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Abstract -- Sizing equations of radial and axial electrical

machines are developed. From these equations, the main 

geometrical parameters of the machines are obtained from the 

specifications and the loads. Analytical models of the open 

circuit and armature reaction fields are set up and associated to 

the sizing equations. This results in more accurate sizing 

equations. An axial and a radial flux motors are sized for the 

same loads and the same specifications to check the 

effectiveness of the sizing approach. Eventually Finite Element 

Analysis results validate the analytical models. 

Index Terms-- axial flux machines, radial flux machines, 

sizing model, sinusoidal machines. 

I. INTRODUCTION

espite being more difficult to manufacture than its radial

counterpart, Radial Flux Permanent Magnet (RFPM) 

motors, and with additional mechanical constraints, 

Axial Flux Permanent Magnet (AFPM) motors have very 

interesting characteristics [1]. However, it is still difficult to 

determine which electric motor topology is the most relevant 

for given specifications. That is why general purpose sizing 

equations have been developed for RFPM and AFPM motors 

[2][3]. The sizing equations are based on simple analytical 

expressions of electromagnetic quantities like the airgap 

magnetic flux density, flux per pole or torque [4][5]. In this 

paper, more accurate analytical models of the open circuit 

and the armature fields are developped to evaluate the 

electromagnetic quantities inside sizing approaches. 

Complete analytical models of RFPM slotted motors are 

available now [6]. But these models are too complex. That is 

why analytical models of RFPM and AFPM slotless motors 

are considered [7][8][9]. Before applying these models, it is 

required the use of the Carter’s coefficient. 

Permanent magnet motors with Halbach array can 

produce high airgap magnetic flux density. Hence, they are 

good candidates for high specific power electric motors 

[10][11]. A RFPM motor with ideal Halbach array have been 

analytically modelized [12]. 

In this paper, the open field of RFPM and AFPM motors 

with ideal Halbach array are modeled analytically. 

Furthermore, these motors are supposed to have sinusoidal 

distribution of conductors and to be supplied by sinusoidal 

polyphase currents. Thus, the source of the armature reaction 

field is a sinusoidal surface current density on the stator bore 

[13]. Up to now armature reaction fields in RFPM and 

AFPM motors are often analytically modeled using magnetic 
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vector potential [14]. The introduction of surface current 

density allows the use of magnetic scalar potential 

formulation. 

For RFPM and AFPM, both open circuit and armature 

reaction fields analytical models will be associated with a 

sizing approach based on load concepts [13][15]. First the 

studied motors will be presented. Then the analytical models 

for RFPM and AFPM motors are described. To set up these 

models, slotless stators are considered, the magnetic 

permeability of iron is assumed infinite and the magnetic 

permeability of magnets equals unity. The modified unified 

sizing approach for RFPM and AFPM is developed before 

applying it to size AFPM and RFPM motors to show that it 

works well. That is why, for the simplicity of the 

presentation, the motors are sized not only with the same 

specifications but also with the same magnetic, electric and 

thermal loads. It is obvious that in real the practice, AFPM 

and RFPM motors may have the same specifications but do 

not have the same loads. As the introduction of simplified 

analytical models in a unified sizing approach is the one of 

the main contributions of this paper, FEA results are mainly 

intended to validate the open circuit and armature reaction 

field models of the sized RFPM and AFPM motors. 

II. STUDIED MOTORS

The studied motors are surface mounted permanent 

magnet motors. They are supposed to have ideal Halbach 

array. They have both single airgap. The geometry of the 

RFPM motor is shown on Fig. 1 and the AFPM motor on 

Fig. 2. The geometrical parameters of both motors are given 

on Table I. 

Fig. 1.  Geometrical parameters of the RFPM motors [15]. 

Fig. 2.  Geometrical parameters of the AFPM motors. 
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TABLE I 

GEOMETRICAL PARAMETERS OF BOTH MOTORS 

Parameter RFPM AFPM 

ℎ𝑚 Magnet radial thickness Magnet axial thickness 

ℎ𝑦 Yoke radial thickness Yoke axial thickness 

ℎ𝑠 Slot radial height Slot axial height 

𝑙𝑠 Slot azimuthal width Mean slot azimuthal width 

𝑙𝑡 𝐴𝑡 Tooth azimuthal width Mean tooth area 

𝑁𝑡 Number of slots or teeth 

𝐿 Stack length No signification 

𝑝 Number of pole pairs 

III. ANALYTICAL MODEL OF RFPM MOTOR

A. Open-circuit field model

The study domain of the open-circuit field is composed of

two media: the airgap and the permanent magnets as 

illustrated in Fig. 3. 

Fig. 3.  Study domain of the RFPM motor open circuit field and armature 
field model. 

The ideal Halbach magnetization distribution is given by 

[12]: 

𝑀𝑟(𝜃) = 𝑀. cos 𝑝𝜃 (1) 

𝑀𝜃(𝜃) = −𝑀. sin 𝑝𝜃 (2) 

Where 𝑀 is the amplitude of magnetization. As there is no 

volume current density in the study domain, magnetic scalar 

potential (MSP) Ω can be used and static Maxwell equations 

lead to: 

ΔΩ = {

 0        in the airgap  

div 𝑴 = (
𝑀

𝑟
−

𝑝𝑀

𝑟
) cos 𝑝𝜃     in the magnets (3) 

The separation of variables applied to (3) in cylindrical 

coordinate system for the first harmonic gives the following 

expressions of magnetic scalar potential in airgap region 

𝐼 and magnet region 𝐼𝐼 [12]: 

Ω𝐼 = (𝑎𝐼 . 𝑟𝑝 + 𝑏𝐼 . 𝑟−𝑝). cos 𝑝𝜃 (4) 

Ω𝐼𝐼 = (𝑎𝐼𝐼 . 𝑟𝑝 + 𝑏𝐼𝐼 . 𝑟−𝑝 + 𝑐. 𝑟). cos 𝑝𝜃 (5) 

Where 𝑐 = 𝑀/(1 + 𝑝). The coefficients 𝑎𝐼 , 𝑎𝐼𝐼 , 𝑏𝐼 and 𝑏𝐼𝐼

are determined by boundary and interface conditions. As the 

permeability of iron is assumed infinite, the magnetic field is 

normal to the interfaces with iron. The interface conditions 

between the permanent magnets region 𝐼𝐼 and the air region 𝐼 

are the continuity of the normal component of the magnet 

flux density Bn and the continuity of the tangential 

component of the magnetic field density Ht. Boundary and 

interface conditions are translated into MSP and then into a 

matrix system allowing to compute the coefficients. The final 

expression of the airgap radial magnetic flux density is thus: 

𝐵𝑟
𝑂𝐶(𝑟, 𝜃) = 𝐵𝑀

𝑂𝐶(𝑟). cos 𝑝𝜃

𝐵𝑀
𝑂𝐶(𝑟) = 𝜇

0
𝑀.

𝑝

𝑝 + 1

(𝑅3

2𝑝
+ 𝑟2𝑝). (𝑅2

𝑝+1
− 𝑅1

𝑝+1
)

𝑟𝑝+1. (𝑅3

2𝑝
− 𝑅1

2𝑝
)

(6) 

B. Armature reaction field model

The geometry of the study domain is still as the one

shown on Fig. 3. However, the relative permeability of 

magnets is unity and magnetization of magnets is not taken 

into account. Thus, the study domain has only one medium. 

The source of the armature reaction field is modeled as 

surface current density [6][13]. As the volume current 

density is null, the problem is also solved with the magnetic 

scalar potential Ω. The static Maxwell equations lead to: 

ΔΩ = 0 (7) 

Using the separation of variables method, the following 

expression of MSP is obtained: 

Ω = (𝑎. 𝑟𝑝 + 𝑏. 𝑟−𝑝). sin 𝑝𝜃 (8)

The boundary conditions at radius 𝑟 = 𝑅1 and 𝑟 = 𝑅3 are:

𝐻𝜃| 𝑟=𝑅3
= 𝐾𝑀 cos 𝑝𝜃 (9) 

𝐻𝜃| 𝑟=𝑅1
= 0 (10) 

Translated into MSP, (9) and (10) lead to a matrix system 

allowing to compute coefficients 𝑎 and 𝑏. The final 

expression of the radial magnetic flux density produced by 

the current sheet is: 

𝐵𝑟
𝐴𝑅(𝑟, 𝜃) = 𝐵𝑀

𝐴𝑅(𝑟). sin 𝑝𝜃

𝐵𝑀
𝐴𝑅(𝑟) = 𝜇

0
. 𝐾𝑀.

𝑅3
𝑝+1

𝑟𝑝+1
.

𝑟2𝑝 + 𝑅1
2𝑝

𝑅3
2𝑝

− 𝑅1
2𝑝

(11) 

IV. ANALYTICAL MODEL OF AFPM MOTOR

AFPM motors require 3D models [9]. 3D analytical 

models even limited to the first harmonic is quite complex to 

handle in sizing approach. For the open circuit field, one of 

the very first analytical model of AFPM motor uses a 2D 

model in the azimuthal and axial directions (𝜃, 𝑧) [16]. In 

this section, two 2D analytical models for the open-circuit 

field and for the armature reaction field are presented. 𝑅𝑖𝑛𝑡

and 𝑅𝑒𝑥𝑡  are the respective internal and external radius of the

active parts of the studied motor and Fig. 4 shows the surface 

at the mean radius 𝑅𝑚 and the (𝜃, 𝑧) frame where the models

are set up. 

Fig. 4.  2D surface (in red) used to model the AFPM motor. 



A. Open circuit field 2D model

The study domain is composed of two media, the airgap

and the magnets, presented in Fig. 5 in a 2D (𝜃, 𝑧) frame. 

The ideal Halbach magnetization distribution is given by: 

𝑀𝑧(𝑟, 𝜃, 𝑧) = 𝑀. cos 𝑝𝜃 (12) 

𝑀𝜃(𝑟, 𝜃, 𝑧) = −𝑀. sin 𝑝𝜃 (13) 

Fig. 5.  Study domain of the AFPM motor open circuit field and armature 

reaction field model. 

In terms of magnetic scalar potential Ω, Maxwell 

equations lead to: 

ΔΩ = {
0  in 𝐼

div 𝑴 = −
𝑝𝑀

𝑟
cos 𝑝𝜃  in 𝐼𝐼

(14) 

The separation of variables applied to (14) in cylindrical 

coordinates gives the following expressions of magnetic 

scalar potential in airgap region 𝐼 and magnet region 𝐼𝐼: 

Ω𝐼 = (𝑎𝐼 . cosh
𝑝

𝑅𝑚
𝑧 + 𝑏𝐼 . sinh

𝑝

𝑅𝑚
𝑧) . cos 𝑝𝜃 (15) 

Ω𝐼𝐼 = (𝑎𝐼𝐼 . cosh
𝑝

𝑅𝑚
𝑧 + 𝑏𝐼𝐼 . sinh

𝑝

𝑅𝑚
𝑧 + 𝑐) . cos 𝑝𝜃 (16) 

Where 𝑐 = (𝑅𝑚/𝑝)𝑀. The coefficients 𝑎𝐼 , 𝑎𝐼𝐼 , 𝑏𝐼 and 𝑏𝐼𝐼

are determined by boundary and interface conditions. The 

magnetic field is normal to the interfaces with iron. 

Boundary and interface conditions are translated into MSP 

and then into a matrix system allowing to compute the 

coefficients. From Fig. 5 with 𝑧0 = 0, 𝑧1 = ℎ𝑚, and 𝑧2 =
ℎ𝑚 + 𝑔, the expression of the airgap radial magnetic flux

density at the mean radius is thus: 

𝐵𝑧
𝑂𝐶 (𝜃, 𝑧) = 𝐵𝑀

𝑂𝐶 (𝑧). cos 𝑝𝜃

𝐵𝑀
𝑂𝐶(𝑧) =

𝜇0𝑀𝑒
−

𝑝𝑧
𝑅𝑚 (𝑒

2𝑝𝑧
𝑅𝑚 + 𝑒

2𝑝𝑧2
𝑅𝑚 ) (𝑒

𝑝𝑧1
𝑅𝑚 − 1)

𝑒
2𝑝𝑧2
𝑅𝑚 − 1

(17) 

B. Armature reaction field 2D model

The surface current density depends on the radial position.

A general expression is taken as follows: 

𝐾(𝑟, 𝜃) = 𝐾𝑀(𝑟). 𝑐𝑜𝑠(𝑝𝜃) (18) 

The surface current density must respect one major 

condition that is div 𝑲 = 0. This condition is naturally 

verified in RFPM. In the AFPM machine, this condition 

yields to: 

𝐾𝑀(𝑟). 𝑟 = 𝑐𝑠𝑡𝑒 (19) 

The 2D analytical model is set up at the mean radius 𝑅𝑚

(Fig. 4). If 𝐾𝑚 is the value of the magnitude at 𝑅𝑚, (19) leads

to the magnitude at radial position 𝑟: 

𝐾𝑀(𝑟) =
𝐾𝑚. 𝑅𝑚

𝑟
(20) 

As for the RFPM motor, the study domain of the armature 

field is composed only of one medium, its geometry is shown 

on Fig. 5. 

The problem is also solved using a MSP formulation. The 

surface current density is taken as a boundary condition at 

𝑧 =  𝑧2 as done for the RFPM machine. The Maxwell

equations lead to: 

ΔΩ = 0 (21) 

The separation of variables method brings to the 

following expression of MSP: 

Ω = (𝑎. cosh
𝑝

𝑅𝑚

𝑧 + 𝑏. sinh
𝑝

𝑅𝑚

𝑧) . sin 𝑝𝜃 (22) 

The boundary conditions at 𝑧 = 𝑧1 and 𝑧 = 𝑧2 are:

𝐻𝜃| 𝑧=𝑧2
= 𝐾𝑀 cos 𝑝𝜃 (23) 

𝐻𝜃| 𝑧=0 = 0 (24) 

Translated into MSP, (23) and (24) result in the final 

expression of the radial magnetic flux density: 

𝐵𝑧
𝐴𝑅(𝜃, 𝑧) = 𝜇0. 𝐾𝑀.

cosh
𝑝

𝑅𝑚
𝑧

sinh
𝑝

𝑅𝑚
𝑧2

sin 𝑝𝜃 (25) 

V. MAIN ELECTROMAGNETIC QUANTITIES

A. Magnitudes of ideal sinewaves

The open circuit magnetic flux density and surface current

density at the stator bore are ideal sinewaves for both motors. 

For maximum operating torque [13]: 

𝐵(𝜃, 𝑡) = 𝐵𝑀cos (𝜔𝑡 − 𝑝𝜃) (26) 

𝐾(𝜃, 𝑡) = 𝐾𝑀 cos(𝜔𝑡 − 𝑝𝜃) (27) 

The corresponding vectors 𝑩 and 𝑲 are respectively 

carried by 𝒆𝒓 and 𝒆𝒛 for the RFPM machine, and 𝒆𝒛 and 𝒆𝒓

for the AFPM machine. 

In the case of RFPM motors their magnitudes are 

constant. The stator bore is at radial position (𝑟 = 𝑅3) and

the magnitude 𝐵𝑀 is linked to the geometrical parameters by

the open circuit model (6): 

𝐵𝑀 = 𝐵𝑀
𝑂𝐶 (𝑅3) (28) 

In the case of AFPM their magnitudes depend on the 

radial position 𝑟. The magnitude 𝐾𝑀 is linked to the radial

position by (20). At the stator bore (𝑧 = 𝑧2) and at the mean

radius 𝑅𝑚, 𝐵𝑀 is linked to the geometrical parameters by the

open circuit model (17): 

𝐵𝑀(𝑅𝑚) = 𝐵𝑀
𝑂𝐶(𝑧2) (29)

To link the magnitude 𝐵𝑀 to the radial position, a simple

polynomial expression is chosen: 



𝐵𝑀(𝑟) = 𝑎0𝑟2 + 𝑏0𝑟 + 𝑐0 (30) 

(30) is a polynome of second degree which passes through

the three points shown in Fig. 6. Several 3D studies brought 

us to choose 𝐵𝑀(𝑟) as illustrated in Fig. 6, where the

following constants are chosen to be 𝑐1 = 0.6 and 𝑐2 = 0.9.

Hence, coefficients 𝑎0, 𝑏0, 𝑐0 can be computed.

Fig. 6.  Shape of 𝐵𝑀(𝑟) of the axial magnetic flux density at the stator bore 

(𝑧 =  𝑧2) of the AFPM motor. 

B. Torque model

The general formula to compute torque is:

𝑇(𝑡) = ∬ 𝑟. 𝐵(𝜃, 𝑡). 𝐾(𝜃, 𝑡). 𝑑𝑆 (31) 

The integral is done on the stator bore of each motor. This 

expression gives a torque that does not depend on time. For 

the RFPM motors the integral leads to [15]: 

𝑇 = 𝜋𝑅3
2𝐿𝐵𝑀𝐾𝑀 (32) 

By introducing the “root mean square values” 𝐵𝑟𝑚𝑠 and

𝐾𝑟𝑚𝑠, the shear stress 𝜎 can be defined as [13][15]:

𝜎 = 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠 (33)

One can also define the rotor form ratio 𝜆 = 𝐿/𝑅3. Thus

the torque can be simply expressed: 

𝑇 = 2𝜋𝑅3
3𝜎 (34) 

For the AFPM motor, considering (20), (31) leads to: 

𝑇 = 𝜋𝑅𝑚𝐾𝑚 . ∫ 𝑟. 𝐵𝑀(𝑟). 𝑑𝑟
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

= 𝜋𝑅𝑚𝐾𝑚𝐼𝑟𝑏𝑚 (35)

The integral that appears in (35) is noted 𝐼𝑟𝑏𝑚. A new

variable 𝐵𝑚 is defined:

𝐵𝑚 =
1

(𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡)𝑅𝑚

𝐼𝑟𝑏𝑚 (36) 

The torque for the AFPM motor can be simply expressed: 

𝑇 = 𝜋𝑅𝑚
2 (𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡)𝐵𝑚𝐾𝑚 (37) 

By introducing the “root mean square values”, 𝐵𝑟𝑚𝑠 and

𝐾𝑟𝑚𝑠, and the rotor form ratio:

𝜆 =
𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡

𝑅𝑚

(38) 

The expression of the torque then becomes: 

𝑇 = 2𝜋𝜆𝑅𝑚
3 𝜎 (39) 

C. Flux model

The total magnetic flux density is the sum of the open

circuit and the armature reaction magnetic flux densities. its 

magnitude is: 

𝐵𝑇𝑀 = √(𝐵𝑀
𝑂𝐶)2 + (𝐵𝑀

𝐴𝑅)2 (40) 

As the leakage fluxes are neglected according to the pole 

surface 𝑆𝑝, the flux per pole is then written:

𝜙𝑝 = ∬ 𝐵𝑇𝑀𝑐𝑜𝑠(𝑝𝜃)𝑑𝑆
𝑆𝑝

(41) 

For the RFPM motor it is given by [13][15]: 

𝜙𝑝 =
2𝐿𝑅3𝐵𝑇𝑀

𝑝 (42) 

Fig. 7.  Flux paths in the AFPM machine. 

For the AFPM motor, the total field has a radial 

dependence. The flux per pole is then written: 

𝜙𝑝 = ∫ ∫ 𝑟. 𝐵𝑇𝑀(𝑟). cos 𝑝𝜃 . 𝑑𝑟. 𝑑𝜃
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

𝜋/2𝑝

−𝜋/2𝑝

(43) 

It is assumed that the total magnetic flux density inherits 

of the shape of the open circuit flux density (Fig. 6). After 

integration of (43), the 𝐼𝑟𝑏𝑚   integral (35) can be used again.

The flux per pole can be written using (29): 

𝜙𝑝 =
2

𝑝
𝐼𝑟𝑏𝑚

𝐵𝑇𝑀

𝐵𝑀(𝑅𝑚)
(44) 

VI. UNIFIED SIZING EQUATIONS

The tool developed in [15] allows computing the main 

sizes of the RFPM motor knowing its specifications and its 

loads which are the input data given in Table II. The loads 

are chosen depending on the levels of the magnetic, electric 

and thermal manufacturing technologies at disposal. The 

output values are the sizes of the machine (Fig. 1). This 

paper proposes to extend the methodology presented in [15] 

to AFPM motors. The developed analytical models are used, 

instead of the analytical expressions used in [4] or [5], to 

calculate electromagnetic quantities more accurately. 

A. Association of open circuit field analytical models

As in [15], the torque is deduced by the input data namely

the mechanical power and the speed. Knowing the torque, 

the shear stress and the rotor form ratio, the bore radius, 𝑅3,

of the RFPM motor or the mean radius, 𝑅𝑚, of the AFPM

motor are  determined with torque models (34) and (39). 

The open circuit models allow to determine the magnet 

thickness ℎ𝑚. Indeed the input data give the airgap

magnitude flux density 𝐵𝑀 which are linked to the size of the

motors by (6) and (28) for the RFPM motors and for the 



AFPM motors by (17) and (29). The calculation of the 

magnet thickness with the open circuit field analytical model 

is not straightforward specially for the AFPM motors. The 

validation of this calculation is the main goal of the 

validation with finite element analysis (FEA). 

B. Association of armature reaction field analytical models

The armature reaction field models allow to calculate the

airgap reaction flux density 𝐵𝑀
𝐴𝑅 by (11) and (25). The total

magnetic flux density 𝐵𝑇𝑀 is computed from (40) allowing

to evaluate the flux per pole with (42) and (44).  

C. Flux balance

In the following, only the case of AFPM motor is

developed. The case of RFPM motor is much more simple 

and can be found in [15] and Table III. The flux inside the 

yoke 𝜙𝑦 of AFPM motor is:

𝜙𝑝

2
= 𝜙𝑦 = 𝐵𝑦𝑆𝑦 = 𝐵𝑦 × ℎ𝑦(𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡) (45)

Which gives the yoke axial thickness: 

ℎ𝑦 =
𝜙𝑝

2𝜆𝑅𝑚𝐵𝑦

(46) 

TABLE II 

INPUT DATA OF ASSESSMENT TOOL [15] 

Mechanical specifications Thermal specifications 

Mechanical power, 𝑃𝑚 Ambient temperature, 𝑇𝑎𝑚𝑏

Base rotational speed, 𝑁 Allowable heating, Δ𝑇 

Choice of load levels Geometrical parameters 

Magnetic shear stress, 𝜎 Pole pairs, 𝑝 

Max airgap magnetic radial flux 

density, 𝐵𝑀

Rotor form coefficient, 𝜆 

Airgap ratio, 𝑥𝑔

Current density, 𝑗𝑟𝑚𝑠
Winding head coefficients, 

𝑘𝑤ℎ

Magnetic flux densities allowed in 

stator teeth 𝐵𝑡 and yoke 𝐵𝑦
Slot fill factor, 𝑘𝑓𝑖𝑙𝑙

The total flux in the teeth 𝜙𝑡, is the product of the average

magnetic field in the teeth 𝐵𝑡  and at the surface 𝑁𝑡𝐴𝑡 through

which this flux passes. With 𝐴𝑡 the circular surface area of a

tooth and 𝑁𝑡 the number of teeth:

𝜙𝑡 = 𝐵𝑡𝑁𝑡𝐴𝑡 (47)

As leakage flux are neglected, the flux passing through all 

the teeth is equal to the flux of one pole times the number of 

poles: 

𝜙𝑡 = 2𝑝𝜙𝑝 (48) 

Combining equations (47) and (48), lead to the teeth area: 

𝑁𝑡𝐴𝑡 =
2𝑝𝜙𝑝

𝐵𝑡

(49) 

D. Current balance

The linear current density for the AFPM motor is a

function of the radial position and is taken at the mean 

radius: 

𝐴𝑟𝑚𝑠 =
𝑁𝑐𝐼𝑟𝑚𝑠

2𝜋𝑅𝑚

=
𝑁𝑠𝐼𝑠𝑙𝑜𝑡

2𝜋𝑅𝑚

(50) 

Where 𝐼𝑠𝑙𝑜𝑡  is the total current flowing through a slot, 𝑁𝑠

is the number of slots and 𝑁𝑐 is the total number of

conductors. Considering that the slot has a rectangular shape: 

𝑁𝑠𝐼𝑠𝑙𝑜𝑡 = 𝑁𝑠𝑘𝑓𝑖𝑙𝑙𝑆𝑠𝑙𝑜𝑡𝑗𝑟𝑚𝑠 (51) 

𝑆𝑠𝑙𝑜𝑡 =
ℎ𝑠𝐴𝑠

𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡

=
ℎ𝑠𝐴𝑠

𝜆𝑅𝑚

(52) 

Where 𝑆𝑠𝑙𝑜𝑡 is defined in (51) as the volume of one slot

divided by the active length 𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡, and 𝐴𝑠 is the

circular surface left by the teeth area 𝐴𝑡. Then it comes:

ℎ𝑠 =
𝑆𝑎𝑐𝑡𝐴𝑟𝑚𝑠

𝑁𝑠𝐴𝑠𝑘𝑓𝑖𝑙𝑙𝑗𝑟𝑚𝑠
(53) 

With 𝑆𝑎𝑐𝑡 the surface area of the active parts, i.e.:

𝑆𝑎𝑐𝑡 = 𝜋(𝑅𝑒𝑥𝑡
2 − 𝑅𝑖𝑛𝑡

2 ) = 2𝜋𝜆𝑅𝑚
2 (54) 

It is also given by the relation: 

𝑆𝑎𝑐𝑡 = 𝑁𝑡𝐴𝑡 + 𝑁𝑠𝐴𝑠 (55) 

E. Calculation of losses

The Joules losses are obtained according to the product

𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠 [15]:

𝑃𝑗 = 𝑞𝜌𝐶𝑢𝑆𝑎𝑐𝑡𝑘𝑤ℎ𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠 (56) 

Iron losses include eddy current losses, hysteresis losses 

and additional losses. These losses are evaluated using the 

Bertotti's formula: 

𝑃𝑖𝑟𝑜𝑛 = 𝐾ℎ𝐵𝑚𝑎𝑥
2 𝑓 + 𝐾𝑐(𝐵𝑚𝑎𝑥𝑓)2 + 𝐾𝑒(𝐵𝑚𝑎𝑥𝑓)1,5 (57)

The 𝐾 coefficients are given by the data of the iron 

magnetic sheet used for the motor. The frequency is 

calculated with the speed and the number of pole pairs 𝑓 =
𝑝𝑁/60. Table III gathers main unified sizing equations of 

RFPM motors [15] and the AFPM motors. 

TABLE III 

MAIN UNIFIED SIZING EQUATIONS 

Parameter RFPM AFPM 

𝜆 𝐿
𝑅3

⁄
(𝑅𝑒𝑥𝑡 − 𝑅𝑖𝑛𝑡)

𝑅𝑚
⁄

𝑆𝑎𝑐𝑡 2𝜋𝜆𝑅3
2 2𝜋𝜆𝑅𝑚

2

𝑇 𝑆𝑎𝑐𝑡𝑅3𝜎 𝑆𝑎𝑐𝑡𝑅𝑚𝜎

𝜙𝑝
2𝐿𝑅3𝐵𝑇𝑀

𝑝⁄
2. 𝐼𝑟𝑏𝑚. 𝐵𝑇𝑀

𝑝. 𝐵𝑀
⁄

ℎ𝑦
𝜙𝑝

2𝜆𝑅3𝐵𝑦
⁄

𝜙𝑝

2𝜆𝑅𝑚𝐵𝑦
⁄

ℎ𝑠
𝑆𝑎𝑐𝑡𝐴𝑟𝑚𝑠

𝑁𝑠𝑙𝑠𝐿𝑘𝑓𝑖𝑙𝑙𝑗𝑟𝑚𝑠
⁄

𝑆𝑎𝑐𝑡𝐴𝑟𝑚𝑠
𝑁𝑠𝐴𝑠𝑘𝑓𝑖𝑙𝑙𝑗𝑟𝑚𝑠

⁄

𝜏𝑠𝑙𝑜𝑡
𝑁𝑠𝑙𝑠

2𝜋𝑅3
⁄

𝑁𝑠𝐴𝑠
𝑆𝑎𝑐𝑡

⁄

𝑃𝑗 𝑞𝜌𝐶𝑢𝑆𝑎𝑐𝑡𝑘𝑤ℎ𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠 𝑞𝜌𝐶𝑢𝑆𝑎𝑐𝑡𝑘𝑤ℎ𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠

VII. APPLICATION OF THE MODEL

This application is only to show that the unified sizing 

equations work for both motors. Hence, the RFPM and 

AFPM motors have not only the same specifications but also 

the same loads. As the definition of the main input data is 

given in Table III, their values are gathered in Table IV. 



TABLE IV 

INPUT DATA OF THE SIZING MODEL 

Input variable 

𝑃𝑚 Mechanical Power 1 𝑀𝑊 

𝑁 Revolution per minute 8000 𝑟𝑝𝑚 

𝑗𝑟𝑚𝑠 Volume current density 10 𝐴/𝑚𝑚2 

𝜎 Shear stress 80 000 𝑃𝑎 

𝐵𝑚 Open circuit magnetic flux  density 1.05 𝑇 

𝐵𝑡 Magnetic flux density in teeth 1.5 𝑇 

𝐵𝑦 Magnetic flux density in yoke 1.5 𝑇 

𝑀 Magnetization of magnet 875𝑘𝐴/𝑚 

𝑝 Number of pole pairs 4 

𝜆𝐴𝐹𝑃𝑀 AFPM rotor form coefficient 0.3 

𝜆𝑅𝐹𝑃𝑀 RFPM rotor form coefficient 1 

𝑥𝑔 Airgap ratio 0.01 

Where 𝑥𝑔 is the airgap ratio, 𝑥𝑔 = 𝑔/𝑅3 for the RFPM

motor and 𝑥𝑔 = 𝑔/𝑅𝑚 for the AFPM motor. The output data

are the geometrical parameters defined in Table I, Fig. 1 and 

Fig. 2. Table V gives the output values for both motors. 

TABLE V 
OUTPUT DATA OF THE SIZING MODEL 

Parameters RFPM AFPM 

ℎ𝑚 9.1 𝑚𝑚 17.6 𝑚𝑚 

Main radius 𝑅3 = 133.4 𝑚𝑚 𝑅𝑚 = 199.3 𝑚𝑚

ℎ𝑠 39.7 𝑚𝑚 37.3 𝑚𝑚 

ℎ𝑦 27.2 𝑚𝑚 38.2 𝑚𝑚 

𝜏𝑠𝑙𝑜𝑡 48 % 51 % 

𝑆𝑇 12.23 𝑁𝑚/𝑘𝑔 12.87 𝑁𝑚/𝑘𝑔 

𝑆𝑃 10.3 𝑘𝑊/𝑘𝑔 10.8 𝑘𝑊/𝑘𝑔 

𝑃𝑗 5.02 𝑘𝑊 4.03 𝑘𝑊 

𝑃𝑖𝑟𝑜𝑛 4.65 𝑘𝑊 3.59 𝑘𝑊 

Where 𝜏𝑠𝑙𝑜𝑡  is the slot ratio (Table III), 𝑆𝑇 is the specific

torque, 𝑆𝑃 is the specific power, 𝑃𝑗 the Joule losses and 𝑃𝑖𝑟𝑜𝑛

the iron losses. These results show that knowing the 

specifications and the loads of the machines, their sizes and 

their performances can be computed. These values are shown 

to demonstrate that this unified sizing model allows 

comparing machine topologies. Of course in real practice the 

motors have not the same loads. 

VIII. VALIDATION BY FEA

In order to validate the analytical models used in this 

sizing approach, the geometrical parameters in Table IV are 

taken as input of finite element analysis (FEA). The FEA of 

both RFPM and AFPM machine is performed on ANSYS 

Emag [17] in order to model the open circuit field. Only one 

pole is modeled due to the symmetries. Halbach array are 

modeled by seven permanent magnet segments as shown in 

Fig. 8 and Fig. 9. As in analytical models, the iron region is 

not taken into account. Two points of comparison are made 

in order to validate the model: 

- The maximum magnetic flux in the airgap computed by

FEA is compared to the one defined in input.

- The magnetic flux density useful to produce torque, i.e.

𝐵𝑟  and 𝐵𝑧 respectively for RFPM and AFPM machine,

computed by FEA is multiplied by the theorical surface

current density 𝐾(𝑟, 𝜃) and integrated to compute the

torque.

A. RFPM validation

In the 2D FEA, as in the analytical model, the iron regions

are replaced by normal flux boundary conditions. 

Fig. 8.  Geometry of the RFPM machine 2D FEA model. 

The FEA torque is computed from the airgap magnetic 

flux density distribution at the stator bore and the surface 

current density. Results and comparison between the model 

and the sizing model are gathered in Table VI. 

B. AFPM validation

There are air regions above the magnets in the axial

direction and besides the magnets in the radial direction as 

shown in Fig. 9. At interfaces with iron regions there are 

normal flux boundary conditions. 

The axial magnetic flux density is extracted at the stator 

bore surface, it accounts for the radial and angular 

dependency of 𝐵𝑧.

The FEA magnetic flux density is multiplied by the 

theoretical surface current density. The integral on the active 

surface is carried out to calculate the torque with the formula: 

𝑇𝐹𝐸𝐴 = ∬ 𝑟. 𝐵𝑧𝐹𝐸𝐴
(𝑟, 𝜃, 𝑧2). 𝐾(𝑟, 𝜃). 𝑑𝑆 (58) 

Fig. 9.  Geometry of the AFPM machine 3D FEA model. 

Results are gathered in Table VI. The error on the torque 

computation is about 1.9% and 1% respectively for AFPM 

and RFPM machine. The magnetic flux density wave along 

the stator bore is not a perfect sine as shown in Fig. 10. There 

is almost no error on the values calculated. There is almost 

no error when the fundamental magnitudes are compared. 

These results validate the 2D analytical models developed for 

RFPM and AFPM motors. The whole unified sizing 

equations have been validated by complete FE analyses but 

places are lacking to show them. This is the first step of a 

long campaign of validations. Anyway, the main contribution 

of the paper is the association of these simplified analytical 

models to the sizing equations. There were uncertainties for 

their accuracy. The results remove these uncertainties. 



TABLE VI 

COMPARISON BETWEEN SIZING MODEL AND FEA 

Torque 

(𝑁. 𝑚) 

Max magnetic flux at the 

stator bore (𝑇)  

AFPM 
Sizing Model 1194 1.13 

ANSYS Emag 1217 1.1289 

RFPM 
Sizing Model 1194 1.05 

ANSYS Emag 1182 1.0478 

Fig. 10.  Radial and axial magnetic flux density over one pole at the stator 

bore respectively for RFPM machine (𝑟 = 𝑅3) and AFPM machine (at

𝑧 =  𝑧2, 𝑟 = 𝑅𝑚).

IX. CONCLUSION

In this article, a unified sizing approach for RFPM and 

AFPM motors has been developed. This approach associates 

2D simplified analytical models of the open circuit and 

armature reaction fields. The results show that the unified 

approach can be used to size quickly both machines if the 

specifications and the loads are known. 

The association of analytical models in sizing approach is 

one of the major contribution of this paper. A first validation 

of this association has been done. The computation of the 

magnet thickness with the open circuit field model has been 

validated by FEA. Next step should have been the validation 

of the use of the open circuit and armature reaction field 

analytical models in the calculation of the total width of teeth 

and the yoke thickness. It has not been shown because it 

requires more places to present the results. 
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