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ARTICLE INFO ABSTRACT

The equivalence between dynamic mode decomposinohdiscrete Fourier transform
for numerical and experimental data, the mean ofhvim each set equals zero, is used to
propose an analytical solution for the DMD, whishequivalent to the equations for the
DFT. This solution is an exact solution, basedtanreduction of all the snapshots by the
mean of the whole sequence, which is also the mgidle (not time dependant) of the
considered sequence. The sampling time step ismassuo be constant. The time
dependant evolution of the modal shapes is a limeanbination of all the reduced
shapshots, the weight functions being the restiltseoanalytical solution. The frequency
of each mode remains constant in the time. No mandcessing is required to describe
the modal behaviour of the sequence. The errdris@MD analysis solution comes only
from the data themselves : the time step, the srdpsumber, and the snapshots values.
This simple solution allows to process in a quherstime a great amount of data, the
limit of which is the computer RAM size. Dealing Witn great number of snapshots
allows, in one hand, to compensate some disadvestagtlined for the DFT, and on the
other hand, to bring out better the preponderarten@nd to make continuous videos of
the selected modes shapes. After an academic tiafidease, typically unsteady and
transient, dealing with 50000 snapshots and 125@0@es per snapshot, two application
examples of this DMD analysis solution are therspngéed : the first one concerns some
3D CFD results (25500 snapshots, 289000 values magrshot), and the second one
concerns the images extracted from two experiméiltat (16000 snapshots, 524000
values per snapshot).

1. Introduction

Based on the Koopman analysis of nonlinear dyndnsgstems 1], the « dynamic mode decomposition »
technique was introduced by Rowleyal. [2] and Schmid 3], as a numerical procedure for extracting dynaimica
features from flow data.

DMD computes a set of modes, the frequency of whichains constant in the time. The method hightighe
major periodic phenomena, and permits to reconsthe signal by choosing the most representativdesolt is
based on data (experimental or CFD results) whgsat®ns generating them are not known a prioré iftodes are
not orthogonal between each other, but their tisggeddant evolution can be physically meaningful.

To extract the dynamic features of the snapshaimesimportant matrix processings, such as the QR
decomposition 3, 4, 5], or the Single Value DecompositioB, [6, 7] are commonly used. However, they require
some advanced resolution techniques as well as dompertant computer resources. The efficient ancligate
method proposed by Drmaet al. [8] does not mention any information about this lpsint, but it is not
unreasonable to think this method requires someiitapt computer resources as well.

The purpose of the author was to find a resoluti@mthod for DMD which sets free from any matrix pssing,
and to reduce significantly the computing timepanrticular when the snapshots number and the valuedber per
snapshot are high. A few years after the introductf the DMD, Cheret al. [9] have outlined a possibility to
subtract the snapshots mean to all the snapshatghay showed this operation leads to an exacictiamh of the
DMD to the temporal discrete Fourier transform.haligh they mentioned this result is undesirablpl|agxing the
implications of the mean subtraction, it is usedeh@&gain to extract frequencies and spatial strestirom fluid
mechanics data. The notion of modal growth ratedsefore abandoned.

After a theoretical reminder of this modified DMDethod, where an analytic solution is proposed, the
equivalence with temporal DFT is recalled, and samgiments to compensate some disadvantages senime.



An academic validation case, typically unsteady taasient, with 50000 snapshots and 125000 vgleesnapshot
is presented. It is followed by two application exdes : the first one concerns some 3D CFD reg@B&00
snapshots, 289000 values per snapshot), and tbadseae concerns the images extracted from tworempetal
films (16000 snapshots, 524000 values per snapshot)

2. Theoretical reminder

The solution of the DMD method in this paper isdzth®n a definition of DMD as an algorithm appliedat
sequential snapshot set. It is not the most gemiefatition of DMD, which was written by Tul], but is often
useful for theoretical analyses.

2.1 Description

N + 1 snapshots are considereg,,v,,v,,...,vy . A vectorv; stands for the field of a variable which descritfes

calculated flow or the experimental data at theaimisof indexj (0 <j < N). As it is mentioned in quite a lot of
articles, the mean value of all the snapshotsctowvaotedv , is introduced3, 7, 9-14] :

\V

-
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o
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The relation (2.1) is written again in order tongriout the subtraction of the mean vector to &lghapshots

[9, 13 :

2.1)

Vo ~T=NT-S v == (v, -7) 2.2)

i=0 i=0

iN

Defining the rigid mode, mentioned in the abstrastthe mean value of all the snapshots, this tpers then
equivalent to consider only the fluctuations of #mapshots around the rigid mode, which remainsamee during
the whole sequence (its frequency is equal to zdiis rigid mode depends on the sequence itsalfest may

change if the considered time interval changesirief the matrixD.'* and D' as D)™ ={v v, v,....,v\,} and
D ={v; v,,....vi Vi }, with v/ =v, -V, the relation (2.2) can be synthesized into theression :

D) =D}"S (2.3)
S is a companion type square matrix :
o ... 0 -1
10 -1
S=/0 1 : (2.4)
' 0 -1

O - 01 -1

N,N

The DMD analysis is based on the spectral decortippsif the companion matrix, which appears heregwery
simple. The characteristic polynomial ¥ is :

N+1 _1
Py(x)=x" +x" 1+ 4+ x+1= 1 (2.5)
The roots ofP, , notedk,, are then theN+1)* roots of unity, excepted unity :
2ipTt
=e =1toN 2.6

These roots are the eigenvalues&®fThe sampling time step is used to link them te thodal frequencies.
Assuming the sampling time step as a constantvidved in the building of the DMD theorg] (the sequence of
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data is then formulated as a Krylov sequence, tamsecutive snapshots of which are connected bypanator
which is supposed linear, in the aim to create@ali combination between the filstsnapshots, assuming they are
independent, and the last one, wiheis high enough to make reasonable such an opeyatio

2.2 Expression of the eigenvalues

A modified expression for the eigenvalues, nofgdis determined such as the argument is includésless —t

andTt (— 1t excluded), to let appear the conjugate eigenvaldasinteger m is introduced : N is even,mzﬂ.

If Nis odd, mzNT_l . At is the sampling time step.

Forp=0tom-1, A, =€X M (2.7)

N+1
The associated frequency is :f =_P~Mm_ (2.8)

P (N +1)At '

Forp=mtoN-1, A, = €X M (2.9)

N+1
The associated frequency is :f | =M (2.10)

(N +1)At
A constant sampling time step allows here to cateeéach eigenvalue with its own frequency.
2.3 Maximum frequency, resolution frequency
Since-Ti<w, At<T, with w, =2 f, then: f :ﬁ (2.11)
1
The resolution frequend¥f is expressed as : Af =——~— 2.12

quenayt P (N +1)At (212)

The tolerance around a DMD frequencyfd 2.

2.4 Expression of the Vandermonde matrix andhiterse

The relationP, (/lp)= 0 leads to the existence of a Vandermonde matritechld made up from the eigenvalues of
the companion matrix, and which is a left eigeneebsis of S :

VS=AV (2.13)
1 2, A o AT
Y 214
i @ﬂ ﬁ4-~ mj

/A is the eigenvalues matrixA = diad/o, ... ,An-1)- The elements can be linked with time since tmading
time step is constant. In that case, the Vandermomaltrix columns are linked to a time dependantutiem, while
the lines are linked to a modal evolutidj. [With the relations (2.7) and (2.9), the elemeft¥andermonde matrix
are derived immediately (line indgx= 0 toN-1, column indexq = 0 toN-1) :

2img(p-m)
4= _— 7
p<m A ex;{ N1 (2.15)
2ing(p+1-m)
9= _ 7
p=m A ex;{ N1 (2.16)



Since the eigenvalues of the companion matrix ample, the Vandermonde matrix is invertible. Theref we
can write :

S=v'avy (2.17)

To calculate the expression of the elements ofviliedermonde matrix inverse, which are nabgdthe matrix
V' is written as a right eigenvector basis of therixa :

Svi=v'a (2.18)

Then this property is developed. Multiplying théat®n (2.18) on the right by the unit vectgrof the { + i
column, some relations are derived between the ezltsnof the column of index of the matrix V7.
S (V"ej)= v(n ej) is equivalent to :

00 0 a, By by |
10 a b b
0 1 x| b= (2.19)
P 0 N-2 bN—Z,J bN 2,j
0 0 1 ay, By-1 By-1,
The relation (2.19) yields :
_ AT -1
0<i<N-1 by =byy; X——F (2.20)
A4l

As the relation (2.20) gives the coefficiebjsby a constant, the identity V" =/ is used to provide the closure
relation :

}Hk bKj :éij (5”. is the Kronecker symbol) (2.21)

Knowing that 2)™ =1, the elements; of the matrixV/~” (line indexi = 0 toN-1, column index = 0 toN-1) are
deduced :

4 (AJN i _1)

b = N+1

(2.22)

N-1
The identitiesV’ V™" =/ (wheng; = 0) andV' ™"V =/ can be checked with the help of the relatidnsis = -
k=

>)|H

N-1
(p=0toN-1), and1+ Y A3 =0 with 0<|q<N.
k=0

2.5 Modal matrix

Combining the relations (2.3) and (2.17), appelagsmatrix W = D)V, allowing to write the matrixD,' as
the product :

D'=wAv (2.23)
The columns oW/ are notedy, (p = 0 toN-1) :
N-1 (/IN k ]_)
v, v, with v, =v, =V 2.24
Z k “kp kZ; k N+1 k k ( )

The relation (2.23) is equivalent to the expression



Forj =0 toN-1, ZWPW Vi (2.25)

At the timet = 0, associated with= -1 in the relation (2.25), the identity "1/ =/ is used.

V'v=l = > =9 (2.26)
k=0
N-1 N-1/N-1 N-1 N-1 N-1
2 W, = ( Vi kaJ =D Vi| 2B | = 2 Viedio = Vo (2.27)
p=0 p=0\ k=0 k=0 p=0 k=0

The vectomw, is the complex shape of the mqulat the time = 0. Since the matri¥¥/ contains all the vectors,,
it can be named a modal matrix.

2.6 Time dependant evolution of the modes

Using the matrixW and A, the whole time dependant evolution of the snagssban be rebuilt. In particular for
one specific mode, if it is preponderant in frohbther modes. In that case, since the componédntedinal shapes
are real values, the time dependant evolution efsttiape of the modg the eigenvalue of whici, is complex,
must be computed with the time dependant evolutbrthe shape of the modg where A, is the conjugate

eigenvalue ofi. If 4, :/Tp, thenb,, :Ekp andw, =w, . The column of index in V™ is the conjugate column of
the column of indexp. As a result, the vectow, Al o HW, /1; , the elements of which are real, represents tta to
contribution of the mode at the positive frequerﬁq(relatlon (2.10)) at the time of indgx(j = 0 toN). The
amplitude of the modp at the instanitis the Euclidean norm of this vector.

w, 4} +w, 1) =2 Relw, zl)_Ni(kaRe(w ‘ ,1“1)] (2.28)

The time dependant evolution of the shape of thdappthe pulsation of which i, =2mn f,, is given eventually
by the expression :

Wp/lg,+wq/1(§— (ka(cos(oo K)At)- cos(w j+l)At))J (2.29)

Or, with t; = jAt (j = 0 toN) andt, =KkAt :

w2} w2 = [NZ_IVL (cosleo, t, ~t.))-cosle t, + At)))] (2:30)

The time dependant evolution of the modal shapestizined directly from the reduced snapshots, tedyby a
simple time dependant function. Therefore it idorger necessary to calculate the Vandermondexmégriinverse,
and the modal matrix. The amplitude of the modéreduencyf, at the timet; is still the Euclidean norm of the

vector given by the relation (4.18).

2.7 Comments

The eigenvalues are completely independent of #ta. d'hey depend only on the snapshots numberihend
spectral resolution is uniform, like the one obtgifby a Fourier transform. This is a result forMManalysis made
on fluctuating data (removing the mean of the o@agidata), which is usually considered as a disatege,
compared to a DMD analysis made on the raw datd@wi subtracting the mean), leading to a non-umifspectral
resolution B, 6, 9]. In both cases, the resolution frequency deceeasth an increase of the snapshots number.
However, the value of a modal frequency is necdgsassociated with a tolerance around this vahexause the
real value may not be usually exactly predictedthVdivariable resolution frequency, this toleramzgy be awkward
to calculate. With a unique resolution frequendy tolerance is very simple (half of the resolutfceguency).

In addition, in order to approach the real valueaahodal frequency, the tolerance must decreaseedsing the
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snapshots number is a convenient possibility. bB&irg the sampling time step is not relevant, bezaome
information about the researched physical phenoroande lost.

By construction of the eigenvalues, the Nyquistditbon is implicitly respected. The mean-subtracteets free
from any constraint about a minimum number of shatss since the method works regardless of the euiid the
values of the snapshots. In practice, a DMD amallgsids of course to a much better result withga hiumber of
shapshots (see section 3). With this DMD methodvatgnt to DFT, the solution is an exact solutismce the
coefficients of the last column of the companiontiraS are all equal to -1, and analytic, under the iehat
(2.15), (2.16) and (2.22). No more matrix procegsi required to get the results. This analyticaltion sets
completely free from the constraint to operate spoitessings, which are expensive in time calarfaind in
memory size ifN is high. The error of this DMD analysis method esnonly from the data themselves : the time
step, the snapshots number, and the snapshotsvaluis simple solution processes in a short tintplige great
amount of data, the limit of which is the compuR&M.

The notion of amplified or damped modes, as itdmmon in the original DMD analysis, does not ekiste,
since all the eigenvalues have a unit magnitude. diftained modes are just preponderant or not. W& Reep
in mind that the notion of modal growth rate isidabnly in the time window of the data sequencegcsithe
calculation does not know what happens physicadfpie the first snapshot and after the last oneat@iter the
original DMD method can reveal about this dynamicébrmation, it is limited in the time of the obiged data.
Therefore, it is not unreasonable to turn towardse#hod, although equivalent to DFT, which preseoise other
significant advantages, as long as the right prédpant modes of any sequence are still detectecexAmple of a
typical unsteady and transient case treated with EMD method is presented in section 3. It comas its
preponderant modes are determined correctly.

In addition, with the original DMD method, it is &wn that the local frequency resolution aroundftequency of
interest depends both on the snapshots numbehardst snapsho]9]. This last snapshot strongly influences the
quality of the DMD analysis, and no rules can beéwbed for an appropriate choice of the snapshatesenp and the
frequency resolutiong]. This problem does not arise with this DMD mettemjuivalent to DFT.

In the end, the great advantage of the DMD is thesibility to make visible the time dependant etiolu of the
shapes of the selected preponderant modes. The dé#pendant evolution of a mode is equivalent tanse t
dependant deformation of its initial shape to dagerfrequency with an optional phase shift.

2.8 Equivalence between DMD with subtraction efritean flow and DFT

N-1
Using /1,’)“*1 =1 andv, = —ZV’k , the expression (2.24) is written in a differer@ywwhich leads to a direct DFT of

k=0
the reduced snapshotg (=v, —-V) :

_ -k _ _
Forp =0 toN-1 w :NZ‘?V ip( ")\‘ _1) = 1 (S 1V' Ak—4 NZ‘?V' = 1 iv' A= AN+ AV
p 1 p k - k p k N +1 k “p N “p p'N

k=0

(2.31)

N
It is possible to add the vectow, :%ZV{( A4 . If the N eigenvalues given by the relations (2@l (2.9) are
k=0

all different from unity, then the (N+S_‘L)oot, noted4, , equals unity. Thereforey, is zero, and we can write :

1 N
> v A (2.32)

Forp = 0 toN, Wp:N+1
k=0

By construction of the matri¥, the relations (2.25) and (2.27) are equivalerthtoinverse DFT of the modal
vectorswp, :

Forj =0 toN, Vi=Y>w A=Y w Al (2.33)



After an application to an academic case, submgtexdessfully to a DMD analysis with the analytisalution to
validate the method, two practical cases were e present some application results : the @iesie concerns
some 3D CFD results, and the second case cond@rimages extracted from two experimental filmsthBeases
are in current use in the field of fluid mechamesearch.

3. Application to an academic validation case
3.1 Context

The DMD code, built with the analytical solutios,tested to find the acoustic modes of a 2D cavVitg cavity is
rectangular. The length (1 m) is notedthe width (50 cm) is noteld (figure 1). It is closed at one extremity in the
length direction (at the abscissa origin), and ogethe other one. It is filled with still air atmbient conditions.
A pressure impulse is introduced at the initiatang within the cavity, and the waves propagatiod eeflections
which develop inside are observed. This case isdllp unsteady and transient, since the pressopellse vanishes
while the additional mass contained in the impidsevacuated gradually at the exit on the right¢ sifithe cavity,
until the ambient pressure is reached everywheiderthe cavity (theoretically at the end of amité time).

A

4= 0

Yy 4
h
u=0 A P=0
lyo
X

0 uy:O L

Fig. 1. Schema of the 2D cavity.

The central position of the pressure impulse ishenmedian line of the cavity gg=h/2and atx = 2 cm from
the left wall. The impulse pressure is applied i@ emm square centred at the poixg (yo) and oriented like the
rectangle of the cavity. The fluid is inviscid amon turbulent.

3.2 Theoretical solution

Without any friction during the waves propagatitire flow remains isentropic. Therefore, the cladsjoverning
equations linearized for small perturbations (tbeosid order terms are neglected) in a still fluil [25)] :

AP—%Ezo and V-_Lopp (3.1)
cZ ot ot po

The pressur® and the velocity, the components of which are note@ndyv, represent the small perturbations
around their mean values. The mean pressure iantogent pressure. The mean velocity vector is ftiderefore,
the mean densitg, and the sound velocity are constantch = 347.2 m/s). The boundary conditions are :

x=0 u=0 < dP/k=0

x=L P=0

y=0andy=h v=0 = oP/y=0

The pressure perturbation inside the cavity is tgpressed in the form of a series of modes with itviegers
(n, p, the frequency of which is notég, [15] :

P(xy.t)= > Ampcos(wnypt)co{(n +%)%J co{%) (3.2)

n,p=0

2 2
( =G @+ P (3.3)

with ., =2mf =~ and =\ A 2

The theoretical frequencies of the 13 first acaustiodes of the cavity are written in the table he™®,,
coefficients are calculated on one side by intéggahe pressure shape at the initial instant withe whole cavity
with the space weight functions of the relatior2}3and on the other side, by using the orthogtnplioperty of
these weight functions in their space integratiathiw the cavity 15. The initial pressure impulse, note¥P,
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is 1000 Pa (about 1 % of the ambient pressure).s@jnare side, wherd is applied, is note@ ¢ (thuse =4 mm).
The expression of tha, , coefficients is eventually :

ifp=0, A =22 gfn) (3.4)
48P (-1 "/zsm(pm]
if pisevenang>0, A , = h (3.5
4 sin([n + ;)TIT_S co{(n +;jn|i(°J
with g(n)= (3.6)
(n+;jn

ifp is odd, Ap=0

3.3 Mesh used for the DMD analysis

A structured mesh is used. The cell size in bothations is 2 mm, which leads to 500 cells in thegitudinal
direction and 250 cells in the transversal directibo match the results of a CFD finite-volume ceddch was
used afterwards for comparisons, the pressure vaiwen by the relation (3.2) are cell-centred. §,raach snapshot
intended to the DMD analysis has 125000 values. nem square, centred at the poixg (yo) and defined to
receive the impulse pressure, contains thereforeell§ around this point. Since 20 cells are uguadhuired, in
CFD computation using 2-order space schemes, ze seivave length , this mesh is adapted to desttubiations
up to 8680 Hz.

3.4 Sampling time step and resolution frequency

To capture properly the physical phenomena whidhbei detected by the DMD analysis, the samplinggetistep
At is 4 ps. The frequency resolutidii for the DMD analysis is set at 5 Hz, which is gumall. Therefore, 50000
snapshots, linked here with the pressure field tiestoredN = 49999), the final time of the calculation is 208,
and the maximal frequency which can be detectethbyDMD analysis is 125 kHz (section 2.3). Only thedes
below 1250 Hz are studied.

3.5 Computer used for the DMD analysis

All the DMD analysis calculations realized for thiaper were operated on a computer, each procegsdrich
contains 24 cores Broadwell Intel® Xeon® CPU E5268 @ 2.20GHz, a RAM of 128 GB and a total crestigr
of 844 GFlops.

3.6 DMD analysis applied to the theoretical sauti

The pressure fluctuations, given by the relatior?)3with the parameters values fixed in sectio, 3vere
analysed. Since the convergence of the terms imellagion (3.2), as a function of the mode freqyenowards the
complete theoretical solution is very slow, onlg tt67 modes below 5000 Hz in the relation (3.2)enemputed,
which is quite enough considering the maximal fesgty of the studied DMD modes.

A size of 46.73 GB in the computer RAM and a CPidetiof 7h 28mn 44s were required to compute 50000
instants of the truncated theoretical solution Iu2®i0 ms, immediately followed by the amplitudes2&0 DMD
modes below 1250 Hz.

The figure 2 shows the modal amplitudes of the anesfluctuations at= 0. The selection of the preponderant
modes is made only by visual observation : the &og# of a preponderant mode is higher than theliardp of its
neighbouring modes. Here, the figure 2 shows glesmne amplitude peaks, indicating the preponderames.

Below 1250 Hz, 13 preponderant modes appear. Thiesihe peak of which is not so high as the otinglisate
a significant phase shift at= 0 (their maxima appear later during their ownmigad. The frequencies of the
theoretical acoustic modes in the 2D cavity (relai{3.3)), and the frequencies detected by the DaviBlysis of the
truncated theoretical solution are written in thblé 1. The time dependant shape of a mode isatine as the one
defined by the term of the corresponding frequendie relation (3.2).

8



The DMD frequencies of the computed theoreticalsoh equal exactly the theoretical frequenciegjanrthe

toleranceAf / 2 (2.5 Hz). In consequence, the DMD analysihlite exact analytical solution, equivalent to DFT,
works properly to detect the right preponderant esod

22

2

18

16

=0

14

12

1

08

log10(amplitude) at t

0,6

0,4

0,2

0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
frequency (Hz)

Fig. 2. Modal amplitudes of the pressure fluctuations tégcal solution at = 0.

Tablel
Acoustics modes frequencies in the 2D cavity.

theoretice DMD frequencie DMD frequencie
frequencies (Hz) n  p theoretical solution (Hz) f 55 s- 1, (Hz)  CFD flow (Hz)  f5yp cro- fompts (HZ)  fomp,.cro / fomp rs (%)
86.8 0 0 85 -1.8 85 0 0

260.4 1 0 260 -0.4 255 -5 -1.923
434 2 0 435 1 425 -10 -2.299
607.6 3 0 610 24 595 -15 -2.459
699.804 0o 2 700 0.196 685 -15 -2.143
741.62 1 2 740 -1.62 725 -15 -2.027
781.2 4 0 780 -1.2 765 -15 -1.923
818.87 2 2 820 1.13 800 -20 -2.439
922.697 3 2 925 2.303 905 -20 -2.162
954.8 5 0 955 0.2 935 -20 -2.094
1045.21 4 2 1045 -0.21 1025 -20 -1.914
1128.4 6 0 1130 1.6 1105 -25 -2.212
1180.608 5 2 1180 -0.608 1155 -25 -2.119

3.7 CFD flow calculation

The code CEDREL, 17] developed at ONERA, was used to compute the ftothe cavity with CFD code, in
order to see any difference with the theoreticdlittin in the DMD analysis results. The mesh iscdiegd in
section 3.3 (the computed guantities are cell eeijtior this application, only the Euler equatiarese integrated
by this finite-volume type code. No turbulence modee Euler fluxes were discretized with the setonder
HLLC scheme and a hybrid type limiter, which is default standard model in CEDRE. The extrapolatmithe
interfaces was carried out on the natural variablé®e temporal scheme was an explicit two-stepsgBfutta
scheme, second order accurate. The time step was(€FL = 0.35). As the sampling time step is 4ths,results
were stored every two iterations. The boundary itmmd were a wall condition at the top, bottom adefd sides of
the cavity, and a constant pressure (1 bar) atighe side. At the initial instant, the cavity cairted still air at
ambient conditions, with the same pressure impadéseribed in sections 3.1, 3.2 and 3.3. Howevertémperature
inside the impulse pressure was adapted in ordenake the impulse entropy at the initial instanti@cto the
entropy outside the impulse. These conditions hee most adapted to get results which are the dldeethe

theoretical solution. A parallel computation witd Gumerical sub-domains, on the same computer idescin
section 3.5, took less than 30 minutes to calculstdlow until 200 ms.

3.8 Preponderant modes detected by the DMD arslysi

First, the CFD results were converted to 50 00Gqree files in a specific format used to read th& dor the
DMD analysis. This operation took about 3h 30mritensame computer described in section 3.5.



Then, the DMD program, which works sequentiallgjuieed a size of 46.57 GB in the computer RAM areiPJ
time of 47mn 04s to compute the amplitudes of 2B0CDmModes below 1250 Hz. A specific time can be \datj
with a view to estimate the CPU time of other magfaplitudes calculations, including files readimgl avriting :

_ CPUtime _ 2824s
¥ n,xn,xn, 250x50000%x125000

t =1.80710°s (3.7)

Nm = number of considered modes ;
ns = snapshots number ;
n, = values number per snapshot.

The figure 3 shows the modal amplitudes of the qumessfluctuations at= 0. Both cases are drawn, to highlight
better the differences. Again, below 1250 Hz, 18ppnderant modes appear for the CFD flow, by visual
observation of the amplitude peaks. The modes¢h& pf which is not high indicate a significant paahift at = 0
(their maxima appear later during their own peridddwever, a frequency gap between the preponderades of
the CFD flow and the ones of the theoretical sofutappears, and increases with the modes frequdriy.
frequencies detected by the DMD analysis of the @#4ilts are written in the table 1.

2,2

2
18
1,6
14
12

1
08
0,6

log10(amplitude) att =0

0,4
0,2

0
-0,2

0,4

-0,6
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frequency (Hz)

Fig. 3. Modal amplitudes of the validation case at0.

If the gap between the DMD modes frequencies of2RB flow and of the theoretical frequencies inse=awith
the frequency, their relative differences remaingtdy constant from the second longitudinal modso(a -2.1 %).
These differences show the CFD flow is not the saméhe ideal flow, from which the relation (3.2rides. The
code CEDRE is non linear, the CFD flow has a cosgibde nature, the mean velocity is not necessaelp
everywhere and the boundary conditions involveexigph processing of the whole variables descriltiregflow. The
theoretical frequencies are derived from linearizggdations, assuming the mean flow incompressiudesdll, and
the boundary conditions concern only the pressndevalocity fluctuations15]. It is not the purpose of this paper to
investigate further the issue.

3.9 Modal shapes of the CFD flow

The modals shapes of the CFD flow are presentatiisnparagraph (figures 4 and 5). The instants;aeted
within the modes periods, are chosen in order twstihe deformations at their maximum. The shapesragood
agreement with what is expected, with respectéaibdal shapes of the theoretical solution.
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4. Application to a 3D CFD results case
4.1 Context

The geometry of the computational domain is the lmastion chamber of the solid propellant engine LiP6,
Ariane 5 P230 engine at a scale of 1/18].] Some calculations were conducted to study tHlience of the
unstructured 3D mesh on the turbulence and on ¢hastic response of the engine, with the aim torawe the
understanding of the coupling between acoustics esthbilities generated by vortex-shedding caubgd
hydrodynamic instabilities 1[7, 20]. In the LP6 engine case, the identified mechan@mthe hydrodynamic
instabilities was the parietal vortex shedding (lWéhich results from a Taylor intrinsic instabjliof the internal
flow when the mass flow comes from the lateral W23.

This DMD application focuses on the hydro-acousiigtabilities, and complements the acoustic studibih
were already realized for the LP6 engi8, R1].

4.2 Computational domain mesh and DMD analysishmes

Three levels of non-structured mesh refinement wesed to realize the calculations : a rough meshbaofut
2.5 10 cells, a mean mesh called GM of about 19.5cHlls, and a fine mesh called GF of about 1653c&0s.
The figure 5 shows the overall shape of the LPGrengnd a longitudinal section of the rough meskhi plane
z = 0. The coloured parts represent the propelibruks.

Fig. 5. Overall view of the LP6 engine.

As the instabilities were the most developed imffraf the nozzle lips, a cloud of points was crdatethis area to
store, in the course of the calculations, the pmesand the velocity field intended for some adoystocessing and
modal analysis40]. The figure 6 shows the location of this secogdaresh, which is used now for the DMD
analysis. The points form a cylindrical ring withreéctangular section, the width of which is equabbout three
quarters of the local chamber radius and the lemgtbne and a half times the width. The secondaeghmis
structured : 31 points in the axial direction, 3iints in the radial direction, and 301 points ie #zimuth direction,
making a total of 3k 31x 301 = 289 261 values per snapshot.

Fig. 6. Zoom in the plane = 0 of the rotational field with the mesh for #aepustic processing.

4.3 Conditions of the calculations

The 3D computations were performed with the finitdime CFD code CEDRELp, 17]. A single-phase
approach was used with a Navier-Stokes solver, Usecthe used propellant did not contain aluminiwartiges.
The flow was non-reactive. The Euler fluxes werscditized using a HLLC scheme, with an intermed&ate
calculated by a Roe mean. The turbulence was sietllssing a LES model, with a Smagorinsky subgridieh

Two main calculations were performe2D]. The first one was second order accurate in spaddan time with the
GF mesh. The space interpolation on the naturahdbims was second order accurate, with no limitafimction.
The time integration scheme was implicit one stepd stage, with a coefficieAtequal to 0.5, making the method
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second order accurate. The linear system was salsgd) the GMRES method. The time step was 0.ZThs
scheme is twice faster than the RK2 scheme, andibre robust in the case of very small tetraHexbs, some of
which can be awkward.

A second calculation, fourth order accurate in spaad in time with the rougher GM mesh, was coretlietith a
higher order scheme to see whether the descripfithte instabilities would be improved. The spaderipolation on
the natural variables was fourth order accuratéh wo limitation function. The time integration srthe was a
Runge-Kutta four steps, fourth order accurate sehdre time step was 0.1 us.

As the LP6 engine propellant response with resjeeitte pressure instabilities was not significéime, combustion
of both propellant blocks was simply modelled byigaction boundary condition at constant flow ratel constant
velocity combustion, with the same combustion terapee R0]. Inert surfaces were processed as adiabatic walls
and the nozzle exit as a supersonic exit.

Two sets pressure results, which were stored ih bases at the points of the secondary mesh, aikalale for a
DMD analysis. They are named GF 2-order and GMd&win this paper, and both of them are submittedaf
DMD analysis in a purpose of comparison. The maassure in the chamber was 41 bar. The sound tglacihe
chamber, useful for further acoustic comparisore &ection 6.9), was 1059.87 m/s.

4.4 Experimental results useful for the DMD anilys

Before the 3D calculations of the LP6 engine, salveinots of this engine were fired in a test beidh 19, 23)].
Some pressure measurements were collected. Themefevalues, which defined the calculations camt were
derived from the measurements of the LP6 shot at’ thie instant 6.4 s of combustion. At the timehaf tests, the
experimental signals were filtered between 200 Hd 2000 Hz 19]. Unfortunately, the presence of any mode
beyond this band, which could be detected by thdahanalysis or by the DMD analysis, is unknowne Tigure 7
shows the pressures at the front face of the chgmbted FAV, and at the rear face, noted FAR (withe annular
space surrounding the nozzle convergetf) 20].

0.010 0.010

[ PFAV { | PFAR |

———— 0.008 —

0.006 +——————+——0.006

0.004 +— - 0.004

0.002 . 10.002

0.000 Y £ res. (1) astd hl frag. ()

.000
0. 300. 600. 00. 1200. 1500. 0. 300. 600. 900. 1200. 1500.

Fig. 7. Experimental FAV and FAR pressures (MPa).

A pressure peak appears around 300 Hz, whiche$ylike frequency of the first longitudinal acoastiode. The
peaks of the harmonic frequencies are very small.

4.5 Modal analysis results

Regarding the modal analysis realized in 2017 an2i0il8 through CFD result(, 21], average values, RMS
and DSP for the pressure and the velocity in thel aadial and azimuth directions were calculatéat. comparison
purposes with the DMD analysis, since the acouwstidy area is just in front of the nozzle, only B&R pressures
stored by sensors are considered. The figure 8 shiosvtime dependant evolutions of the FAR presturéhe GF
2-order calculation, and the GM 4-order calculatiitmboth cases, the resolution frequency was 6B¢sides the
main peak around 300 Hz and its harmonic frequsneiesecond predominant peak appears around 282 e
GF 2-order calculation, and around 2850 Hz for@M 4-order calculation. The table 2 gathers thguencies of
the first longitudinal mode, and the associatedltg®ns frequencie[)].
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Fig. 8. FAR pressure (Pa) of the 3D GF 2-order calculatigrand of the 3D GM 4-order calculation (b).

Table 2
Acoustics modes frequencies in the 2D cavity.

LP6 shotn°7 3D GF 2-order 3D GM 4-order
1L frequency (Hz) 303 307 306
resolution frequency(Hz) 8 6 6

4.6 Preponderant modes detected by the DMD arslysi

For the GF 2-order calculation, 24300 snapshot® weovided N = 24299), with a sampling time step of 4 pus.
Therefore the maximum detectable frequency is 125 &nd the minimum resolution frequency is 10.288ifHll
the snapshots are used.

For the GM 4-order calculation, 25500 snapshotsevpeovided N = 25499), with a sampling time step of 4 us.
Therefore the maximum detectable frequency is 588 kHz and the minimum resolution frequency B0@.Hz if
all the snapshots are used.

It would be tempting to use only 25000 snapshotthefGM 4-order case, which leads to the simpleesaif
10 Hz for the resolution frequency. Since the expental pressure peak of the LP6 shot n° 7 is &9, it is
better to find a resolution frequency such as #skfrequency is the closest to a multiple oftitsla way to check
whether the first mode of the CFD flows, detectgdIMD, matches the experimental one. If only 19882pshots
are used N = 19801), the resolution frequency is equal to623.Hz with a relative error of 1) and the
experimental peak frequency is 24 times the remolftequency. In addition, this number of snapshetcommon
to both cases, making more consistent a compalisbmeen their DMD results. For the purpose of ttuels the
maximum observed frequency is limited to 5000 Hz.

While running the DMD program, a size of 42.69 GBhe RAM and a CPU time of 1h 07mn 55s were reguir
to compute the amplitudes of 396 modes below 509GH = 0 in the GF 2-order case. A CPU time a little bi
smaller (1h 03mn 48s) was required to compute thplitudes of the same number of modes in the GMdén
case. The specific time, defined by the relatiaid)(For the GF 2-order case is :

_ CPUtime _ 4075s
¥ n,xn xn, 396x19802x 289261

=1.79710°s (6.1)

The selection of the preponderant modes is madg lmnlvisual observation : the amplitude of a pregemant
mode is higher than the amplitude of its neighbmyinmodes. The figure 9 shows the modal amplitudethe
pressure fluctuations at= 0 in the GF 2-order and GM 4-order cases. Thim ppaaks are present in both cases at
303 Hz, its three following harmonics, and betw2800 Hz and 2900 Hz.
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Fig. 9. Modal amplitudes in the GF 2-order and GM 4-orcheses at = 0.

If the modal frequencies are identical or very elésr the first four preponderant modes, they dearty distinct
for the mode between 2800 Hz and 2900 Hz, and theyGM 4-order case shows another peak around K&00
The first peak is the highest in the GF 2-ordelec@s!.22 bar against 16.76 bar in the GM 4-ordsekarlhe five
following peaks are higher in the GM 4-order camieleast at = 0. The selected frequencies in both cases are
gathered in the table 3. For a matter of convemgtie values are rounded to the nearest unit.

Once a mode is selected, it is interesting to daletthe evolution of its amplitude over its wheleriod. In order
to separate several modes next to each otherntpétade of which is about the sametat 0, but with a different
evolution in the time. In order also to bring due phase shifts between the modes, as mentioribd gection 2.7.

The highest mean value of the amplitudes amongogaapndes over their own period decides which madéé
preponderant mode.

The figure 10 shows the time dependant evolutiothefpressure fluctuations amplitudes of severaleamver
their own periods in the GF 2-order and GM 4-orckeses. The curves are not sinusoidal. They bringheumodal
amplitude and phase shift discrepancies due tonttsh and integration order differences.

Table3
Selected DMD frequencies.

GF 2-order case GM 4-order case

303 Hz 303 Hz
581 Hz
593 Hz

606 Hz 606 Hz

884 Hz

922 Hz 922 Hz

1225 Hz

1237 Hz

1250 Hz 1250 Hz
1263 Hz

2828 Hz 2866 Hz
4798 Hz
4810 Hz
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Fig. 10. Time dependant evolution of the amplitude of tredes at 303 Hz (a), around 600 Hz, and between B&QGthd 2900 Hz (b),
around 900 Hz (c), and around 1250 Hz (d), oveir iwn period.

The graph (a) concerns the first mode at 303 Hd,slwows clearly the GF 2-order case fits to desdtile shape
evolution, since the mode amplitude is higher.

The graph (b) concerns the modes around 600 Hz,batdeen 2800 Hz and 2900 Hz. In a pure acoustic
configuration, the first harmonic of the mode a8 34z is normally at 606 Hz. The GF 2-order casadxiit out. In
the GM 4-order case, it is covered by two other esoat lower frequencies, and the most preponderade in that
case is clearly at 593 Hz. The phase shifts ofntbdes, the frequencies of which are nearby, vathénend a lot
according to the case and the frequency. The poesgant mode between 2800 Hz and 2900 Hz is tarajenti
(see figure 15). The GF 2-order case gives a freguat 2828 Hz while the GM 4-order case giveseguency at
2866 Hz with a higher amplitude.

The graph (c) concerns the modes around 900 Hzclihes in the GF 2-order case are an example where
mode at 884 Hz seems to be preponderant & compared to the mode at 922 Hz. Over their paniod, the mode
at 922 Hz has a higher mean value than the mod#84tHz. That mode is even more preponderant in the
GM 4-order case.

In the end, the graph (d) concerns the modes ar@@60 Hz. Because of several ambiguities at0, several
curves are plotted. The highest mean value of thdem amplitudes over their own period is at 1250rHthe GF
2-order case. The curves of the modes around 4&06 the GM 4-order case are not plotted. The mwdure of the
mode at 4798 Hz is the highest.

4.7 Comments

Plotting the modal amplitudes in the time helpsiétermine which modes are preponderant accorditigetcase
(GF 2-order or GM 4-order). But once the prepondenaodes are found, there is no way to say what sabetter
than the other to explain the physics. Only sompedrmental measurements can help to decide. Aarit e
suspected, the influence of the mesh and integrattbeme on the DMD results is eventually quitedrtgmt.

4.8 Time dependant evolution of the modal shapes

A great advantage of the DMD is the possibilitysbmw the time dependant evolution of the shap#iseoelected
preponderant modes. The modal shapes are thedtiais shapes calculated with respect to the rigide.

For each mode, some slides at various momentsxar@cted from a video which runs over one periodhaf
mode. Only the modes which present the highestgaak considered in this paragraph. To give an adeghat
happens within the numerical domain intended tontloglal analysis, a quarter of the cylindrical seloy mesh is
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removed, revealing a vertical plan, a horizontalnpland the inner cylindrical surface of the mddie plan which
sticks to the nozzle nose is in front. Since thelah@hapes are here the pressure fluctuations shge explains
why the termdP in the legend is used, and why the amplitudéi®fs positive or negative. The extreme values of
AP are significantly reduced compared to the realeemé values of a modal shape, in order to highligtiter the
visible phenomena.

The figure 11 shows the shapes of the mode at 308 Hhe GF 2-order caséReyyreme= 10* Pa). Nine moments
are selected (beginning and every neRtpriod) to show properly the evolution. The modeaffected by an
important radial influence. The pressure variatioome from the outside to the inside of the domaird close to
the nozzle. Hence the annular cavity around theleaonvergent has an important influence on thaglen

The figure 12 shows the shapes of the mode at 9% Hhe GM 4-order casePexyreme=+ 1200 Pa). Three
moments are selected : both maxima of amplitugegrs¢ed by the first minimum of amplitude. The ghapolution
of this mode is more classical for a longitudinada, with still a significant influence of the née edge.

Both modes at 922 Hz (case GM 4-order, figure ARByyweme= £ 600 Pa) and at 1250 Hz (case GF 2-order,
figure 14, APexreme= * 400 Pa) show a quite important influence of thezte edge and the annular cavity around
the nozzle convergent on the shape evolution, withay significant longitudinal pressure variation.
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Fig. 11. Shapes of the mode at 303 Hz in the GF 2-order, aétse 0 (a),t = 168 ps (b)t = 580 ps (c)t = 992 ps (d)t = 1404 ps (e), = 1816 ps (f),
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Fig. 13. Shapes of the mode at 922 Hz in the GM 4-ordes, Gt = 496 us (a) = 1040 us (b).

‘ A
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()
Fig. 14. Shapes of the mode at 1250 Hz in the GF 2-ords, et = 28 us (a)t = 428 us (b).

The next mode at 2866 Hz in the GM 4-order casegrak preponderant mode after the one at 303 Hhagifirst
pure tangential mode, the shape of which rotateckelise at the frequency of the mode, while it besigis between
its two extrema. The nine selected moments (figh®&sAPexreme= = 2500 Pa), show the shape evolution of this
mode, starting from= 0, then every next'8eriod to highlight the rotation.
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Fig. 15. Shapes of the mode at 2865.875 Hz in the GM 4raalee, at = 0 (a),t = 40 ps (b)t = 84 us (c)t = 124 ps (d)t = 168 ps (e),
t =212 ps (f)f = 256 ps (g)t = 300 ps (h)t = 344 ps (i).
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The last mode at 4798 Hz, in the GM 4-order casegl$o interesting since it seems to be the sepome
tangential mode. The mode shape rotates clockwWise.eight selected moments (figure UPeyireme= = 800 Pa),
show the shape evolution of this mode, startingnfrihe first maximum at 8 ps, then every neXtgriod to
highlight the rotation.
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Fig. 16. Shapes of the mode at 4798 Hz in the GM 4-ordse,catt = 8 s (a)t = 36 pus (b)t = 60 ps (c),t = 84 ps (d)t = 112 ps (e)t = 140 ps (f),
t =164 ps (g)t = 188 us (h).

4.9 Comparison with the pure acoustic modes

The first preponderant mode detected by the DMDyamaderives in principle from a coupling betwethe
chamber acoustics and the PVS instability. To krexactly the acoustic modes of the LP6 engine, aog to
estimate the influence of the coupling, the AVSRveare, made by CERFACS, was used in the whole domi
the chamber. As this software requires a smaltfieglocity, the nozzle convergent was truncated g@bsition
between the nose and the throat, which seems #godo®d compromise between the respect of the eggiometry
until the throat, and the necessity to remove #lts avhere the fluid velocity is too high and wouéhd to some
wrong results if they were taken into account. Tired hundred acoustic modes were computed. Ordyntiodes
which are close to the DMD modes are kept. As tiraupeters (pressure, temperature and molar make ghses)
asked by AVSP to calculate the sound velocity givealue (1088.13 m/s) slightly different from treak value
(1059.87 m/s) provided by the CFD calculation,st &orrection was made on the AVSP frequenciesega(tihrough
the sound velocity values ratio) to be consisteitt the thermodynamic state of the LP6 engine. fhide 4 gathers
the AVSP and DMD modal frequencies. The adjuste@R\requencies are slightly smaller below 1000 hdmtthe
retained DMD frequencies, and slightly higher ab@8000 Hz. Here, the values are rounded to the skdenimal,
to let appear some frequencies which are in pary ¢lose to each other, according to AVSP, forhbpotire
tangential modes. This is the way used by the sofivto detect the tangential rotation of these modibe figures
17 and 18 show the AVSP modes shapes, in ordeeterrdine the type of each mode. As a reduced desolu
pressure is plotted, both maxima and minima inaed blue colours in the previous figures (11 to héfome
maxima plotted in red. Thus the blue colour repnesthe pressure knots.
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Table4
AVSP and DMD modal frequencies.

favse (HZ)  fpomp (HZ)  fpwp (H2) dF / F

f avsp (H2) type adjusted GF 2-order GM 4-order (%)
306.7 1L 298.77 303 303 -1.4
604.15 2L 588.46 606 593.37 -0.83
937.53 3L 913.18 921.62 921.62 -0.92

1283.47 4L 1250.14 1249.87 1262.5 -0.98
2948.86 1T 2872.27 2828 2865.87 0.22
2948.87 1T 2872.28 2828 2865.87 0.22
4936.63 2T 4808.42 - 4797.5 0.23
4936.76 2T 4808.55 - 4797.5 0.23

B Taw )

: m -(a) m ‘
D

(d)
Fig. 17. AVSP modes, 1L (a), 2L (b), 3L (c), 4L (d).

Fig. 18. AVSP modes, 1T (e) & (f), 2T (g) & (h).
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4.10 Comments on the 1L and 1T DMD modes

Since the peak at 303 Hz is the highest (figurét 9)ieans the coupling between acoustics and thg iRstability
is strong. The frequency of one of the PVS modethefLP6 chamber might be close enough to the ditsustic
mode to merge with it and produce the high ampditybak of the resulting DMD mode. With such a high
amplitude, compared with the other DMD peaks, tW& Pnode in question might be also unstable, in sugray
that the acoustics and PVS instabilities amplifgreather. It is not the purpose of this paper tegtigate further
the issue.

The second highest peak on the figure 9 correspundgangential rotating mode in the cavity arothelnozzle
(figures 16 and 19). The frequency of this DMD madehe GM 4-order case (2865.87 Hz) is quite clus¢he
adjusted frequency of the 1T pure acoustic mod@228 Hz). Therefore another coupling between aasiand
another phenomenon, which is unknown, might be mapb. A peak about the same frequency appeatsifrAR
pressure graphs of the 3D calculations (figurdB)fortunately, whether the peak would appear inekgerimental
measurements remains unknown, since the signajseneies were cut above 2000 Hg][

However, it is possible that this mode is causea lpure numerical effect. In a CFD calculation, wedls are
perfectly impermeable and reflective. In addititve LP6 calculations were conducted without anyntia transfer
along the walls. Hence a small numerical instabiienerated close to the 1T mode frequency is\ikel be
amplified. In the real LP6 engine, the propellasmipobrous, and absorbs partially the acoustic endrgg parietal
heat losses behave the same way. Therefore a si@bility generated close to the 1T mode frequéaanore
likely to be damped in the working real chamber.

5. Application to two experimental films
5.1 Context

In the framework of CNES-ONERA R&D activities forracket engine, a test campaign was run on the dfissc
test facility of ONERA, to characterize the atontiza process and the combustion regimes, and t@lgup
database for validation of models and numericalfation tools.

For a matter of confidentiality, no reference isntiened in this paper about these activities, gwults of which
are used for DMD only to present an interestingiappion case with experimental data.

The main purpose of the test series, from the pafintew of optical diagnostics, was to film tharfhe using two
high-speed cameras which were spatially adjustachésfield viewed by both cameras) and synchron{zedges
recorded at the same time). A first camera recotdedhemiluminescence of the OH* radicals, whikadrrelated
with the temperature, via an image intensifier. eeond camera was used to visualize the liquidebg shadow
imaging. Both cameras had 12800 pixels, with a resolution of 13 pixel/mm. Tiwaigh images were cut to the
format 1024x 512 pixels before being recorded.

A shot was selected for the DMD analysis. The fishewed a phenomenon of jets and flame pulsationttis
shot, the sampling frequency was 7400 Hz. A natvend filter was mounted on the UV lens of the Oldiera.

5.2 Experimental results useful for the DMD anilys

A detailed frequency analysis was made for bothdibf the selected shot. For all the following imsgthe fluids
move from the left (injectors plane) to the rigdbgynstream). The mean and RMS images were caldulaitd
5000 images during the steady part of the flowufigg19 for the OH* radicals images, figure 20 foe shadow
images). The projected shadow of the liquid phasegorded on the retro-lighting images. The fig@eshows two
unsteady OH* radicals images. The diffuse fluid rmib& injection takes place around the flame friwe injector
exit. Sometimes, the flame seems to close befageetid of the viewing area and shows some puffs ANel
transform was calculated, because of its questiengllyysical validity as digital tomography, duetb@ masking
effect of the diffuse fluid.

Emission moyenne (Moyenne des images "Mean")

@ (b)
Fig. 19. Mean (a) and RMS (b) OH* images with the narrowdfilter.
21

100 200 300 400 500 600 700 800 900 1000



Fig. 20. Unsteady OH* radicals images.
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Fig. 21. Mean (c) and RMS (d) shadow images.
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A first global Fourier analysis was made on the QHdicals images. Each of them being beforehantdadlpa
averaged, the spectral power density (SPD) ofithe tependant resulting signal was then calculéigdre 22).
A main peak appears around 2500 Hz. A second vea}l peak around 3100 Hz seems to come out ofdisen

Periodogramme Brut sur 5000 points (fenétrage rectangle), le signal en comportant 5000
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Fig. 22. SPD of the averaged OH* radicals images.

The Fourier treatment was then focused on six pafrtequal surface in the viewing area. Two otheDSP
examples, one for the OH* radicals images in a pathe viewing area, and one for the shadow imagesother
part, are displayed on the figure 23. In both cagesobtained SPD shows a little peak at exa@ly l8z. The peak
near 2500 Hz appears only for the OH* images.
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Fig. 23. SPD examples of the OH* radicals images (a), kedshadow images (b) in parts of the viewing area.
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5.3 Preponderant modes detected by the DMD arsafgsithe OH* radicals film

The OH* radicals film was composed of 16001 ima@@smostN = 16000), with a sampling frequency of
7400 Hz. Hence the maximum detectable frequen8y® Hz and the minimum resolution frequency i$2%Hz,
which is very low. Each image has 1024 pixels iscigsa and 512 pixels in ordinate, which makeda td 524
288 values per snapshot, with a spatial resoludfdl8 pixel / mm.

While running the DMD program, a size of 62.57 @ahle RAM and a total CPU time of 27h 55mn 48s were
required to compute the amplitudes of 8000 modémwb8700 Hz at = 0. The specific time, calculated with the
relation (3.7), is 1.498 10s. The part (a) of the figure 24 shows the modaplaudes at = 0 of the fluctuations of
the pixels grey levels, calculated with all thesteots, over the whole frequency domain.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
frequency (Hz) frequency (Hz)

(a) (b)
Fig. 24. Modal amplitudes for the OH* radicals filmtat 0, forN = 16000 (a), and for N = 3699 (b).

The selection of the preponderant modes is madg lmnlvisual observation : the amplitude of a pregemant
mode is higher than the amplitude of its neighbmymodes. In the case of a DMD analysis from expental data,
the preponderant modes seem to appear like a « Hellopposition to CFD data where the preponuerades are
very clear at a single frequency. The high valughefsampling time step (near 135 ps), much highear the time
step in the CFD case (4 ps), may explain this biebaysince it leads, with all the snapshots, toeay low
resolution frequency. If this frequency is too simialis then possible that several modes, whiobvjole a similar
shape, are captured by several very close fregegnthe amplitude of the phenomenon is then diggtbon each
of the nearby modes, and it is then difficult tdedmine a single value of the preponderant modgufacy. If the
experimental data comes from an exciting sour@gven frequency, then the behaviour associatéet@€FD for
the DMD analysis is likely to be found again. Iistexperimental case, the spectrum noise is alge quportant,
since the images are not filtered.

The figure 24 shows the main phenomenon appeargebat 850 Hz and 900 Hz. To increase the resolution
frequency with a fixed sampling frequency, and ¢fi@e, to highlight the preponderant modes at risti
frequencies, it is then required to dim the snafsihomber. Then the preponderant mode can be aelecbre
easily. In addition, it is more convenient to ch®assnapshots number such as the resolution fregimas a simple
value. For the OH* radicals, 3700 snapshots arel (&ken here from the 40@05napshot), and the resolution
frequency is 2 Hz.

The part (b) of the figure 24 shows the new modapléudes at = 0 of the fluctuations of the pixels grey levels.
The modal amplitudes as a whole for a reduced nurnbesnapshots are higher than in the case withthall
snapshots. Since the sum of all the modal vectoeways equal to the first snapshot regardleshetnapshots
number (relation (2.33) with= 0), it is reasonable to admit, though it is pmived in this paper, that an increasing
shapshots number leads overall to a lower amplifadeach modal vector. Four frequencies are ssdecf30 Hz,
288 Hz, 866 Hz and 2494 Hz. The preponderant DM@ arino the OH* radicals film appears at 866 HzZ(Hz).

5.4 Time dependant evolution of the modal shagethé OH* radicals film

For each selected frequency, a video showing the tiependant evolution of the mode shape can lite Bui the
modal shapes in this paragraph are shown onlyeainitial instant (figure 25), because the shapdsréher instants
do not bring much information. Since the modal €sapre the fluctuations shapes calculated withexsjp the
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rigid mode, the amplitude is positive or negatiVee extreme values are reduced compared to theert@me
values of the shapes, in order to highlight betiervisible phenomena.

The shapes evolutions of the two modes with a lpghk at a low frequency (230 Hz and 288 Hz), show a
pulsation phenomenon which grows approximatelyhie middle of the viewing area and moves downstrdam.
seems to follow the puffing phenomenon of the flamentioned in the section 5.2.

For the main mode at 866 Hz, the pulsation phenomegrows from the injection plane before moving
downstream and stretching to the upper and lovagrssiThe waves of the jet mixing zone look coniggil about
the first third of the viewing area, then they mal@vnstream more longitudinally before they vaniSmce the
amplitudes are maximum in the middle of the imagesavelengtil was measured, along an axial ling/at0.2 m
and around the abscissa 0.4 m. It was found = 160 mm (approximately). A phase velocity cardbeved, as the
product ofA by the frequency. It is equal to 138.56 m/s. Tiisde has nothing to do with the acoustics of the
chamber, whose first longitudinal mode was caledatt about 611 Hz.

The mode at 2494 Hz shows some narrow and swiftesjawhich take place in the downstream half of the
viewing area and which are rather longitudinal.

grey level

(©)
Fig. 25. Modal shapes at= 0 for the OH* radicald. = 230 Hz (a)f = 288 Hz (b)f = 866 Hz (c)f = 2494 Hz (d).

5.5 Preponderant modes detected by the DMD arsalgsithe shadow imaging film

The shadow imaging film was composed of 12281 imgge mostN = 12280), with a sampling frequency of
7400 Hz. The maximum detectable frequency is 300 Hz and the minimum resolution frequency iO2%BHz,
which is still very low. Each image has still 10@4els in abscissa and 512 pixel in ordinate, whigikes a total of
524 288 values per snapshot, with a spatial resolatf 13 pixel / mm.

While running the DMD program, a size of 48.02 Gahe RAM and a total CPU time of 15h 47mn 48s were
required to compute the amplitudes of 6140 modéswb8700 Hz at = 0 (the calculations was split up into two
parts to re(sépect the maximum allowed CPU time). §pecific time, calculated with the relation (5.i8)here equal
to 1.438 10 s.

The part (a) of the figure 26 shows the modal atugdis att = O of the fluctuations of the pixels grey levels,
calculated with all the snapshots, over the whaguency domain.
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Fig. 26. Modal amplitudes for the shadow images a0, forN = 12280 (a), and fdd = 3699 (b).

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

frequency (Hz)

(b)

Again, the preponderant modes seem to appear kkbedl », and the main phenomenon appears bet@&@ihiz
and 900 Hz. The resolution frequency must be irsgeéato highlight the predominant modes at disfiretjuencies.
Since the sampling frequency is fixed, the numidemapshots must be reduced. For the shadow imadesetter
to use again 3700 snapshots (taken here from tB8"4hapshot) than all them, and the resolution frequés
again 2 Hz. From the part (b) of the figure 26 ethmodes are selected : 230 Hz, 866 Hz and 1734Thiz.
preponderant DMD mode in the shadow imaging filmpegys again at 866 Hz ( Hz).

5.6 Time dependant evolution of the modal shagethé shadow imaging film

The time dependant evolution of the selected matapes is presented in this paragraph. For eacle,rsoche
slides at various moments are extracted from aovigleich runs over one period of the mode. The sleyoéution
of the mode at 230 Hz is shown about every nexttquaeriod (figure 27). The time dependant shabesv clearly
the separation between the mixing zone of therjdtthe recirculation zone between the injector tedwalls. The
strongest deformations take place along the boateund the mixing and burning zone, where the non
homogeneities between gas and liquid are the mysiritant.
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Fig. 27. Shapes of the mode at 230 Hz for the shadow imagfes 270 ps (a) = 1351 ps (b}t = 2432 us (c)t = 3514 us (d).



The most interesting mode is at 866 Hz. Four moman¢ shown, from the beginning and every nexttquar
period (figure 28). These images complement theggéaaf the OH* radicals pulsations at the sameugaqy. The
pulsations occur essentially along the separatime detween the mixing zone of the jet and thegeltion zone
between the injector and the walls. The contrastd&en liquid and gaseous phases seems to be maxiioma this
surface, for the considered frequency. It is treeekasy to measure a wavelength, estimated a23 &@n, as well
as the angle of opening of the friction cone, estéd at 31.67°. The phase velocity in this direct®then equal to
169.95 m/s. The mode at 1734 Hz seems to be gtehfirmonic of the previous mode (figure 29).

Investigating further the issue about the atomizafirocess, in particular for the preponderant mgdes beyond
the purpose of this paper.
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Fig. 28. Shapes of the mode at 866 Hz for the shadow imagges 0 (a),t = 405 pus (b)t = 676 ps (c)t = 948 us (d).
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Fig. 29. Shape of the mode at 1734 Hz for the shadow imaiges 0.

6. Conclusion

The equivalence between dynamic mode decomposdimh discrete Fourier transform for numerical and
experimental data, based on the reduction of allsghapshots by the mean of the whole sequenceusetsto
propose an analytical and exact solution for the IMvhich is equivalent to the equations for the DFT
The sampling time step is assumed to be constdugt.time dependant evolution of the modal shapes dirgear
combination of all the reduced snapshots, the wefghctions being the results of the analyticalusoh.
This solution sets completely free from the coristréeo operate matrix processings, which are expenis time
calculation and in memory size if the snapshotstrems high.

The eigenvalues are completely independent of #ta.drhey depend only on the snapshots numberthand
spectral resolution is uniform. The Nyquist cortitiis implicitly respected. The tolerance assodiatgth the
spectral resolution is half of the resolution fregqay. In order to approach the real value of a msdguency, the
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tolerance must decrease. Increasing the snapstimiisen is a convenient possibility, but not the slamtime step,
because some information about the researchedagathydienomena can be lost.

The notion of amplified or damped modes, as itammon in the original DMD analysis, does not existe,
since all the eigenvalues have a unit magnitude. diftained modes are just preponderant or not,ifkgép mind
that the notion of modal growth rate is valid oimythe time window of the data sequence, since#heulation does
not know what happens physically before the firsaipshot and after the last one. Whatever the @lidgiMD
method can reveal about the dynamical informatiois, limited in the time of the observed data. fiéfere, it is not
unreasonable to turn towards a method, althoughvalgat to DFT, which presents some other significa
advantages, as long as the right preponderant nuddes/ sequence are still detected.

This method is valid regardless of the number d&medvalues of the snapshosts. The error of this DaviBlysis
solution comes only from the data themselves :tilme step, the shapshots number, and the snapsaliss.
This simple solution allows to process in a quiterstime a great amount of data, the limit of vhis the computer
RAM size. The great advantage of the DMD is thesfimlity to make visible the time dependant evalatiof the
shapes of the selected preponderant modes. Dealthga great number of snapshots allows, in onedham
compensate some disadvantages outlined for the BIRd ,on the other hand, to bring out better thgpqrderant
modes and to make continuous videos of the selectetks shapes.

After an academic validation case, typically undteand transient, dealing with 50000 snapshots E%D00
values per snapshot, two application examples wee presented in this paper : the first one corecebpme 3D
CFD results (25500 snapshots, 289000 values ppskoy, and the second one concerns the imagesctdrfrom
two experimental films (16000 snapshots, 524000e&ber snapshot). Both cases are in current ube ifield of
fluid mechanics.
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