT called the Graph of Rule Interaction
(GRI) that generalises the Graph of Rule Dependency [2]. The GRI captures both how
rules trigger each other and identifies the possible conflicts between them. There are
three main elements to the GRI: (1) a set of nodes representing the rules, (2) a set of
support links representing how rules can activate each other and (3) a set of attack links
representing conflicts amongst rules. While attacks links are binary, support links are
many-to-one relationships as multiple rules can be necessary to trigger a rule.

Definition 1 (Graph of Rule Interaction). Let T = (S ,D). The GRI of T is GRIT =
(N ,Rs,Rd), where: (A) N = S ∪D ∪{ /0} represents the rules under consideration;
(B) Rs ⊆ 2N ×N s.t. ∀n1 ∈ N and ∀N ⊆ N ,(N,n1) ∈ Rs iff |N| = |Body(n1)| and
⋃

n∈N Head(n) = Body(n1). Rs captures the support between rules and (C) Rd ⊆ N ×
N s.t. ∀n1,n2 ∈ N ,(n1,n2) ∈ Rd iff at least one of the following conditions holds: (1)
Head(n1) = ¬Head(n2) and Imp(n2) =⇒ or (2) Head(n1) = ¬Name(n2). Rd captures
potential defeats between rules. Note that Head(/0) = Body(/0) = Name(/0) = /0.

Chains of rules can form where one rule is required for another to be applied, mean-
ing that multiple rules can support others. We formalise this notion within the GRI.

Definition 2 (Support path). Let T = (S ,D) and GRIT = (N ,Rs,Rd). The sequence
(N1,N2, . . . ,Nk) is a support path to n∈S ∪D in GRIT iff all the following conditions
are satisfied: (1) ∀i ∈ {1, . . . ,k}, Ni ⊆ 2N , (2) N1 = { /0} and Nk = {{n}} and (3)
∀i ∈ {2, . . . ,k}, ∀Nj ∈ Ni and ∀n′ ∈ Nj, there exists N′ ∈ Ni−1 s.t. (N′,n′) ∈ Rs.

3Note that we use restricted rebut and we did not evaluate unrestricted rebut due to space limitations.

B. Yun et al. / Efficient Construction of Structured Argumentation Systems 413

An activated rule is a rule with a support path to it. The underlying idea is that such
a rule’s body can be obtained from other rules via the support path to it.

Definition 3 (Activated & Connected rule). Let T = (S ,D), GRIT = (N ,Rs,Rd)
and n,n′ ∈ N . r ∈ S ∪D is activated iff there exists a support path to r in GRIT . n
is connected to n′ iff there exists a sequence (n1, . . . ,nk) s.t. both of the following are
satisfied: (1) for every 1≤ i≤ k, ni ∈N and ni is activated and (2) for every 1≤ i≤ k−1,
it holds that either (ni,ni+1)∈Rd or there exists N ⊆ 2N s.t. (N,ni+1)∈Rs with ni ∈ N.

Reasoning with BC requires a query that will be used to select the necessary rules in
the original DT. We thus need to describe whether a rule is important for a given query.
We refer to such rules as potentially necessary rules.

Definition 4 (Potentially necessary rule). Let l ∈ L and T = (S ,D). r ∈ S ∪D is
potentially necessary for l iff ∃r′ ∈ S ∪D s.t. Head(r′) = l and r is connected to r′.

Example 4 (Cont’d). GRIT =(N ,Rs,Rd) where N = { /0,r1,r2,r3,r4,r5,r6,r7}, Rs =
{({ /0},r1),({ /0}, r2),({ /0}, r3),({ /0}, r4), ({ /0},r5), ({r1,r2},r7),({r5},r6)} and Rd =
{(r4,r7), (r6,r7),(r7,r6)}. The sequence ({ /0},{{r1}, {r2}}, {{r7}}) is a support path
to r7. The rule r5 is potentially necessary for b but r3 is not.

4. Backward Chaining for Argumentation

An argument for l ∈ L is an argument that concludes l. This notion is needed to define
what an AS for a literal is.

Definition 5 (Argument for a literal). Let l ∈ L and AST = (A ,DEF). A ∈ A is an
argument for l iff Conc(A) = l. Al ⊆ A is the set of arguments for l in A .

Definition 6 (AS for a literal). Let l ∈ L and AST = (A ,DEF). We say that the sub-
system AS

l
T = (A ′,DEF′) of AST is the AS for l (w.r.t. T) iff A ′ is minimal (w.r.t. ⊆)

s.t. all the following are satisfied: (1) Al ⊆A ′, (2) If A∈A ′ and B∈A s.t. (B,A)∈ DEF
then B∈A ′, (3) If A∈A ′ then Sub(A)⊆A ′ and (4) DEF′ = {(A,B)∈ DEF |A,B∈A ′}.

Note that for a given DT T , there is a unique AS for l ∈ L w.r.t. T . Moreover,
since AS

l
T = (A ′,DEF′) is a sub-system of AST = (A ,DEF), it has at most the same

number of arguments and attacks, i.e. |A | ≥ |A ′| and |DEF| ≥ |DEF′|.
Example 5 (Cont’d). AS

¬b
T = (A ′,DEF′) where A ′ = {A1,A2,A4,A5,A6,A7} and

DEF′ = {(A5,A6), (A6,A7)}. AS¬b
T is the AS for ¬b w.r.t. T .

We now focus on the generation of arguments from a DT, describing a two-step
procedure for generating the AS using BC, i.e. from T , we use BC to generate ASl

T , for
any l ∈ L. Our approach makes use of two algorithms: AL and ASG (see Figure 1).

AL: This algorithm generates Al . This procedure gathers all the rules that conclude l in
R (line 5). It then constructs all the possible arguments that have a rule of R as top rule.
(lines 6–9). Note that the parameter seen is used to avoid the generation of an infinite
number of sub-arguments in case of rule cycles (for instance p → q and q → p).

B. Yun et al. / Efficient Construction of Structured Argumentation Systems414

Require: T = (S ,D), l ∈ L and seen ⊆ L
1: function AL(T , l,seen)
2: A ← /0
3: if l ∈ seen then

4: return /0
5: R ←{r ∈ S ∪D | Head(r) = l}
6: for r ∈ R do

7: AB ← /0
8: for φ ∈ Body(r) do

9: AB[φ] = AL(T ,φ ,seen∪{l})
10: Prod ←×φ∈Body(r)

AB[φ]
11: for {A1, . . . ,An} ∈ Prod do

12: �r← Imp(r)
13: A ← A1, . . .An�r Head(r)
14: A ← A ∪{A}
15: return A

Require: T = (S ,D) and l ∈ L
1: function ASG(T , l)
2: finished ← false
3: Aold ← AL(T , l, /0)
4: while not finished do

5: temp ← Aold
6: A ← temp
7: for all A ∈ temp do

8: A ← A ∪Sub(A)

9: temp ← A
10: for all A ∈ temp do

11: A ← A ∪ AL(T ,¬Head(T R(A)), /0)
12: A ← A ∪ AL(T ,¬Name(T R(A)), /0)
13: if A = Aold then

14: finished ← true
15: else

16: Aold ← A

17: DEF ← DEF-GENERATE(T ,A ,�)
18: (A ,DEF)← AS-FILTER(A ,DEF)
19: return (A ,DEF)

Figure 1. Algorithms to generate Al (left) and AS
l
T (right)

ASG: This algorithm generates ASl
T . It starts by generating Al , after which it succes-

sively adds sub-arguments and attacking arguments to the existing ones (lines 10-12).
Once the arguments have been generated, DEF-generate computes the defeat relation
— as described in Section 2 — by comparing pairs of arguments. As attacking arguments
are not always defeaters (depending on the � relation chosen), we have to filter unneces-
sary arguments that do not fit the conditions of Definition 6. This is done by using calling
the AS-filter (line 18) to perform the filtering.

5. Evaluation

Following Dung [8], let AS= (A ,DEF) be an AF and ε ⊆ A . We say that ε is conflict-
free iff there is no a,b ∈ ε s.t. (a,b) ∈ DEF. ε defends a iff for every b ∈ A s.t.
(b,a) ∈ DEF, there exists c ∈ ε s.t. (c,b) ∈ DEF. ε is admissible iff it is conflict-free and
defends all its arguments. ε is a complete extension iff ε is admissible and contains all
the arguments it defends. ε is a preferred extension iff it is a maximal (w.r.t. ⊆) admis-
sible set. ε is the grounded extension iff ε is a minimal (w.r.t. ⊆) complete extension.
We denote by Ext(x,y) the function that returns the set of extensions of the AS x w.r.t. y,
where y ∈ {pr,gr} and pr (resp. gr) stands for the preferred (resp. grounded) semantics.
Likewise, Acc(x,y) is returns the accepted arguments of the AS x w.r.t. the semantics y.

Definition 7 (Status). Let AS= (A ,DEF) and a ∈ A . a is accepted w.r.t. the preferred
semantics (resp. grounded semantics) if ∀E ∈ Ext(AS, pr) (resp. Ext(AS,gr)), a ∈ E. a
is rejected w.r.t. the preferred semantics (resp. grounded semantics) if ∀E ∈ Ext(AS, pr)
(resp. Ext(AS,gr)), a /∈ E and a is undecided if it is neither accepted nor rejected.

Definition 8 (Acceptability of a literal). Let l ∈ L , T and AS = (A ,DEF). l is ac-
cepted w.r.t. the preferred (resp. grounded) semantics and AS iff there exists an a ∈ A
s.t. Conc(a) = l and a ∈ Acc(AS, pr) (resp. a ∈ Acc(AS,gr)). Otherwise, l is rejected.

B. Yun et al. / Efficient Construction of Structured Argumentation Systems 415

Example 6 (Cont’d). Ext(AST , pr) = Ext(AST ,gr) = {{A1, A2, A3, A4,A5,A7}} and
Ext(AS¬b

T , pr)= {{A1, A2, A4, A5,A7}}. Since A7 ∈Acc(AS¬b
T , pr), ¬b∈AccL (AS¬b

T , pr).
Note that m is accepted w.r.t. preferred/grounded in AST but rejected in AS

¬b
T .

Proposition 1. Let l ∈ L , AST be the AS for T and AS
l
T be the AS for l. It holds that

l ∈ AccL (ASl
T ,y) iff l ∈ AccL (AST ,y), where y ∈ {pr,gr}.

We now show that (1) in specific DTs (characterised via a sufficient condition) the
AS for a literal has strictly fewer arguments than the corresponding original AS, (2) the
rules that are not activated are not taken into account when constructing the arguments
of an AS and (3) the GRI can be used to filter a DT T prior to the generation of ASl

T .

Proposition 2. Let T = (S ,D), l ∈ L , AST = (A ,DEF), ASl
T = (A ′,DEF′) be the

AS for l. If there exists r ∈ S ∪D such that:

• r is activated and not potentially necessary for l then |A ′|< |A |.
• r is not activated then AST = AST ′ , where T ′ = (S \{r},D \{r}).
• r is not potentially necessary for l then AS

l
T = AS

l
T ′ where AS

l
T ′ is the AS for l

w.r.t. T ′ = (S \{r},D \{r}).
The third item of Proposition 2 shows that filtering DTs to only keep potentially

necessary rules is possible when generating the AS for a literal. If T contains rules
that are not potentially necessary for a literal, this filtering reduces the time taken to
answer a query. Moreover, the GRI only has to be computed once, and can then be stored
in memory and reused for multiple queries. The proposed framework is inspired from
previous approaches based on DT pre-processing [18].

Empirical Evaluation

To test our approach, we use existing benchmarks and DTs to compare the effectiveness
of reasoning using BC and FC in the context of argumentation. To this end, we use
existing DTs [12] as we are not aware of other standard benchmarks for instantiated
argumentation. Due to space constraints, we only considered four theories from that
work (tree, level, levels and teams). In tree(n,k), the rules form a k-branching tree of
depth n where the literal p0 is the root. In these theories, every literal occurs only once.
In level(n), there is a cascade of n disputed conclusions, i.e. there are rules ⇒ pi and
pi+1 ⇒¬pi, for 0 ≤ i ≤ n. In levels(n), for odd i, the latter rule has a superior strength
when compared to even rules. Finally, in teams(n), every literal is disputed with two
rules for pi and two rules for ¬pi, and the rules for pi are superior to the rules for ¬pi.
To obtain the �, we use the last-link principle described in [14].

For the FC procedure, we generated all arguments (5 times) using a breadth-first
naive approach. For the BC procedure, for all theories, we randomly selected ten literals
and generated the ASs for those literals. An upper limit of 200 minutes was set for all
runs. Table 1 is split in three parts: FC, BC and DT filtration (by removing non-potentially
necessary rules). In the Forward columns, we depict the mean time, the number of ar-
guments generated, and the number of defeats of the graph4. In the Backward columns,
we show, across all literals on non-timed out instances, the mean time for the generation

4Time does not include defeat generation, their number is calculated based on the structure of the theory.

B. Yun et al. / Efficient Construction of Structured Argumentation Systems416

Theory
Forward Backward Filter

Mean # # Mean Mean # # Succ. Mean # % Mean
time (s) args. defeats time (s) arguments instances rules Filtration time (ms)

tree(n,k)

n = 8,k = 3 5712.7 59049 0 19.6 15.8 10 11 99.93% 484.6
n = 9,k = 3 Timeout 196830 0 53.5 3.5 10 3.5 99.99% 810.5

level(n)

n = 10 0.1 19 26 0.03 10.8 10 10.8 43.16% 41
n = 1000 6.7 1999 2996 830.5 716.6 10 716.6 64.15% 132.60
n = 5000 181.7 9999 14996 3927.2 602.3 3 3386 66.14% 302.30
n = 10000 678.9 19999 29996 Timeout - 0 8423 57.88% 490.40
levels(n)

n = 10 0.1 19 18 0.04 14 10 14 26.32% 46.5
n = 1000 6.7 1999 1998 1245.3 841.2 10 841.2 57.92% 160.9
n = 5000 155.9 9999 9998 96542.02 3702 2 5804.4 41.95% 451.6
n = 10000 696.8 19999 19998 428.5 163 1 10798.2 46.0% 555
teams(n)

n = 3 0.4 176 272 0.26 3.1 10 3.1 97.89% 88
n = 4 1.6 736 1568 1.62 19.9 10 17.1 97.1% 131.2
n = 5 26.8 3008 8256 5.28 23.8 10 20.6 99.14% 198.3
n = 6 539.7 12160 254335 18.35 3.8 10 3.8 99.96% 369.2
n = 7 11613.2 48896 1401159 84.07 14.1 10 12.9 99.97% 866.5

Table 1. Summary of the empirical evaluation

of arguments, the mean number of arguments in the AS for the literal and the number of
successful (non -timeout) instances. In the Filter columns, we show the number of rules
after the filtration, the percentage of the number of rules filtered, and the mean time used
for obtaining the filtered DT. We make three important observations: (1) For the tree and
teams DTs, all the runs were successful and the BC was significantly faster in generating
the arguments than the FC. It is worth noting that while the FC procedure times out after
n = 9, the BC procedure is able to provide an answer in less than 5 minutes. (2) For the
level DTs, the BC takes longer than the FC (even if it generates fewer arguments). From
n = 5000 onward, most instances timeout. Note that the BC takes longer than the FC
for these instances because it checks and generates all the arguments that can potentially
attack the existing arguments. (3) In the tree and teams DTs, we obtain fewer arguments
with the BC compared to the FC. The gap in the number of arguments means that the
process of verification does not cause a serious overhead in the computation time.

6. Discussion and Future Work

We introduced the notion of BC argumentation and illustrated our approach with an
ASPIC-style structured AS. We analysed the links between the AS generated using the
BC procedure and the FC procedure w.r.t. argumentation semantics and showed an em-
pirical comparison of the time needed to generate the arguments for both procedures.

Our work is motivated by the need for efficient query answering frameworks that do
not need to generate the whole set of arguments [19, 18]. Our work relates with existing
BC-based works such as DeLP [10] or ABA [16]. However, our focus is explicitly on
ASPIC-like systems. There are also similarities between BC and proof dialogues [13],
though most such dialogues operate on abstract ASs.

We have identified several potential avenues of future work. First, we intend to create
additional benchmarks for instantiated ASs by replicating the properties of existing DTs
[11]. Second, we recognise that there are similarities between the process we use, and
different search algorithms. We intend to evaluate these different strategies, as well as

B. Yun et al. / Efficient Construction of Structured Argumentation Systems 417

heuristics for guiding the expansion process, and their effects on performance. Finally,
integrating lifting rules for preferences (e.g. weakest link, elitist or democratic orderings
[14]) could provide optimisations regarding argument expansion.

References

[1] O. Arieli, A. Borg, and C. Straßer. Prioritized Sequent-Based Argumentation. In
AAMAS 2018, pages 1105–1113, 2018.

[2] J.-F. Baget, F. Garreau, M.-L. Mugnier, and S. Rocher. Extending Acyclicity No-
tions for Existential Rules. In ECAI-14, pages 39–44, 2014.

[3] P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
[4] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms.

Artif. Intell., 171(5-6):286–310, 2007.
[5] M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In

Proc. COMMA, pages 209–220, 2014.
[6] M. Caminada and B. Verheij. On the existence of semi-stable extensions. argumen-

tation, 3:4, 2010.
[7] M. Croitoru and S. Vesic. What Can Argumentation Do for Inconsistent Ontology

Query Answering? In SUM 2013, pages 15–29, 2013.
[8] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell.,
77(2):321–358, 1995.

[9] P. E. Dunne and M. Wooldridge. Complexity of Abstract Argumentation. In Argu-
mentation in Artificial Intelligence, pages 85–104. 2009.

[10] A. J. Garcı́a and G. R. Simari. Defeasible Logic Programming: An Argumentative
Approach. TPLP, 4(1-2):95–138, 2004.

[11] B. Konat, J. Lawrence, J. Park, K. Budzynska, and C. Reed. A Corpus of Argument
Networks: Using Graph Properties to Analyse Divisive Issues. In Proc. 10th Int’l
Conf. on Language Resources and Evaluation, 2016.

[12] M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller. Efficient Defeasi-
ble Reasoning Systems. Int. J. on A.I. Tools, 10(4):483–501, 2001.

[13] S. Modgil and M. Caminada. Proof Theories and Algorithms for Abstract Argu-
mentation Frameworks. In Argumentation in Artificial Intelligence, pages 105–129.
2009.

[14] S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation:
a tutorial. Argument & Computation, 5(1):31–62, 2014.

[15] E. Salvat and M.-L. Mugnier. Sound and Complete Forward and backward Chaining
of Graph Rules. In ICCS 1996, pages 248–262, 1996.

[16] F. Toni. A tutorial on assumption-based argumentation. Argument & Computation,
5(1):89–117, 2014.

[17] B. Yun, M. Croitoru, S. Vesic, and P. Bisquert. DAGGER: Datalog+/- Argumenta-
tion Graph GEneRator. In AAMAS 2018, pages 1841–1843, 2018.

[18] B. Yun, S. Vesic, and M. Croitoru. Toward a More Efficient Generation of Struc-
tured Argumentation Graphs. In COMMA 2018, 2018.

[19] B. Yun, S. Vesic, M. Croitoru, P. Bisquert, and R. Thomopoulos. A Structural
Benchmark for Logical Argumentation Frameworks. In IDA, pages 334–346, 2017.

B. Yun et al. / Efficient Construction of Structured Argumentation Systems418

